
PH 500 Problem Set #4

We’ve established the formalism for time evolution. In this problem set, we apply
it more concretely to the two-state system. Again, the things I want you to do are in
bold.

1. For working with 2 by 2 matrices, it will be very useful to establish some prop-
erties of the matrices σ̂x, σ̂y, and σ̂z we defined in an earlier problem set. These
are called the Pauli matrices. They are (one choice of) the three linearly in-
dependent traceless 2 by 2 Hermitian matrices. It is not a coincidence that
the number of Pauli matrices is the same as the dimension of space, so we’ve
labelled them with x, y and z.

Show that

σ̂xσ̂y = iσ̂z σ̂yσ̂x = −iσ̂z
σ̂yσ̂z = iσ̂x σ̂zσ̂y = −iσ̂x
σ̂zσ̂x = iσ̂y σ̂xσ̂z = −iσ̂y (1)

Note also that σ̂2
i = 1̂ for all the Pauli matrices. These results can be summa-

rized by the equation

σ̂iσ̂j = δij + i
3∑

k=1

εijkσ̂k (2)

where εijk is the Levi-Civita symbol. It is defined such that it changes sign when
any two indices are exchanged and ε123 = 1. Thus ε132 = ε321 = ε213 = −1 and
ε231 = ε312 = 1, and if any two of the indices are equal it is zero. This is a useful
symbol — for example you can check that the usual cross product of two real
3-dimensional vectors is

a× b =
3∑
i=1

3∑
j=1

3∑
k=1

εijkaibj k̂ (3)

where k̂ is x̂, ŷ or ẑ for k = 1, k = 2, or k = 3 respectively.

For any real 3-vector v, define

v · σ̂ = vxσ̂x + vyσ̂y + vzσ̂z (4)

which is a Hermitian matrix. Show that for any two real 3-vectors a and
b,

(σ̂ · a)(σ̂ · b) = a · b1̂ + i(a× b) · σ̂ (5)

where a · b and a × b are the usual dot and cross products for 3-dimensional
vectors.
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2. Show that if the real 3-vector u has |u| = 1, then

eiθu·σ̂ = 1̂ cos θ + i(u · σ̂) sin θ (6)

3. The general case. Start in the arbitrary initial state

|ψ(t = 0)〉 =
(
a
b

)
(7)

where a and b are complex numbers and take the Hamiltonian as

Ĥ = −kv · σ̂ (8)

where v is a real, constant, unit 3-vector and k is a constant. Find
|ψ(t)〉. This is the most general 2 by 2 Hamiltonian, because the only other
term we could add that would keep Ĥ Hermitian would be proportional to the
identity matrix, which we have already shown does not affect the dynamics.

4. Having solved this system, we can now turn to interpreting the physics. There
are many problems where we can isolate aspects of the system corresponding
to a two–state system, including the neutral kaon system, neutrino oscillations,
and the ammonia molecule. But the most common is the spin of an electron.
Even at rest, electrons possess an intrinsic angular momentum. This is a purely
quantum effect (whose origins we will not go into here). As a result, the electron
has an intrinsic magnetic dipole moment, as if it were a tiny loop of current. The
energy of a magnetic dipole in a magnetic field is U = −M ·B where M is the
dipole moment, indicating that the loop of current wants to lie perpendicular
to the magnetic field. If we think of this current as coming from a particle
running in a loop, the magnetic dipole moment is proportional to the angular
momentum of the particle, multiplied by some charge-to-mass ratio γ, called
the gyromagnetic ratio. 1

The intrinsic angular momentum of the electron, which is usually called the
spin, creates a magnetic moment in much the same way. The spin is given by
the vector of operators Ŝ = h̄

2
σ̂. Then the Hamiltonian is just2

Ĥ = −γŜ ·B = −γ h̄
2
σ̂ ·B (9)

1Classically, this ratio is just q
2m if the charge and mass are distributed the same way. For

example, if we take a uniformly charged sphere with total charge q, and uniform mass density with
total mass m, its magnetic dipole moment is q

2m times its angular momentum.
2For the electron spin, the gyromagnetic ratio γ is roughly twice the usual value, g e

2me
with

g ≈ 2. Predicting this result precisely is a triumph of relativistic quantum mechanics. In fact,
this quantity probably represents the most precise agreement between theory and experiment in the
history of science: Theory and experiment agree to one part per trillion! (This is roughly comparable
to measuring the distance from Vermont to California accurately to the thickness of a human hair.)
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So to understand the physics of this system better, we need to start by under-
standing angular momentum. Note that the different components of spin do
not commute with each other. So we cannot measure them all simultaneously.
However, using the result you have shown earlier, we know that they all have
the same eigenvalues, ±h̄/2. So a measurement of the spin along any direction
will always yield one of these values — “spin up” or “spin down.” Note that the
state corresponding to spin down is not the negative of the state corresponding
to spin up — rather, the two are orthogonal. So, roughly, two results that differ
by a 180◦ rotation in real 3-space correspond to vectors at a 90◦ angle in the
2–dimensional complex vectorspace of states! We’ll see this strange result in
more detail later.

Another useful operator is Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z .

Show that Ŝ2 commutes with Ŝx, Ŝy, and Ŝz, and find the possible

results of a measurement of Ŝ2. (In this case, this calculation is somewhat
trivial, but this result extends to a number of other situations we’ll run into
later on.)

5. Angular momentum is intimately connected with rotations. Let’s represent a
rotation by a real 3-vector ~θ, whose direction is the axis of the rotation and
whose magnitude is the angle of the rotation. Then the implementation of this
rotation on a state is by the unitary transformation

|ψ〉 → e−i
~θ·Ŝ/h̄|ψ〉 = e−i

~θ·σ̂/2|ψ〉 (10)

The factor of 1
2

in the exponent reflects the difference between angles in real
space and state space that we noted earlier.

Start with the state
(

1
0

)
, with definite spin up in the z direction.

Find the state that results from rotation by an angle θ around the
x axis. Compute the expectation values of Ŝx, Ŝy, and Ŝz in this
state. Compare the result to your classical intuition for 90◦ and 180◦

rotations. What happens to the state when θ = 2π?

6. Acting on the Hamiltonian (or any operator), a rotation is given by

Ĥ → e
−i~θ·Ŝ

h̄ Ĥe
i~θ·Ŝ

h̄ (11)

You can think of this simply as the operator that rotates the state back the
way it was, applies the old operator, and rotates the state forward again. If
we get the same Hamiltonian back, we say that the Hamiltonian is rotation
invariant. (In this system, rotationally invariant Hamiltonians are not very
interesting, since they would have to have zero magnetic field: once we pick a
direction for the magnetic field we have broken rotation invariance. But with
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larger systems we will be able to construct nontrivial rotationally invariant
Hamiltonians. In our case, the Hamiltonian is invariant under rotations around
the axis parallel to the magnetic field direction.) Show that, in general, if
a Hamiltonian is invariant under rotations around a particular axis
n̂, then the corresponding angular momentum n̂ · Ŝ around that axis
is conserved. Hint: Consider an infinitesimal rotation, and use the Taylor
expansion of the rotation operator. Remember that if two quantities are equal
as functions of θ, they must have the same Taylor series in θ.

This is an example of Noether’s theorem, which holds in both classical and
quantum physics: whenever you have a symmetry (such as rotation invariance),
there is a corresponding conservation law (such as angular momentum). Some
examples are:

Symmetry Conserved Quantity
time translation energy
space translation momentum

rotation angular momentum
phase rotations of quantum states electric charge

7. We can form raising and lowering operators from the other two components of
Ŝ:

Ŝ+ = Ŝx + iŜy
Ŝ− = Ŝx − iŜy (12)

Find what happens when you act with each of these operators on
each of the eigenvectors of Ŝz. Explain why these operators are aptly
named.
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