
PH 120 Project # 3: Frequency Analysis, Vision, and Sound

Due: Friday, January 23, 2004

In the pendulum project, we used techniques like Poincaré sections and bifurcation
diagrams to try to understand the periodicity of complex motion. These techniques were
crude but effective, partially because we had a definite frequency for our “strobe light” —
the driving frequency ωd. The goal of this Project is to develop some more sophisticated
techniques for analyzing the frequency content of a signal. A particular application will
be an extremely crude model for vision.

This assignment is set up in C++, but if you’re familiar with Java you should have
no problem using that instead. If you choose to use Mathematica, your task will be to
implement the same functionality as I describe in C++; I’ve included some Mathematica-
specific notes to guide you at the end of the problems.

Important: Since we will use basic command-line tools for C++, we won’t have
any nice notebook system available to record all of your steps. Nonetheless, I do want
you to keep a careful log of how you worked through each problem, including the same
kinds of explanations and interpretations you’ve been including as comments in your
notebook. This writeup should include explanations of what you did, with output data
and especially plots. However, I’m not picky about how you put this together: you can
use a Mathematica notebook into which you paste your data (Mathematica can also read
in text files, if you prefer); or you can just print out your plots in Excel or gnuplot and
refer to them in your writeup (hand-labeling is fine); or anything else that produces a
clear, readable document. The only thing you need to submit electronically is the code:
this should be set up to illustrate how you did each type of calculation, but within a given
calculation, one representative example is fine: you don’t need to display everything you
ran within the code, but someone reading your writeup should be easily able to tweak
the code and reproduce what you did. Your writeup, however, should include all the
significant calculations you did and results you obtained. (Mathematica users, of course,
should still just hand in a Mathematica notebook will all of this information.)

C++ warning: in this assignment, you will be using both integer values and double
precision floating-point values. Be careful to keep them straight! This is particularly
important when it comes to division. For example: 4/5 will evaluate to 0 in C++,
because C++ does integer division. Similarly, 11/5 will evaluate to 2. To do floating-
point division, you need to say 4.0/5 or double(4)/5 so that the compiler knows to
promote everything to floating point.

1. Start with the file guess.cc from the course folder (or the course website). This
is a rather lame program to begin with, but we’ll work on it. Start by reading the
code in a text editor and seeing if you can understand what it it doing. Then make
sure you can compile it and run it, and see that you get the output you expect.

Just to remind you, to compile with gcc on Linux, open up a shell and type

1



g++ file.cc

which will create an executable a.out. To run it, type

./a.out

where the ./ is to tell the system to look in the current directory (some systems
nowadays are configured not to run programs in the current directory by default
for security reasons).

On Windows, it works the same way from the Cygwin shell, except the executable
is called a.exe, so you run it with ./a. Cygwin is available for free download
from http://www.cygwin.com. If you want to install it to your own machine, just
follow the defaults except for one change: when you get to the screen where you
can configure various package groups, change the “Devel” package from “Default”
to “Install” (just click on it once).

For OS X, the gnu compiler should work the same way as in Linux, though if it’s
not pre-installed on your computer you have to download it from Apple’s developer
tools website http://developer.apple.com.

(a) We’d like to turn this into C++ code we can be proud of. Rather than having
the work done in main(), we’d like to have it all done in the class, in such a
way that the rest of the code doesn’t get access to the implementation details.
In the end, we would like to have an class Guesser such that when we create
an instance myGuesser, the instance gets handed the correct answer when it is
created, does a sanity check on that answer, and then myGuesser(n) returns
true or false depending on whether the guess n is correct or not. Here is a
suggested route to that result:

i. Start by protecting the member variable mAnswer that encodes the answer.
Doing so will break the existing code, since it accesses mAnswer directly.
Remedy this by creating get and set member functions on the class and
calling these. Make the set member function check the input to make sure
it doesn’t exceed the built-in limit.

ii. Replace the get member function with a member function
bool guess(int n) that takes a guess and returns true or false de-
pending on whether the guess is correct or not. (Note that bool is a
built-in type, like double or int, which can take only the values true

and false.

iii. Replace the set member function by a constructor, so that the correct
answer is given when the object is created.

iv. Replace the guess member function with an operator so that you just call
myGuesser(n) instead of myGuesser.guess(n).

2



(b) Create a LenientGuesser class that inherits from Guesser, and overrides the
() operator to return true if the guess is within 1 of the correct answer.

Mathematica users: You should accomplish a similar task by defining a function
makeGuesser[answer ], which returns a guesser function corresponding to the an-
swer you put in. Then create a loop in which you verify that the guesser function
you created actually works. Ditto for makeLenientGuesser[answer ]. Use this
same sort of approach throughout the problem set.

2. Next we would like to assemble the building blocks of our very crude model of
the visual system. First, we will make everything one-dimensional instead of two-
dimensional. Imagine that the visual field consists of a fixed number of pixels N .
An image consists of an assignment of a brightness value to each pixel. Two specific
examples of images will be of interest to start with: First, we can have a “blip”:
the nth pixel at brightness 1, with all the others at zero. Here the position n ranges
from 0 through N − 1. Second, we can have a regular “texture” (think corduroy):

an oscillating brightness, so that pixel j has brightness

√
2

N

(
cos

πωj

N
+ 1

)
where

the frequency ω is an integer from 1 to N . (The extra 1 ensures that the brightness

is always positive, and the factor of
√

2
N

makes the normalization comparable to

the blip.)

(a) Create two classes, BlipImage and TextureImage, both inheriting from an
abstract base class Image. When constructed, one should have to specify
either the location n of the blip or the frequency ω of the texture. Create a
virtual, overloaded operator, so that if myImage is an instance of either class,
myImage(j) returns the brightness at the pixel j. Generate a plot of a couple
of TextureImages and explain what happens to the image when you change
ω.

Mathematica users: Again, you will want to create functions
makeBlipImage[n ] and makeTextureImage[w ] returning functions that in
turn give the blip or texture as a function of position; similarly for the subse-
quent parts of the problem.

(b) Having modeled some very simple images, we would next like to model the way
that the visual system could process these images. A receptor is a cell that
takes some combination of the input pixels and sends the brain an output
signal. For example, a one receptor might add up the brightness of all the
pixels and divide by the number of pixels, thus returning the average brightness
of the entire visual field. Or a receptor could return just the brightness of a
particular pixel, ignoring the brightness of all the others. Or it could do more
complicated things, such as taking the difference between the sum of all the
odd pixels and the sum of all the even pixels.

Create an abstract base class Receptor defining the receptor interface, which
should take a pointer to an Image (of any kind) and return the response of the

3



particular receptor to that image. Define derived classes AverageReceptor,
returning the average brightness, and BlipReceptor, returning the value of a
particular pixel (when you create one of these, you will have to specify which
pixel).

Mathematica users: You should create a function makeBlipReceptor[n ] that
returns a function mapping an image to a the response of the receptor to the
image, so that, for example,
makeBlipReceptor[n ][makeBlipImage[p ]]

returns 1 if n = p and zero otherwise; similarly
makeBlipReceptor[n ][makeTextureImage[w ]]

should return the response of the blip receptor at n to the texture image with
frequency ω.

(c) Suppose you know that your image is a BlipImage, but you don’t know where
it is. Write code that uses BlipReceptors to find the location of the blip.
(This is not a complicated algorithm.) Try a few examples and show that
your code works.

(d) In reality, it’s hard to make a receptor with such high resolution — a recep-
tor centered at pixel n tends to get corrupted by adjacent pixels. Make a
FuzzyBlipReceptor with the following profile: the FuzzyBlipReceptor cen-
tered at n returns the average of the brightness at n with weight 1/2 together
with the brightness at n±1 with weight 1/4 each. (For the pixels at the edges,
you may assume that the missing pixels have zero brightness, or the same
brightness as the center pixel.) Show that you can still locate a BlipImage

accurately with a FuzzyBlipReceptor.

(e) Now take a TextureImage with a particular ω. Explain why it’s hard to fig-
ure out its ω using FuzzyBlipReceptors. (Or, if you think it’s easy, write
a program to do it!) Instead, define a TextureReceptor that works as fol-
lows: It sums the value of the brightness over all the pixels, with the jth

pixel weighted by the factor

√
2

N
cos

πωj

N
, where ω is an integer from 1 to N .

Write code to use TextureReceptors to identify the ω associated with a given
TextureImage. Demonstrate your code with a few examples, and explain how
this works.

(f) Now suppose you can be given an image that is either a BlipImage or a
TextureImage. Write an algorithm that uses both BlipReceptors and TextureReceptors
to first determine which kind of image you have, and then find the image’s n
or ω as appropriate. Again, demonstrate your code with an example of each
kind.

3. Although your eye actually does contain analogs of both BlipReceptors and TextureReceptors,
a different kind of receptor plays a central role. Having a full set of both kinds of
receptors seems like overkill; we’ve created 2N receptors to process only N pieces of

4



information. Also, it’s rather artificial: One set of receptors was entirely designed
for isolated points, while the other was entirely designed for regular patters. In the
real world, these possibilities can mix; for example you could have a regular pattern
that only covers a small range of the visual field. We’d like a single, generic set
of receptors that can extract information both about an image’s location and its
patterns, and as a tradeoff we’ll be willing to accept only approximate results in
both cases.

(a) Define a GaussianReceptor like the TextureReceptor, except using the func-

tion

√
ω

2π2N
e−ω2(j−n)2/(2π2N2) cos

πω(j − n)

N
for the response.

Thus a particular GaussianReceptor is specified both by a value of n and ω.
Generate a plot of the receptor profile for some sample values to see what it
looks like, and explain what you expect varying these values to do. Loop over
all the possible values of both these two parameters (don’t set your N too big
here!) to see how well you can do at identifying the different kinds of images.

(b) In the previous problem, there were N2 different possible
GaussianReceptors you could construct. Gradually cut down the number of
receptors you use to smaller and smaller subsets. When you do so, can you still
do a reasonably good job of identifying whether an image is a blip or texture,
and finding (approximately) its corresponding n or ω? How few receptors can
you use, given a reasonable error tolerance?

(c) One measure of how we are doing is to try to recreate the original image from
the output of the receptor. Create a subclass of Image called RecreatedImage,
which starts out empty (all pixels zero). Then give it a member function
addReceptorOutput, taking a Receptor and a coefficient. The RecreatedImage
should add to the value of each pixel this coefficient times the weight that the
receptor uses for that pixel (e.g. in the case of a GaussianReceptor, that com-
plicated Gaussian function). You’ll need to augment the Receptor interface to
accommodate this change. The idea is that you start with an image, and find
each receptor’s response to the image. Then you add up the profile function
being used by each receptor, weighted by how that receptor responded to the
original input, and see how well you did.

Starting from both a blip and a texture, try reconstructing the original image
using BlipReceptors, TextureReceptors, a large set of
GaussianReceptors, and a small set of GaussianReceptors. In each case,
draw a graph of the resulting image. How do they do?

Note: We’re just interested in the general shape — don’t worry about problems
at the edges, or if you get an overall shift (this would be fixed by including
an AverageReceptor) or rescaling of the image values (this would be fixed by
normalizing more precisely in proportion to the number of receptors).

Epilogue: the tradeoff between localization in space (the ability to identify a blip)
and localization in frequency (the ability to identify a texture) is ubiquitous in

5



the physics of wave phenomena. For example, when you hear that an Internet
connection has high “bandwidth,” it means that it can transmit a wide range of
frequencies. That is, it can transmit a signal that would generate a significant
response across a wide range of TextureReceptors. Thus it can send a very short
blip, which is what you need to transmit data quickly.

In quantum mechanics, using BlipReceptors is exactly analogous to measuring a
particle’s position, while (for less intuitive reasons, which you’ll learn if you take
PH202) using TextureReceptors is exactly analogous to measuring its momentum.
The catch is that in quantum mechanics, measurement affects the system, so if you
measured with all your BlipReceptors first, the system has been changed so you
can’t then go back and measure with TextureReceptors (and vice versa). This
is the uncertainty principle: You can’t know precisely the particle’s position and
momentum simultaneously. In practice, one is more likely to use the analog of a
GaussianReceptor, which gives you approximate information about both quanti-
ties.

Ideas related to image reconstruction also have very practical applications in data
compression. Compressing an image, for example to create a .jpeg file, essentially
means creating a small but well-chosen set of receptors, and then recording only
those receptors’ response to the image rather than the whole image. For audio
signals, which you’ll look at in the next problem, compression algorithms like those
used to produce .mp3 files also work this same way.

4. These ideas are also directly applicable to sound. In this case, a 1-dimensional
model is exactly what we want. Now the position of the pixel labels a moment of
time, and the brightness corresponds to the variation in air pressure at that moment
(which can be positive or negative). A standard audio format for storing such data
is the .wav file. In the files wav.cc and wav.h are classes WAV IN and WAV OUT that
read and write .wav files. The main() routine in wav.cc gives an illustration of
how to use these — it just reads in and writes out the same file. Note that you only
need to understand the public sections of the class declarations (in wav.h), since
those are the only functions you can call. Once you understand how to use this
code (you don’t have to worry about the details of how it works), remove the main

routine, since we will want to incorporate this code into another program (which
already has a main. We’ll want to read in the data from the .wav file, modify it,
and then write it out so we can play it. I’ve provided the sound tada.wav to use
as a sample, though you’re welcome to use something else; I would recommend
something short (2-3 seconds), monaural, and sampled at a low frequency (under
16 kHz), just to keep total the amount of data under control. (If you have a sound
recorded at higher quality, for example from a CD, utilities like Windows sound
recorder can save it out with these lower settings).

Note: To compile including the code in wav.cc, just add it to the command line:

g++ wav.cc file.cc

6



where file.cc is your code. You’ll also need

#include "wav.h"

in your code so that it can see the declarations in wav.h. (If you want to put your
code for this problem in a new source file, you can also use this same approach to
put code you wrote in the last problem into a header, which you can then include
in both places.)

Java users: I’ve provided SoundReader.java and SoundWriter.java class files pro-
viding similar functionality. You need the javax library on your CLASSPATH.

Mathematica users: Mathematica has all the functionality you need built in. Enter
the commend << Miscellaneous‘Audio‘ to load its audio package, and then you
can use ReadSoundFile to read in the data and, after you’ve modified it, ListPlay
to play it.

(a) Create a SoundImage object that, given the name of an input wave file, reads
its data in as an image. You can continue to use a fixed number of pixels
(rather than the whole file), but you’ll need to increase the number — the
lowest sample rate a .wav file can have is 8kHz, which means it takes 8000
samples just for 1 second of sound.

(b) Create a SoundImageSaver class that, given the name of an output wave file,
an image of any kind, and a pointer to a WAV IN object, saves out the image
as wave data. (The only reason that it needs the WAV IN object is to copy the
sampling data. The wave file I provided is 8000 samples per second, 16 bits
per sample, 1 channel, and you’re welcome to just hard-wire those settings
if you prefer.) Check that you can read your SoundImage and write it out.
Create a few TextureImages and play them as wave files — do they sound as
you’d expect? (Be sure to use a high enough frequency.) You can also try a
BlipImage, but you probably will have to combine several of them together
to be able to hear anything.

Note: When writing the file, your values must be between −1 and 1. (On
Mathematica, they’re integers from -32768 to +32767.) It’s easy to let it go
out of range. If you find this happening, just be sure to rescale all of your
data to fit in the range again. (Don’t cut it down too much or you won’t
hear anything!) Conversely, if your sound is too quiet, you should scale it up.
Probably it’s worth making this scale an argument to the saver class.

(c) As you did in the previous problem, break your SoundImage up with BlipReceptors
and then reassemble it into a RecreatedImage. Does it sound the same? What
happens if you just use the first N/2 blips? (This should not be surprising.)
What if you only use BlipReceptors centered at every other point? Every
fourth point? What if you use a BlipReceptor at every other point, but copy
its value to the value you skipped? What if you do this at every fourth point?

7



(d) Now repeat the process with TextureReceptors. What if you use only the
first N/2 textures? What if you use only the second N/2? What if you skip
every other one, either by leaving it out or copying the previous value?

(e) Finally, try to reconstruct the sound using GaussianReceptors. Since you
have N2 possibilities here, it will be important to cut down the number of
receptors you use. Start with a short segment of the sound, and see how few
receptors you can get away with. Which values of n and ω is it most important
to keep? How few can you use and still have a recognizable sound?

5. (Adapted from Georgi, The Physics of Waves) Finally, let’s connect these ideas
with what we studied last week. Use the following function to create a FractalImage:

f(j) =
∞∑

k=0

hkg
(
frac

(
2kj/N

))

where frac(t) denotes the fractional part of t (so frac(3.14) is 0.14),

g(t) =


1 for 0 ≤ t ≤ w
0 for w < t < 1− w
1 for 1− w ≤ t ≤ 1

and h and w are constants with 0 < h < 1 and 0 < w < 1/2, parameterizing the
shape of the image.

(a) Plot a graph of this image function. Note that for a given precision of the pixel
values, you only need a finite number of terms in the sum. Why? Explain
qualitatively how the shape of the image depends on the parameters h and w.

(b) Describe how the image changes as we increase the resolution. Explain how the
infinite sum, in the limit of infinite resolution, generates a fractal (self-similar)
pattern.

(c) Use TextureReceptors to reconstruct the image as you did above. Explain
what happens to the reconstructed image if you only keep high or low fre-
quencies. (You might also try listening to it!) What does this say about the
frequency content of a fractal?

6. (You don’t have to hand anything in for this part.) Start thinking of some ideas
for your final project!

8


