
PH500 Problem Set #2

This problem set is a little more abstract than the previous one; we’re establishing
a lot of the formalism we will use in the next problem sets to do more concrete
calculations. Although it looks long, some of the problems are quick once you get
through all the definitions. Again, the things I want you to do are in bold.

1. We’ve gotten familiar with 〈φ|ψ〉, which we called the inner product. It is a
scalar; if |φ〉 is a unit vector, it gives the component of |ψ〉 in the direction of
|φ〉.
We can also define the outer product of two vectors. For

|ψ〉 =
(
a
b

)
|φ〉 =

(
c
d

)
(1)

we have

|ψ〉〈φ| =
(
a
b

)
( c∗ d∗ ) =

(
ac∗ ad∗

bc∗ bd∗

)
(2)

which is a matrix.

The most useful outer product is that of a normalized vector with itself,

P̂φ = |φ〉〈φ| (3)

which is called a projection operator. What does this operator do? Well, imagine
operating on another vector |ψ〉. First, it takes the component of |ψ〉 in the
direction of |φ〉, and then it multiplies this number by the vector |φ〉. So it has
“projected out” the component of |ψ〉 parallel to the unit vector |φ〉.

(a) Show that P̂ 2
φ = P̂φ. Find the possible eigenvalues of P̂φ. Explain

how this result is consistent with P̂φ being a projection operator,
and describe the corresponding eigenvectors.

(b) Suppose we have an orthonormal basis {|ej〉}. Show that∑
j

|ej〉〈ej| = 1̂ (4)

where 1̂ is the identity operator, 1̂|ψ〉 = |ψ〉 for all |ψ〉. Explain this
result in words.

(c) Check the previous result explicitly for the basis of eigenvectors
of σ̂x you computed in the previous problem set.
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2. On the previous problem set, we introduced the expectation value of an operator
in a given state. Since we will use it so much in the rest of this problem set, I
will introduce a compact notation

〈ψ|Â|ψ〉 ≡ 〈Â〉ψ (5)

In the last problem set we found this was the mean value of the results of
the measurement, weighted by their probability. Next, we will investigate the
deviation from this mean. For a given operator Â, consider the operator

∆̂A = Â− 〈Â〉 (6)

What does this mean? For a given operator Â, I’ve defined a new operator
called ∆̂A. Here 〈Â〉 is just a number — the expectation value of Â in whatever
state this operator is acting on.

So if I act with this operator on a state |ψ〉, what I get is the vector Â|ψ〉 minus
the number 〈Â〉ψ times the state |ψ〉.

(a) Show that 〈∆̂A〉ψ = 0 in any state |ψ〉.
(b) Show that if |ψ〉 is an eigenstate of Â, then ∆̂A|ψ〉 = 0.

3. Our goal was to have ∆̂A represent the deviation of Â from its average value.
Since Â deviates as much above as below, ∆̂A always averages to zero (as you
found in the last problem). So we can’t get any more information from its
expectation value — which is the usual situation in statistics. The solution is
to define the variance, which is the square of the deviation. By averging the
variance — which is always positive — and then taking square root of the result,
we obtain the standard deviation, which represents the average magnitude of
the deviation from the mean.

Let’s repeat that in equations. Define

̂(∆A)2 =
(
Â− 〈Â〉

)2
(7)

Then the uncertainty in Â in the state |ψ〉 is given by

∆Â,ψ =
√
〈 ̂(∆A)2〉ψ (8)

In other words, take the operator ∆̂A, square it, take the expectation value in
the state |ψ〉 (which is always a positive number), and then take the square root
of that number.

Show that
∆Â,ψ

2 = 〈Â2〉ψ − 〈Â〉2ψ (9)
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4. Prove the Schwartz inequality : For any two states |φ〉 and |ψ〉, show that

|〈φ|ψ〉| ≤
√
〈φ|φ〉〈ψ|ψ〉 (10)

Hint: define

|γ〉 = |φ〉 − |ψ〉〈ψ|φ〉
〈ψ|ψ〉

(11)

and consider 〈γ|γ〉. Explain why this makes sense geometrically. When
does the inequality become an equality?

5. Now let’s put it all together to prove the uncertainty principle.

Starting with a state |ψ〉 and two Hermitian operators Â and B̂, define

|f〉 = (Â− 〈A〉ψ)|ψ〉 (12)

and
|g〉 = (B̂ − 〈B〉ψ)|ψ〉 (13)

Show that
∆Â,ψ

2∆B̂,ψ
2 ≥ |〈f |g〉|2 (14)

Hint: use the Schwartz inequality.

Now the norm squared of any complex number z is just its real part squared
plus its imaginary part squared, so we have

|z|2 = (<z)2 + (=z)2 ≥ (=z)2 =
[

1

2i
(z − z∗)

]2
(15)

Choosing z = 〈f |g〉, we have

∆Â,ψ
2∆B̂,ψ

2 ≥
[

1

2i
(〈f |g〉 − 〈g|f〉)

]2
(16)

Show that
〈f |g〉 = 〈ÂB̂〉ψ − 〈Â〉ψ〈B̂〉ψ (17)

Similarly
〈g|f〉 = 〈B̂Â〉ψ − 〈B̂〉ψ〈Â〉ψ (18)

(note the crucial difference in the order!) and we have found that

∆Â,ψ
2∆B̂,ψ

2 ≥
(
〈 1

2i
[Â, B̂]〉ψ

)2

(19)

where [Â, B̂] = ÂB̂−B̂Â is the commutator of Â and B̂. This is the uncertainty
principle. Note that the right–hand side has an i2, which makes it look negative.
But that’s not the case; remember that, as you showed in the last problem set,
[Â, B̂]/(2i) is Hermitian. A Hermitian operator has real eigenvalues, and a
Hermitian operator squared has all positive (or zero) eigenvalues. So really the
right–hand side, like the left–hand side, is a positive–definite expression.
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6. For the state

|ψ〉 =
1√
3
|+〉+ i

√
2

3
|−〉 (20)

you studied in the previous problem set, verify the uncertainty prin-
ciple (by computing both sides) for

(a) Â = σ̂x B̂ = σ̂y

(b) Â = σ̂y B̂ = σ̂z

(c) Â = σ̂z B̂ = σ̂x

7. While we’re discussing commutators, one more result will be very useful to know.
Suppose Â and B̂ commute, so [Â, B̂] = 0. Suppose that you find an eigenvector
|λi〉 of Â with eigenvalue λi, and suppose that it is nondegenerate, that is,
it is the only eigenvector with this eigenvalue. Show that |λi〉 is also an
eigenvector of B̂. This relatively simple result has an important consequence:
If Â and B̂ commute, we can construct a basis { |λi〉 } that are eigenvectors
of both operators. For nondegenerate eigenvectors, you have already shown this
result. For degenerate eigenvectors, any linear combination of eigenvectors with
the same eigenvalue is still an eigenvector. So another exercise (which I’m not
asking you to do) shows that you can choose combinations that are eigenvectors
of both operators.
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