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Objective

I will describe an efficient machinery for computing Casimir
interaction energies for a wide range of object configurations. Just:

I Pick an appropriate basis for each object

I Describe each object individually through its scattering data
in that basis

I Describe the relative positions and orientations of the objects
through standard change of basis formulae (e.g. expansion of
a plane wave in spherical waves)

The method provides both analytic expansions at large separations
and numerical results for arbitrary separation, in both cases
without the need for large-scale calculations or computations.

I will focus especially on geometries involving edges and tips.



Background

This approach builds on a range of prior work:

I Asymptotic multiple scattering using surface scattering kernel
Balian, Duplantier

I T-operator methods for proving general theorems
Kenneth, Klich

I Scattering theory approach for parallel plates, Lifshitz theory
Kats; Renne; Genet, Jaekel, Lambrecht, Maia Neto, Reynaud

I Many-body S-matrix techniques for disks and spheres
Bulgac, Henlseler, Magierski, Wirzba

I Path integral Casimir techniques
Bordag, Robaschik, Scharnhorst, Wieczorek

Emig, Golestanian, Hanke, Kardar

I Scattering theory Casimir methods for single bodies
Jaffe, Khemani, Graham, Quandt, Scandurra, Weigel



Quantum Fluctuations

Two complementary pictures of Casimir interactions:

Charge fluctuations: We have induced
dipole-dipole interactions. When we sum over all
possible fluctuations, energy is lowered by
dipole-dipole attraction (plus contributions from
higher multipoles).

Field fluctuations: Each mode of the
electromagnetic field carries energy
E = ~ω(n + 1

2), where n is the number of photons
in that mode. So even if n = 0, we have energy
1
2~ω. Moving the plates changes the allowed
spectrum of modes, thereby altering the sum over
all modes of this “zero-point” energy.

The key point: An object is completely represented by its
electromagnetic response.



The Method
We start from the electromagnetic path integral in A0 = 0 gauge.
Decompose as Fourier series, with frequency ω and time interval T :

Z =
∏
ω

∫
DA exp

[
iT

2~

∫
dxE(ω, x)†

(
H0(ω)− V(ω, x)

k2

)
E(ω, x)

]
with H0(ω) =

(
I− 1

k2∇×∇×
)
, ω = ck . The interaction is

V(ω, x) = Ik2(1− ε(ω, x)) +∇×
(
µ(ω, x)−1 − 1

)
∇×

Use Hubbard-Stratonovich: multiply and divide by

W =
∏
ω

∫
DJ exp

[
iT

2~

∫
dx J(ω, x)†V−1(ω, x)J(ω, x)

]
=
√

detV

Then shift variables, using the free Green’s function G0(ω, x, x′),

J′(ω, x) = J(ω, x) +
1

k
V(ω, x)E(ω, x)

E′(ω, x) = E(ω, x) + k

∫
dx′G0(ω, x, x′)J′(ω, x′)

where −k2H0(ω)G0(ω, x, x′) = Iδ(3)(x− x′).



Going to the source
After Hubbard-Stratonovich, the path integral in E′ is that of a
free field,

Z0 =
∏
ω

∫
DA′ exp

[
iT

2~

∫
dxE′(ω, x)†H0(ω)E′(ω, x)

]
We have traded interactions of the fields E for interactions of the
sources J′, which are restricted to the objects,

Z =
Z0

W

∏
ω

∫
DJ′ exp

[
iT

2~

∫
dx dx′

J′(ω, x′)†
(
G0(ω, x, x′) + V−1(ω, x)δ(3)(x− x′)

)
J′(ω, x)

]
Both W =

√
detV and Z0 =

√
detH−10 are local and do not

depend on the separations of the objects. These terms contain all
(renormalized) divergences. As long as we are comparing two
configurations, not changing the objects themselves, this
contribution cancels and can be ignored.



Meet Mr. T
From the partition function, we get the Casimir energy

E =
i~
T

logZ =
i~
2T

log det(G0 + V−1)−1 + E0

where E0 is a constant, independent of the objects’ positions, and
T = (G0 + V−1)−1 = V(I + G0V)−1 is the T-operator:

I Connects different values of k (“off-shell”).
I Proportional to V, so 〈x|T|x′〉 = 0 if x or x′ is not on an

object.

The strategy: Decompose detT−1 = det(G0 + V−1) using a
position space basis (which is restricted to points on the objects,
since otherwise J vanishes) divided into blocks, where each block is
labeled by the object on which the corresponding points lie.

I The off-diagonal blocks in this expansion only involve G0.
I The diagonal blocks in this expansion only involve F, the

matrix of on-shell scattering amplitudes (T -matrix).
I Let T∞ be the T-operator for a reference configuration with

the objects at infinity. It is block diagonal in this basis.



The Plan Comes Together

We obtain the energy

E − E∞ =
i~
2π

∫ ∞
0

dω log det
(
MM−1∞

)
, with

M =

 (F1)−1 U12 · · ·
U21 (F2)−1 · · ·
· · · · · · · · ·

 M−1∞ =

 F1 0 · · ·
0 F2 · · ·
· · · · · · · · ·


We express each block in a multipole (partial wave) basis.

I Uij(ω) is the translation matrix, which gives the change of
basis from one object to another (independent of the objects).
Obtained from expansion of the free Green’s function.

I Fi (ω) is the matrix of scattering amplitudes (aka T -matrix)
for each object individually (independent of separation).
Obtained from on-shell scattering.

For two objects: det
(
MM−1∞

)
= det

(
I− F1U12F2U21

)



Upon Further Reflection
For two objects, we have found

E − E∞ =
i~
2π

∫ ∞
0

dω log det (I− N)

where N = F1U12F2U21. In some cases, we will use this form
directly. It can also be convenient to write

log det (I− N) = tr log (I− N) = − tr

(
N +

N2

2
+

N3

3
+ . . .

)
which puts our expression in the form of a multiple reflection
expansion, where N represents a single reflection (back and forth).

I This expansion is particularly useful for cases where N is given
in a continuous basis.

I For parallel plates, the expansion of ζ(4) = 1 + 1
16 + 1

81 + . . .
gives the multiple reflection expansion, and provides an
estimate of its convergence (in the worst case).



The Ingredients: 1. Scattering Bases

For each object individually, we choose a standard basis in which
we can write down the eigenfunctions of the free vector Helmholtz
equation (e.g. Cartesian, spherical, etc.). These are the regular
solutions |Ereg

α (ω)〉. We also have the outgoing free solutions
|Eout
α (ω)〉, which are independent of the regular solutions and

typically singular at the origin.

We will need textbook results for the free Green’s function and the
expansion of a plane wave in terms of spherical Bessel functions
and vector spherical harmonics:

G0(x1, x2, k) = ik
∑
`jm

j`(kr<)h
(1)
` (kr>)Y`jm(θ1, φ1)∗ ⊗ Y`jm(θ2, φ2)

ξe ik·x = 4π
∑
`jm

i `
(
ξ · Y`jm(θk , φk)∗

)
j`(kr)Y`jm(θ, φ)︸ ︷︷ ︸

Ereg
α (ω,x)



The Ingredients: 2. Scattering Amplitudes
Lippman-Schwinger equation for full scattering solution Eα(ω, x):

Eα(ω, x) = Ereg
α (ω, x)−G0VEα(ω, x) = Ereg

α (ω, x)−G0TEreg
α (ω, x)

Use the free Green’s function

G0(ω, x, x′) =
∑
α

Ereg
α (ω, x<)⊗ Eout

α (ω, x>)

to express the full solution far away from the object as a linear
combination of regular and outgoing waves:

Eα(ω, x) = Ereg
α (ω, x)−

∑
β

Eout
β (ω, x)

∫
dx′ Ereg

β (ω, x′)†TEreg
α (ω, x′)︸ ︷︷ ︸

Fβα(ω)

For the diagonal blocks, we will need this matrix of scattering
amplitudes in our chosen basis (from a calculation or
measurement).



The Ingredients: 3. Translation Matrices
For the off-diagonal blocks, we need the translation matrices,
which decompose the free Green’s function in that basis and the
corresponding expansion of a plane wave. For for |x| < |x′| we have

G0(ω, x, x′) =
∑
α

Ereg
α (ω, x)⊗ Eout

α (ω, x′)

The translation matrix Uji gives the expansion of an outgoing wave
from object i in terms of regular waves for object j ,

Eout
α (ω, xi ) =

∑
β

Uji
βα(ω)Ereg

β (ω, xj)

The free Green’s function becomes

G0(ω, x, x′) =
∑
α,β

Ereg
α (ω, xi )⊗ Uji

αβ(ω)Ereg
β (ω, x′j)

where xi is in the coordinates for object i and x′j is in the
coordinates for object j . The bases for different objects can be
chosen differently (e.g. spherical, cylindrical, Cartesian).



Limitations
The scattering expansion identified a “radial” coordinate for each
object, in order to define regular and outgoing waves. This
identification must be the same across all points on each object.

I All points on the object must have a smaller value of this
radial coordinate than any point on another object. Or, the
object can always have a larger value of the radial coordinate
(if one object is inside the other).

ex. Spherical basis for both objects:

i

i

jij

j

i

j

i
j

ij



Avoiding Limitations
ex. Elliptic cylinder and plane:

(a) (b) (c)

(a) Objects separated by ordinary cylinder:
ordinary cylindrical coordinates OK

(b) Enclosing ordinary cylinder intersects plane:
ordinary cylindrical coordinates FAIL

(c) Objects separated by elliptic cylinder:
elliptic cylindrical coordinates OK

In some geometries (particularly for close separations), another
basis may be more convenient, such as a spatially localized
position basis. Johnson, Reid, Rodriguez, White



Applications: Parabolic Cylinder
For smooth surfaces at small separations, the PFA + derivative
expansion provides a valuable tool. Fosco, Lombardo, Mazzitelli

We will focus on geometries with tips and
edges, where this expansion is often invalid.
Parabolic cylinder geometry is separable and
gives a half-plane as a limiting case.
Electromagnetic result is the sum of Dirichlet
and Neumann contributions.

µ

φ
0

Half-plane opposite a plane, as a function of angle:

E
L

= − ~c
d2 cosφ0

· c(φ0)

Φ0
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Results: Parabolic Cylinder
Overlapping planes, as a
function of overlap:

dy

dx

-2 -1 1 2 3

dx

dy

-0.03

-0.02

-0.01

E dy
2

Ñ c L

Straight line represents PFA + edge correction, dashed line is
analytic approximation based on the first reflection.

Half-plane perpendicular to a
plane, as a function of
temperature (solid line is
T →∞ result):

0.1 0.2 0.3 0.4 0.5

kBT H

Ñ c

-0.020

-0.015

-0.010

-0.005

E H2

Ñ c L

Can compare to other edge geometry methods. Kabat, Karabali, Nair

Gies, Klingmuller, Weber



Results: Sample Analytic Expressions
The exact Casimir interaction energy for a half-plane perpendicular
to a plane:

−Ed
2

~cL
= −

∫ ∞
0

qdq

4π
log det (δνν′ − (−1)νk−ν−ν′−1(2q))

where k`(u) is the Bateman k-function.
The Casimir interaction energy for parallel planes overlapping by
dx , at first order in the reflection expansion:

−Ed
2

~cL
=

1

24π3

[
d2

d2 + d2
x

+ 3

(
1− i

dx
d

log
id − dx√
d2 + d2

x

)]
+ · · ·

The Casimir interaction energy for a half-plane tilted by angle φ0
opposite a plane, at second order in the reflection expansion:

−Ed
2

~cL
=

secφ0
16π2

+
1

256π3

(
4

3
+ csc3 φ0 secφ0(2φ0 − sin 2φ0)

)
+ · · ·



Applications: Elliptic Cylinder

Elliptic cylinder geometry allows us to study a strip as its zero
radius limit:

H

d
j

H

d
j

The strip prefers a perpendicular orientation:

Π

8

Π

4

3 Π

8

Π

2

j

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

E d2

Ñ c L

Graph shows the case H = 2d .
PFA (solid line) goes to zero as
ϕ→ π

2 . Derivative expansion cor-
rection makes this estimate worse!

Compare ϕ = π
2 to a half-plane: Magnitude of the energy is

slightly smaller, as expected, but larger than would be obtained by
writing the energy of the strip as the difference of two half-planes
at different distances — shows non-superposition effects.



Applications: Wedge and Cone

We can also handle a wedge and cone by treating θ as the “radial”
variable. Requires analytic continuation in the angular momentum.

For the cone, introduce a ghost polarization to cancel ` = 0 mode.



Results: Wedge

Casimir interaction energy of a
wedge at distance d above a
plane, as a function of its
semi-opening angle θ0 and tilt
φ0, using a multiple reflection
expansion.

The energy as a function of θ0
and φ0 is shown in the middle
figure. The symmetric case,
φ0 = 0, is displayed at the top.
The case where the back side of
the wedge is “hidden” from the
plane is shown at the bottom,
with a comparison to the PFA.



Results: Cone

Casimir interaction energy of a cone of semi-opening angle θ0 a
distance d above a plane. In the left figure, the cone is oriented
vertically, with the energy multiplied by cos2 θ0 to remove the
divergence as θ0 → π/2. The right figure shows the force, suitably
scaled, for a tilted, sharp cone (θ0 → 0, evocative of an AFM tip)
as a function of tilt angle β for temperatures τ=300 K, 80 K, and
0 K (top to bottom), at a separation of 1 µm.



Further Extensions
We and other groups have applied and extended these methods:

I Related T-operator techniques Kenneth, Klich

I Exact results for dilute systems Milton, Parashar, Wagner

I Position basis techniques Johnson, Reid, Rodriguez, White

I Non-superposition effects Fosco, Losada, Ttira

Emig, Rahi, Rodriguez-Lopez

I Lifshitz theory perturbation expansion Golestanian

I Corrugated surfaces Cavero-Pelaez, Milton, Parashar, Shajesh

I Objects inside one another Emig, Jaffe, Kardar, Rahi, Zaheer

I Casimir Earnshaw’s Theorem Emig, Kardar, Rahi

I Casimir Babinet Principle Abravanel, Jaffe, Maghrebi

I Dynamical Casimir Effects Golestanian, Kardar, Maghrebi

I Intersecting objects Schaden

I Non-equilibrium Casimir forces Bimonte, Emig, Kardar, Krüger

I Techniques for computing general T -matrices Forrow, Graham


