
PH 301 Problem Set # 11

Due: Friday, December 5, 2003

1. Transmission line: Griffiths 7.58.

2. Electromagnetic wave: Griffiths 9.9. For part (a) verify explictly that it satisfies
Maxwell’s equations.

3. Two interfaces: Griffiths 9.34. Hint: To the left, there are the usual incident
and transmitted waves. Choose your normalization so that the incident wave
has amplitude 1. In the middle, we have both a left-moving and a right-moving
wave (capturing all the reflections between the surfaces). On the right there is
just the transmitted wave. So there are four unknowns: the reflected amplitude,
the transmitted amplitude, and the two amplitudes in the middle. You should
have two boundary conditions at each of the two boundaries, so you will have
four equations for these four unknowns.

You are welcome to use Mathematica (or Maple or another package you prefer)
to solve these equations. As an example, to solve

ax + by = c
dx + ey = f (1)

for x and y in terms of the constants a, b, c, d, e and f , the Mathematica
command is

Simplify[Solve[{a x + b y == c, d x + e y == f}, {x, y}]]

and don’t forget you have to press Shift-Enter! Also, note that you can indicate
multiplication with a space or a star: a x or a*x but NOT ax.

Other Mathematica tips: Enter
√
−1 as capital I and the base of the natural

logarithm as capital E. Built-in functions begin with a capital letter and use
square brackets: Exp[x], Sin[x], etc.

You can get Mathematica to find the magnitude of a complex number, but you
have to tell it to assume all unknown variables are real. There’s probably a
better way to do it, but the following evaluates |a + ib| to

√
a2 + b2:

ComplexExpand[Abs[a + I b], TargetFunctions -> {Re, Im}]

You can also use Simplify[] and FullSimplify[] to make complicated ex-
pressions more manageable.
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4. (a) A practical application of the previous problem is the antireflection coating,
used in camera lenses. In this case, region 1 is the air and region 3 is the
glass of the lens. We would like to insert a coating, which is represented by
region 2, to maximize the amount of light transmitted into the lens (and
eventually to the film). Equivalently, we would like to minimize the amount
of light reflected back to the air. Since modern lenses have many air-glass
interfaces, antireflection coatings are essential to obtaining a bright image.
(In addition, the reflected light can get re-reflected back to the film, leading
to an undesirable blurring effect called lens flare.)

Suppose we fix a frequency of light ω and assume that since region 1 is
air, n1 = 1. In terms of ω and n3 = nG, the index of refraction of glass,
find the values of the thickness d and the index of refraction n2 so that
we have perfect transmission, T = 1. For a typical optical frequency,
find the actual numerical values for these quantities (Griffiths provides the
necessary data).

Hint: Eq. (9.199) is an equation for 1/T , so we want the right-hand side to
be as small as possible in order to make T as big as possible. First choose
the optimal d (in terms of ω and n2), and then find n2 so that the resulting
expression is 1.

Hint: For the antireflection coating, 1 = n1 < n2 < n3 = nG; this fact tells
you the sign of the coefficient of the sin2 term. Use this to figure out what
you want sin2 to do (i.e. should it be 1 or 0), and go from there.

(b) The closest we can get to the ideal index of refraction with a known ma-
terial that can be applied as a durable thin layer is to use magnesium
difluoride, which has an index of refraction of 1.38. (Because its index
of refraction is larger than the ideal value, modern high-quality lenses all
use multiple layers of antireflection coatings to further reduce reflections.)
Find the fraction of light that is reflected by a magnesium difluoride layer
of optimal thickness, and compare that to the fraction reflected in the case
of no coating at all.
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