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Abstract

Label the vertices of the complete graph Kv with the integers {0, 1, . . . , v−1} and
define the length of the edge between the vertices x and y to be min(|x−y|, v−|x−y|).
Let L be a multiset of size v − 1 with underlying set contained in {1, . . . , bv/2c}.
The Buratti-Horak-Rosa Conjecture is that there is a Hamiltonian path in Kv

whose edge lengths are exactly L if and only if for any divisor d of v the number of
multiples of d appearing in L is at most v − d.

We introduce “growable realizations,” which enable us to prove many new in-
stances of the conjecture and to reprove known results in a simpler way. As ex-
amples of the new method, we give a complete solution when the underlying set is
contained in {1, 4, 5} or in {1, 2, 3, 4} and a partial result when the underlying set
has the form {1, x, 2x}. We believe that for any set U of positive integers there is a
finite set of growable realizations that implies the truth of the Buratti-Horak-Rosa
Conjecture for all but finitely many multisets with underlying set U .

MSC: 05C38, 05C78.

1 Introduction

Let Kv be the complete graph on v vertices, labeled with the integers {0, 1, . . . , v − 1}.
For two vertices x and y, define the length of the edge between them to be

`(x, y) = min(|x− y|, v − |x− y|),
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which is an integer in the range 1 ≤ `(x, y) ≤ bv/2c.
A Hamiltonian path h = [h1, h2, . . . , hv] in Kv uses v−1 edges and gives a multiset L =

{`(hi, hi+1) : 1 ≤ i ≤ v − 1} of edge-lengths. Call h a realization of L or say that
h realizes L. For example, with v = 7 the Hamiltonian path [0, 5, 1, 2, 6, 3, 4] has edge-
length sequence [2, 3, 1, 3, 3, 1] and hence realizes the multiset {12, 2, 33} (where exponents
indicate multiplicity).

Given a multiset L, its underlying set is given by U = {x : x ∈ L}.
The focus of our inquiry is the Buratti-Horak-Rosa Conjecture, or BHR Conjecture:

Conjecture 1.1. Let L be a multiset of size v − 1 with underlying set U contained in
{1, . . . , bv/2c}. Then there is a realization of L in Kv if and only if for any divisor d of v
the number of multiples of d in L is at most v − d.

When v is prime, in which case the condition on divisors is always satisfied, we have
the original Buratti Conjecture, see [1, 11]. Horak and Rosa [5] generalize this to com-
posite v and show that the condition on divisors is necessary; Pasotti and Pellegrini [10]
reformulate Horak and Rosa’s statement into the one in Conjecture 1.1.

Call a multiset L of size v − 1 admissible if it has underlying set U ⊆ {1, . . . , bv/2c}
and it satisfies the divisor condition of the BHR conjecture. Denote the BHR Conjecture
for L by BHR(L).

Much work has been done on the BHR Conjecture. Theorem 1.2 captures the main
progress that has been made to date.

Theorem 1.2. Let L be a multiset of size v − 1 with underlying set U . In each of the
following cases, if L is admissible, then it is realizable.

1. |U | ≤ 2 [3, 5],

2. U = {1, 2, 4}, {1, 2, 6}, {1, 2, 8} [9],

3. U ⊆ {1, 2, 3, 5} [2, 10],

4. L = {1a, 2b, 3c, 4d} with either a ≥ 3 and c, d ≥ 1 or a = 2 and b, c, d ≥ 1 [8],

5. L = {1a, 2b, xc} when x is even and a + b ≥ x− 1 [9],

6. L = {1a, xb, (x + 1)c} when x is odd and either a ≥ min(3x − 3, b + 2x − 3) or
a ≥ 2x− 2 and c ≥ 4b/3 [8],

7. L = {1a, xb, (x + 1)c} when x is even and either a ≥ min(3x − 1, c + 2x − 1) or
a ≥ 2x− 1 and b ≥ c [8],

8. U ⊆ {1, 2, 4, . . . , 2x} and {12x−1, 2x} ⊆ L [8],

9. U ⊆ {1, 2, 4, . . . , 2x, 2x + 1} and {16x−1, 2x + 1} ⊆ L [8],

10. L = {1a1 , 2a2 , . . . , xax} with a1 ≥ a2 ≥ · · · ≥ ax [7, 8],

11. L = M ∪{1a} for any multiset M and a > aM , where aM is a constant that depends
on M [5],

2



12. v ≤ 19 or v = 23 [6].

After proving Theorem 1.2.11, Horak and Rosa observe that “to get an explicit
bound... one only needs refer to lemmas used in the proof” [5]. It turns out that their
methodology can be used to give a bound that is linear in the elements of the underlying
set and independent of their multiplicities, neither of which is clear from the statement
of the result. We believe that this is of interest and so give an explicit bound with these
properties in Theorem 1.3.

Theorem 1.3. Let M be a multiset with underlying set U = {x1, . . . , xk}, where 1 <
x1 < · · · < xk. Then L = M ∪ {1s} is realizable for any s ≥ 3xk − 5 +

∑k
i=1 xi.

Proof Outline. We give the steps required to establish the bound, referring to [5] for the
specific details.

In the notation of [5, Theorem 3.4], we partition M as L1 ∪ L2 ∪ L3 ∪ L4 in a certain
way and then M ∪ {1s} is realizable for all s ≥ s1 + s2 + s3 + s4 − 1, where each si is
dependent on Li for 1 ≤ i ≤ 4. Let Ui be the underlying set of Li for 1 ≤ i ≤ 4.

By [5, Lemma 3.12], we may take s1 = 1−2|U1|+
∑

x∈U1
x; hence s1 ≤

(∑k
i=1 xi

)
−1.

By [5, Lemma 3.9], we may take s2 = max(U2)−1; hence s2 ≤ xk−1. By [5, Lemma 3.7],
we may take s3 = max(U3) − 1; hence s3 ≤ xk − 1. By [5, Lemma 3.13], we may take
s4 = max(U4)− |U4|; hence s4 ≤ xk − 1.

Combining these bounds we find that L is realizable for all s ≥ 3xk−5 +
∑k

i=1 xi.

The BHR Conjecture has close connections to many other problems and conjectures
concerning sequences with distinct partial sums or subgraphs of Kv other than paths;
see [8] for more discussion of this. A recent paper also makes a connection between the
BHR Conjecture and the Traveling Salesman Problem [4].

We are frequently concerned with the congruence classes of multiple elements with
respect to multiple integers. The following notation is useful for these situations: if
xi ≡ yi (mod zi) for 1 ≤ i ≤ k, then write

(x1, . . . , xk) ≡ (y1, . . . , yk) (mod (z1, . . . , zk)).

We also need the notion of a translation of a sequence h = [h1, . . . , hv] by an integer m:

h + m = [h1 + m, . . . , hv + m].

The translation of a sequence produces the same multiset of absolute differences as the
original sequence.

We require a lot of small examples of realizations for particular multisets. These were
mostly found using a heuristic algorithm implemented in GAP. Given a target multiset L
of size v−1, the algorithm starts from a random Hamiltonian path in Kv and keeps trying
to move to a Hamiltonian path that is “closer” to realizing L—in the sense of trying to
increase |L ∩ L′|, where L′ is the multiset realized by the path under consideration—by
removing an edge from the path and reconnecting the two resulting paths in a different
way. If it gets stuck before finding a realization of L, then it tries again from a different
starting path. For the fairly small values of v in which we are interested, this simple
algorithm is sufficient to find the desired realizations quickly. The programs are available
on the ArXiv page for this paper.
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The most far-reaching components of Theorem 1.2 were proved using “linear” real-
izations. A Hamiltonian path h = [h1, h2, . . . , hv] of Kv defines a multiset of absolute
differences L = {|hi−hi+1| : 1 ≤ i ≤ v−1} with underlying set contained in {1, . . . , v−1}.
In this situation, h is a linear realization of L. If h1 = 0, then the linear realization is
standard; if h1 = 0 and hv = v − 1, then the linear realization is perfect. To emphasize
the distinction between linear realizations and realizations, realizations as defined above
are sometimes referred to as cyclic realizations.

Linear realizations are closely related to cyclic realizations. For example, if each
element in a multiset L of size v − 1 is at most bv/2c, then a linear realization of L is
also a cyclic realization of L. See [5] for further discussion.

What makes linear realizations so useful in addressing the BHR Conjecture, standard
and perfect ones especially, is their ability to be combined and hence used in inductive
arguments. This is the approach taken by Horak and Rosa in [5] and the multisets L
given in Theorem 1.3 in fact have linear realizations that are also cyclic realizations for
the same L.

The main contribution of this work is to introduce an alternative object: the “grow-
able” realization, which we define in the next section. These are cyclic realizations that
can be used in inductive arguments in somewhat similar ways to linear ones.

In Section 3 we reprove, with a much shorter proof, the result from [2] that BHR(L)
holds when L has underlying set U = {1, 2, 3} to illustrate that this new tool is, in
some ways, more powerful than existing ones. We go on to prove instances of the BHR
Conjecture that seem beyond the reach of current techniques. In particular, we are able
to add the following items to Theorem 1.2:

• U = {1, 4, 5} (Section 3),

• U ⊆ {1, 2, 3, 4} (Section 4),

• L = {1a, xb, (2x)c} when a ≥ x− 2, c is even and b ≥ 5x− 2 + c/2 (Section 5),

• L = {1a, 3b, 6c} when c is odd and b ≥ 18 + (c− 1)/2 (Section 5).

2 Growable Realizations

Growable realizations will let us move from solving BHR(L) to BHR(L ∪ {xx}) under
certain circumstances. When this can be done for multiple choices of x, this is a powerful
tool.

Take x with 0 < x ≤ v/2. For a given m, with 0 ≤ m < v, we shall embed Kv into
Kv+x as follows:

y 7→

{
y when y ≤ m,

y + x otherwise.

This embedding preserves some edge lengths and increases others. Call it the m-embedding
of Kv into Kv+x.

Remark 2.1. Let y, z be two vertices of Kv and assume, without loss of generality, that
y < z. Let y′ and z′ be the images of y and z, respectively, by the m-embedding of Kv

into Kv+x. One can check that `(y, z) = `(y′, z′) if and only if one of the following holds:
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• y < z ≤ m and z − y ≤ v
2
;

• m < y < z and z − y ≤ v
2
;

• y ≤ m < z and z − y > v
2
.

Definition 2.2. Let h = [h1, . . . , hv] be a cyclic realization of a multiset L. Take x and
m with 0 < x ≤ v/2 and 0 ≤ m < v. If each y with m − x < y ≤ m is incident with
exactly one edge whose length is increased by the m-embedding of Kv into Kv+x and
there is no other edge whose length is increased, then say that h is x-growable at m.

A realization is said to be x-growable, if it is x-growable at some m. If a realization
is x-growable for each x ∈ X for some set X, then say that it is X-growable.

Example 2.3. It is easy to see that the sequence [6, 4, 3, 0, 7, 1, 5, 2, 8] is a cyclic re-
alization of {1, 22, 34, 4} and that it is 3-growable at 2. In fact, we can represent this
Hamiltonian path of K9 writing in bold the vertices not increased by the 2-embedding of
K9 into K12, and using the symbol − for each edge whose length does not change and
the symbol · · · for each edge whose length increases by 3:

6− 4− 3 · · ·0− 7− 1 · · · 5 · · ·2− 8.

Note that every vertex in bold is incident with exactly one edge · · · . Also, note that the
edges 0 − 7, 7 − 1 and 2 − 8 do not change length, since their absolute differences are
greater than

⌊
9
2

⌋
.

Theorem 2.4 and its immediate consequence Theorem 2.6 are the core results for using
growable realizations.

Theorem 2.4. Suppose a multiset L has an X-growable realization. Then for each x ∈
X, the multiset L ∪ {xx} has an X-growable realization.

Proof. Let g = [g1, . . . , gv] be an X-growable realization of a multiset L. Take x ∈ X and
m such that g is x-growable at m. Each element y with m − x < y ≤ m is adjacent to
exactly one element z such that the edge between them is lengthened by the m-embedding
of Kv into Kv+x.

Applying the embedding we obtain a sequence h′ = [h1, . . . , hv] in Kv+x. Each adja-
cent pair y, z in g as above becomes a subsequence (y, z + x) or (z + x, y) in h′. Obtain
a new sequence h in Kv+x by replacing each subsequence (y, z + x) with (y, y + x, z + x)
and each subsequence (z + x, y) with (z + x, y + x, y). As there is one pair for each y in
the range m− x < y ≤ m, this adds the elements m + 1, . . . ,m + x to the sequence and
hence h is a Hamiltonian path in Kv+x.

Now, h has the desired lengths because each pair of adjacent elements in g whose
length was fixed by the embedding are still adjacent in h and each adjacent pair y, z
whose length was not fixed is replaced by a triple whose lengths are the original length
and x. There are x such pairs.

We now show that h is x-growable at m. Let (a, b) be an edge of g and let (a′, b′)
be the corresponding edge of h, obtained by the m-embedding of Kv into Kv+x. Clearly,
we may assume a < b. Now, let (a′′, b′′) be the edge obtained from (a′, b′) applying the
m-embedding of Kv+x into Kv+2x.

First, suppose `(a′, b′) = `(a, b): we show that `(a′′, b′′) = `(a′, b′). We have to distin-
guish three cases and apply Remark 2.1:
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1. If a′, b′ ≤ m then a′′ = a′ = a and b′′ = b′ = b: hence, b′′ − a′′ = b− a ≤ v
2
≤ v+2x

2
.

2. If a′, b′ > m then a′ = a + x, b′ = b + x, a′′ = a′ + x and b′′ = b′ + x: hence
b′′ − a′′ = b− a ≤ v

2
< v+2x

2
.

3. If a′ ≤ m < b′ then a ≤ m and b > m, so a′ = a, b′ = b + x and b− a > v
2
: hence,

b′′ − a′′ = b + x− a > v+2x
2

.

In each case, by Remark 2.1, we get that `(a′′, b′′) = `(a′, b′) = `(a, b).
Now, suppose `(a′, b′) 6= `(a, b). Then m − x < a ≤ m and b > m. Take the edge

(a+x, b+x) of h: the corresponding edge (a′′, b′′) by the m-embedding of Kv+x into Kv+2x

is such that a′′ = a + 2x, b′′ = b + 2x, whence b′′ − a′′ ≤ v
2
. This implies that `(a′′, b′′) =

`(a′, b′). Finally, consider the edge (a, a + x). Note that (a + x) − a = x ≤ v
2
< v+x

2
, so

the corresponding edge in Kv+2x has length which is increased by the m-embedding, and
this is the unique edge whose length changes. We conclude that h is x-growable at m.

With similar reasoning, but with many more tedious calculations, one can prove that
if g is x′-growable at m′, then h is x′-growable at m′ if m′ ≤ m and x′-growable at m′+x
if m′ > m.

Example 2.5. Applying the 2-embedding of K9 into K12 to the 3-growable realization
of Example 2.3 we obtain the sequence

9− 7− 6 · · · 0− 10− 1 · · · 8 · · · 2− 11.

Now, following the proof of Theorem 2.4, we insert the vertices 3, 4, 5, replacing the edges
6 · · · 0, 1 · · · 8 and 8 · · · 2 with 6 − 3 · · · 0, 1 · · · 4 − 8 and 8 − 5 · · · 2, respectively. In this
way, the sequence

9− 7− 6− 3 · · · 0− 10− 1 · · · 4− 8− 5 · · · 2− 11

is a cyclic realization of {1, 22, 37, 4}, which is still 3-growable at 2.

Theorem 2.6. Suppose a multiset L has a realization that is {x1, . . . , xk}-growable. Then
the multiset L ∪ {xx1`1

1 , xx2`2
2 , . . . , xxk`k

k } has a {x1, . . . , xk}-growable realization for any
`1, `2, . . . , `k ≥ 0.

Proof. Repeatedly apply Theorem 2.4.

Example 2.7. The sequence

[0, 3, 6, 2, 1, 13, 10, 11, 14, 12, 9, 8, 5, 4, 7]

is a cyclic realization of L = {14, 2, 38, 4}. It is 1-growable at 8 and 9; it is 2-growable at
3; it is 3-growable at 11; and it is 4-growable at 5.

If we apply Theorem 2.4 four times with x = 2 and then three times with x = 3 we
get the sequence

[0, 3, 5, 7, 9, 11, 14, 10, 8, 6, 4, 2, 1, 30, 27, 24, 21, 18, 19,

22, 25, 28, 31, 29, 26, 23, 20, 17, 16, 13, 12, 15],
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which is a {1, 2, 3, 4}-growable realization of {14, 2, 38, 4} ∪ {28, 39} = {14, 29, 317, 4}.

Any standard linear realization (and hence any perfect realization) is 1-growable at 0.
Suppose we are investigating multisets that have underlying set U = {x1, . . . , xk}.

Using Theorem 2.6, a U -growable realization for a multiset L = {xa1
1 , . . . , xak

k } is sufficient
to cover all multisets M = {xb1

1 , . . . , x
bk
k } with bi ≥ ai for each i and

(b1, . . . , bk) ≡ (a1, . . . , ak) (mod (x1, . . . , xk)).

This means that the task frequently breaks naturally into considering
∏k

i=1 xi cases ac-
cording to congruence modulo (x1, . . . , xk).

We conclude this section with two lemmas that allow the expansion of the range of
values for which realizations are growable.

Lemma 2.8. Suppose L has an X-growable realization with 1 ∈ X and K has a Y -
growable perfect linear realization. Then L ∪K has a (X ∪ Y )-growable realization.

Proof. Suppose |K| = k and let g = [g1, . . . , gk+1] be a Y -growable perfect linear realiza-
tion of K.

Apply Theorem 2.4 k times with x = 1 to the X-growable realization of L to obtain
an X-growable realization of L∪{1k} with subsequence m,m+1, . . . ,m+k. Replace this
subsequence with g+m to obtain the desired (X ∪Y )-growable realization of L∪K.

It is possible to take Y to be the empty set in Lemma 2.8 to construct an X-growable
realization for L ∪K.

Lemma 2.9. Suppose L has an X-growable realization with 2 ∈ X. Let y and z be
even (possibly with y = z). Then L ∪ {1y+z−4, yy+1, zz+1} has an (X ∪ {y, z})-growable
realization.

Proof. Apply Theorem 2.4 y+z−1 times with x = 2 to the X-growable realization of L to
obtain an X-growable realization of L∪{22(y+z−1)} with the following two subsequences:

[m,m + 2, . . . ,m + 2y + 2z − 2], [m− 1,m + 1, . . . ,m + 2y + 2z − 3].

The sequence

g = [1, y + 1, y + 2, 2, 3, y + 3, . . . , y − 1, 2y − 1, 2y + z − 1, 2y + 2z − 1]

uses the elements

{1, 2, . . . , y − 1, y + 1, y + 2, . . . , 2y − 1, 2y + z − 1, 2y + 2z − 1}

and has edge-lengths {1y−2, yy−1, z2}. The sequence

h = [0, y, 2y, 2y + z, 2y + z + 1, 2y + 1, 2y + 2, 2y + z + 2, . . . , 2y + 2z − 2]

uses the elements

{0, y, 2y, 2y + 1, . . . , 2y + z − 2, 2y + z, 2y + z + 1, . . . , 2y + 2z − 2},
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and has edge-lengths {1z−2, y2, zz−1}. The elements used by g and h together are exactly
those used in the two subsequences from the realization of L ∪ {22(y+z−1)}. Replace the
two subsequences with g + m − 1 and h + m − 1 respectively to obtain a realization of
L ∪ {1y+z−4, yy+1, zz+1}.

It is y-growable at m + y − 1 because each t in the range m − 1 < t < m + y − 1
is adjacent to t + y > m + y − 1 and to t ± 1 ≤ m + y − 1, and m + y − 1 is adjacent
to m − 1 and m + 2y − 1. It is z-growable at m + 2y + z − 2 because each t in the
range m + 2y − 2 < t < m + 2y + z − 2 is adjacent to t + z > m + 2y + z − 2 and to
t±1 ≤ m+2y+z−2, and m+2y+z−2 is adjacent to m+2y−2 and m+2y+2z−2.

3 Complete Solutions for U = {1, 2, 3} and U = {1, 4, 5}
Given any fixed set U , we may use growable realizations to try to prove BHR(L) for
all but finitely many multisets L with underlying set U . To do this, divide the problem
into

∏
x∈U x cases, corresponding to the possible congruence classes of the number of

occurrences of each element x (mod x). For each case, a finite number—possibly one—of
growable realizations can show that all but finitely many—possibly zero—admissible L
matching these congruence classes has a realization. The finitely many exceptions can
then be dealt with directly. In this section we illustrate this process for U = {1, 2, 3} and
U = {1, 4, 5}.

When U = {1, 2, 3}, the BHR Conjecture is already known to hold [2]. However,
the self-contained proof given here in Theorem 3.1 is significantly shorter, which gives
an indication of the power of the method of growable realizations compared to existing
tools.

When U = {1, 4, 5}, from previous work we know that {1a, 4b, 5c} is realizable when
a ≥ 11 or when both a ≥ 7 and b ≥ c [8]. However, the proof of Theorem 3.3 does not
rely on this result.

Theorem 3.1. Let L = {1a, 2b, 3c} be an admissible multiset with a, b, c ≥ 1. Then
BHR(L) holds.

Proof. We start with the {1, 2, 3}-growable cyclic realizations of {1, 2b, 3c} described in
the first part of Table 1, which allow to cover all the 6 possibilities of the congruence
class combinations of (b, c) (mod (2, 3)). Using Theorem 2.6 this proves BHR(L) for
all a, b ≥ 1 and c ≥ 4. To complete the case b + c ≥ 4, we use the {1, 2}-growable
realizations for (b, c) ∈ (2, 2), (3, 1), (3, 2), (3, 3), (4, 1)} from the second part of Table 1
and the 1-growable realization of {1, 2, 33}, described in Table 2.

Now, the cases when b + c < 4 can be solved using the 1-growable realizations of
{1a, 2b, 3c}, described in Table 2.

We now move on to U = {1, 4, 5}.

Lemma 3.2. Let L = {1a, 4b, 5c} be an admissible multiset with a ≥ 2. Then BHR(L)
holds.

Proof. In view of Theorem 1.2.1, we may assume b, c ≥ 1. We start with the {1, 4, 5}-
growable cyclic realizations of {12, 4b, 5c} described in the first part of Table 4 (note
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Table 1: {1, 2, 3}-growable cyclic realizations for {1, 2b, 3c}: they are x-growable at mx.
The congruence classes of (b, c) are taken modulo (2, 3).

Classes Realizations (b, c) (m1,m2,m3) Missing cases
(0, 0) [2, 4, 1, 5, 3, 0, 6] (2, 3) (5, 1, 3)
(0, 1) [3, 6, 0, 5, 2, 1, 7, 4] (2, 4) (2, 3, 4) c = 1
(0, 2) [6, 5, 2, 8, 1, 4, 7, 0, 3] (2, 5) (7, 5, 2) c = 2
(1, 0) [8, 5, 2, 3, 6, 0, 7, 1, 4] (1, 6) (1, 6, 3) c = 3
(1, 1) [2, 5, 1, 3, 6, 0, 4] (1, 4) (1, 3, 6) c = 1
(1, 2) [6, 1, 4, 7, 5, 0, 3, 2] (1, 5) (4, 1, 2) c = 2
(0, 1) [0, 2, 4, 1, 6, 5, 3] (4, 1) (5, 2, 3)
(0, 2) [3, 1, 4, 5, 2, 0] (2, 2) (4, 1,−)
(1, 0) [7, 4, 2, 0, 3, 1, 6, 5] (3, 3) (4, 5, 2) (b, c) = (1, 3)
(1, 1) [4, 2, 5, 3, 1, 0] (3, 1) (1, 3,−)
(1, 2) [2, 4, 6, 5, 1, 3, 0] (3, 2) (4, 1, 2)

Table 2: 1-growable cyclic realizations for {1a, 2b, 3c}: they are 1-growable at m1.

(a, b, c) Realizations m1 (a, b, c) Realizations m1

(1, 1, 3) [2, 5, 4, 1, 3, 0] 4 (2, 1, 2) [0, 3, 5, 4, 1, 2] 3
(2, 2, 1) [3, 1, 0, 5, 2, 4] 1 (3, 1, 1) [0, 5, 4, 1, 3, 2] 4

that in this case b + c ≥ 7). These realizations allow to cover all the 20 possibilities of
the congruence class combinations of (b, c) (mod (4, 5)). Using Theorem 2.6, this proves
BHR(L) for all a ≥ 2, b ≥ 7 and c ≥ 1. The case 2 ≤ b ≤ 6 with b + c ≥ 8 can be solved
using the {1, 5}-growable cyclic realizations of {12, 4b, 5c} provided by Table 4, with the
exception of (b, c) ≡ (2, 4) (mod (4, 5)). Furthermore, the same table gives 5-growable
cyclic realizations of {12, 4, 5c} for c ≥ 7 with c 6≡ 1 (mod 5). Note that the multisets
{12, 4, 55k+6} are not admissible.

To complete the case b + c ≥ 7 we consider the 5-growable cyclic realization of
{12, 42, 59} and the 1-growable cyclic realizations of {12, 4b, 57−b}, 2 ≤ b ≤ 6, given in
Table 4, as well as the {1, 5}-growable cyclic realization of {13, 42, 59} given in Table 3.

To conclude our proof, we use the 1-growable cyclic realizations of {1a, 4b, 5c} with
a + b + c = 9, described in Table 3.

Theorem 3.3. Let L = {1a, 4b, 5c} be an admissible multiset with a, b, c ≥ 0. Then
BHR(L) holds.

Proof. By Lemma 3.2 we are left with the case L = {1, 4b, 5c} with b, c ≥ 1. The multiset
L is admissible only if b + c ≥ 8. Also, the following multisets are not admissible:
{1, 4, 55k+7}, {1, 42, 55k+6} and {1, 44k+1, 5}. The {4, 5}-growable cyclic realizations of
{1, 4b, 5c} described in the first part of Table 5 allow to cover all the 20 possibilities
of the congruence class combinations of (b, c) (mod (4, 5)). Using Theorem 2.6, this
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Table 3: {1, 5}-growable cyclic realizations for {1a, 4b, 5c}, a ≥ 3: they are x-growable at
mx.

(a, b, c) Realizations (m1,m5)
(3, 1, 6) [6, 7, 2, 1, 5, 0, 10, 4, 9, 3, 8] (9, 4)
(3, 2, 9) [9, 14, 0, 10, 5, 4, 8, 13, 3, 7, 12, 2, 1, 11, 6] (3, 9)
(3, 1, 5) [8, 3, 2, 7, 1, 6, 5, 0, 9, 4] (2,−)
(3, 2, 4) [7, 2, 6, 1, 5, 0, 9, 8, 3, 4] (1,−)
(3, 3, 3) [3, 2, 8, 4, 9, 0, 5, 1, 6, 7] (8,−)
(3, 4, 2) [6, 2, 8, 7, 3, 4, 9, 0, 5, 1] (7,−)
(3, 5, 1) [5, 6, 2, 8, 9, 4, 0, 1, 7, 3] (7,−)
(4, 1, 4) [2, 1, 6, 7, 3, 8, 9, 4, 5, 0] (1,−)
(4, 2, 3) [7, 8, 4, 9, 3, 2, 1, 6, 5, 0] (4,−)
(4, 3, 2) [9, 5, 0, 6, 1, 2, 3, 4, 8, 7] (4,−)
(4, 4, 1) [0, 9, 4, 3, 7, 8, 2, 6, 5, 1] (8,−)
(5, 1, 3) [8, 3, 2, 7, 6, 5, 1, 0, 9, 4] (6,−)
(5, 2, 2) [5, 4, 9, 0, 1, 2, 8, 3, 7, 6] (8,−)
(5, 3, 1) [4, 5, 9, 8, 3, 7, 6, 2, 1, 0] (2,−)
(6, 1, 2) [3, 4, 8, 9, 0, 5, 6, 7, 2, 1] (8,−)
(6, 2, 1) [8, 4, 3, 2, 1, 7, 6, 5, 0, 9] (4,−)
(7, 1, 1) [3, 2, 1, 0, 4, 9, 8, 7, 6, 5] (8,−)

proves BHR(L) for all b ≥ 2 and c ≥ 6. To complete the case b = 1 we use the 5-
growable cyclic realization of {1, 4, 511} given in Table 5. Finally, the case c ≤ 5 can be
solved using the 4-growable cyclic realizations of Table 6, as well as the cyclic realization
[0, 5, 9, 4, 8, 3, 7, 2, 1, 6] of {1, 43, 55}.
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Table 4: {1, 4, 5}-growable cyclic realizations for {12, 4b, 5c}: they are x-growable at mx.
The congruence classes of (b, c) are taken modulo (4, 5).

Classes Realizations (b, c) (m1,m4,m5) Missing cases
(0, 0) [5, 9, 1, 6, 7, 2, 10, 3, 8, 4, 11, 0] (4, 5) (9, 4, 5)
(0, 1) [5, 9, 1, 6, 2, 10, 11, 3, 7, 8, 4, 0] (8, 1) (9, 3, 5) b = 4
(0, 2) [5, 6, 1, 10, 9, 0, 4, 8, 12, 3, 7, 2, 11] (8, 2) (8, 3, 5) b = 4
(0, 3) [1, 11, 12, 2, 7, 3, 13, 4, 8, 9, 5, 0, 10, 6] (8, 3) (10, 5, 6) b = 4
(0, 4) [1, 6, 7, 2, 9, 5, 0, 10, 3, 8, 4] (4, 4) (9, 3, 4)
(1, 0) [7, 8, 3, 11, 2, 10, 6, 1, 5, 9, 4, 0, 12] (5, 5) (10, 6, 7) b = 1
(1, 1) [10, 1, 6, 2, 11, 12, 3, 7, 8, 4, 0, 9, 5] (9, 1) (9, 3, 5) b = 1, 5
(1, 2) [5, 9, 13, 3, 7, 8, 4, 0, 10, 1, 6, 2, 12, 11] (9, 2) (9, 3, 5) b = 1, 5
(1, 3) [5, 9, 2, 7, 6, 1, 0, 4, 8, 3, 10] (5, 3) (9, 3, 5) b = 1
(1, 4) [0, 1, 5, 9, 4, 11, 3, 8, 7, 2, 10, 6] (5, 4) (10, 4, 6) b = 1
(2, 0) [4, 9, 13, 0, 10, 5, 1, 11, 6, 2, 3, 8, 12, 7] (6, 5) (1, 4, 7) b = 2
(2, 1) [7, 11, 1, 5, 9, 10, 6, 2, 12, 13, 3, 8, 4, 0] (10, 1) (11, 3, 7) b = 2, 6
(2, 2) [1, 6, 2, 9, 5, 0, 10, 3, 7, 8, 4] (6, 2) (9, 3, 5) b = 2
(2, 3) [5, 9, 1, 6, 2, 10, 3, 7, 8, 4, 11, 0] (6, 3) (9, 4, 5) b = 2
(2, 4) [5, 6, 1, 10, 9, 0, 8, 4, 12, 3, 7, 2, 11] (6, 4) (8, 4, 5) b = 2
(3, 0) [1, 6, 2, 8, 9, 3, 7, 0, 5, 4, 10] (3, 5) (7, 10, 4)
(3, 1) [10, 3, 7, 8, 4, 0, 1, 6, 2, 9, 5] (7, 1) (9, 3, 5) b = 3
(3, 2) [11, 3, 7, 2, 10, 6, 1, 0, 4, 8, 9, 5] (7, 2) (10, 3, 5) b = 3
(3, 3) [11, 12, 3, 8, 4, 0, 9, 5, 1, 10, 2, 7, 6] (7, 3) (9, 3, 6) b = 3
(3, 4) [11, 12, 2, 7, 6, 1, 10, 0, 4, 8, 3, 13, 9, 5] (7, 4) (9, 3, 5) b = 3
(0, 1) [12, 11, 3, 8, 4, 0, 5, 9, 1, 10, 2, 7, 6] (4, 6) (9, 5, 6)
(0, 2) [3, 13, 4, 9, 10, 5, 0, 1, 6, 11, 7, 2, 12, 8] (4, 7) (12, 7, 8)
(0, 3) [12, 2, 6, 1, 11, 7, 3, 13, 8, 9, 14, 10, 0, 5, 4] (4, 8) (7, 3, 4)
(1, 1) [0, 5, 9, 8, 4, 13, 12, 3, 7, 2, 11, 1, 10, 6] (5, 6) (10, 5, 6)
(1, 2) [4, 9, 5, 1, 12, 7, 2, 3, 8, 13, 14, 10, 0, 11, 6] (5, 7) (1, 5, 8)
(2, 0) [10, 0, 5, 4, 14, 9, 8, 13, 3, 7, 12, 2, 6, 1, 11] (2, 10) (7, 10, 4)
(2, 1) [2, 7, 0, 6, 1, 8, 3, 4, 9, 10, 5] (2, 6) (1, 4, 5)
(2, 2) [5, 10, 11, 6, 1, 9, 4, 3, 8, 0, 7, 2] (2, 7) (1, 4, 5)
(2, 3) [5, 10, 1, 6, 11, 12, 7, 2, 3, 8, 0, 9, 4] (2, 8) (1, 4, 5)
(3, 1) [2, 7, 0, 8, 3, 4, 9, 1, 5, 10, 11, 6] (3, 6) (1, 4, 6)
(3, 2) [10, 2, 7, 3, 11, 12, 4, 8, 0, 9, 1, 6, 5] (3, 7) (8, 4, 5)
(3, 3) [4, 9, 0, 1, 10, 5, 6, 11, 2, 12, 7, 3, 13, 8] (3, 8) (3, 6, 8)
(3, 4) [0, 5, 10, 6, 1, 11, 7, 2, 12, 13, 3, 14, 4, 9, 8] (3, 9) (11, 7, 8)
(1, 0) [11, 2, 7, 12, 3, 8, 13, 4, 9, 10, 6, 1, 0, 5] (1, 10) (−, 9, 4)
(1, 2) [8, 3, 2, 7, 1, 6, 0, 10, 4, 9, 5] (1, 7) (−, 4, 5)
(1, 3) [6, 11, 4, 9, 8, 1, 2, 7, 3, 10, 5, 0] (1, 8) (−, 5, 6)
(1, 4) [5, 10, 2, 7, 8, 3, 11, 6, 1, 0, 9, 4, 12] (1, 9) (−, 4, 5)
(2, 4) [6, 11, 2, 7, 12, 3, 8, 4, 5, 10, 1, 0, 9, 13] (2, 9) (−, 5, 6)
(0, 3) [5, 0, 6, 1, 7, 2, 3, 9, 8, 4] (4, 3) (4,−,−)
(1, 2) [4, 8, 3, 9, 5, 0, 6, 7, 1, 2] (5, 2) (4,−,−)
(2, 0) [9, 4, 0, 5, 6, 1, 7, 2, 3, 8] (2, 5) (7,−,−)
(2, 1) [9, 3, 4, 0, 6, 5, 1, 7, 2, 8] (6, 1) (6,−,−)
(3, 4) [9, 4, 5, 0, 1, 6, 2, 8, 3, 7] (3, 4) (8,−,−)
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Table 5: {4, 5}-growable cyclic realizations for {1, 4b, 5c}: they are x-growable at mx.
The congruence classes of (b, c) are taken modulo (4, 5).

Classes Realizations (b, c) (m4,m5) Missing cases
(0, 0) [4, 9, 5, 0, 1, 6, 10, 3, 7, 2, 8] (4, 5) (3, 4)
(0, 1) [9, 2, 7, 3, 10, 5, 1, 0, 8, 4, 11, 6] (4, 6) (4, 6) c = 1
(0, 2) [4, 9, 1, 5, 0, 8, 12, 11, 6, 10, 2, 7, 3] (4, 7) (3, 4) c = 2
(0, 3) [6, 10, 5, 0, 9, 13, 4, 8, 3, 12, 7, 2, 1, 11] (4, 8) (5, 6) c = 3
(0, 4) [3, 14, 4, 9, 5, 0, 10, 6, 1, 11, 12, 7, 2, 13, 8] (4, 9) (7, 8) c = 4
(1, 0) [6, 11, 3, 8, 0, 12, 7, 2, 10, 5, 1, 9, 4] (1, 10) (4, 6) c = 5
(1, 1) [4, 9, 5, 0, 8, 3, 12, 7, 11, 10, 1, 6, 2] (5, 6) (3, 4) b = 1 or c = 1
(1, 2) [12, 3, 7, 11, 2, 1, 6, 10, 0, 5, 9, 4, 13, 8] (5, 7) (6, 8) b = 1 or c = 2
(1, 3) [4, 9, 10, 3, 8, 2, 7, 1, 6, 0, 5] (1, 8) (3, 4) c = 3
(1, 4) [10, 3, 8, 1, 2, 7, 0, 5, 9, 4, 11, 6] (1, 9) (5, 6) c = 4
(2, 0) [7, 2, 11, 6, 1, 10, 5, 0, 9, 13, 12, 3, 8, 4] (2, 10) (3, 4) c = 5
(2, 1) [7, 11, 2, 12, 3, 8, 4, 13, 9, 5, 0, 1, 10, 6] (6, 6) (6, 7) b = 2 or c = 1
(2, 2) [1, 6, 0, 5, 10, 3, 7, 2, 8, 9, 4] (2, 7) (3, 4) c = 2
(2, 3) [9, 1, 2, 7, 0, 5, 10, 3, 8, 4, 11, 6] (2, 8) (5, 6) c = 3
(2, 4) [9, 4, 12, 3, 8, 0, 1, 6, 11, 7, 2, 10, 5] (2, 9) (4, 5) c = 4
(3, 0) [4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11, 10, 0, 5] (3, 10) (3, 4) c = 5
(3, 1) [4, 9, 3, 8, 2, 6, 10, 0, 5, 1, 7] (3, 6) (3, 4) c = 1
(3, 2) [1, 6, 10, 3, 8, 4, 11, 0, 7, 2, 9, 5] (3, 7) (4, 5) c = 2
(3, 3) [10, 5, 0, 4, 9, 1, 6, 11, 2, 3, 8, 12, 7] (3, 8) (6, 7) c = 3
(3, 4) [11, 6, 1, 2, 7, 12, 3, 8, 4, 13, 9, 0, 10, 5] (3, 9) (4, 5) c = 4
(1, 1) [1, 6, 10, 11, 2, 7, 12, 3, 8, 13, 4, 9, 0, 5] (1, 11) (9, 4)

Table 6: 4-growable cyclic realizations for {1, 4b, 5c}: they are 4-growable at m4.

(b, c) Realizations m4

(4, 4) [7, 3, 8, 4, 9, 0, 5, 1, 6, 2] 4
(5, 3) [9, 4, 8, 3, 7, 2, 6, 0, 1, 5] 4
(5, 4) [9, 10, 3, 7, 1, 5, 0, 6, 2, 8, 4] 3
(5, 5) [4, 8, 9, 1, 6, 11, 3, 7, 2, 10, 5, 0] 3
(6, 2) [7, 3, 8, 4, 0, 9, 5, 1, 6, 2] 5
(6, 3) [2, 6, 1, 7, 0, 4, 8, 3, 10, 9, 5] 3
(6, 4) [5, 6, 1, 9, 4, 0, 8, 3, 11, 7, 2, 10] 3
(6, 5) [5, 10, 6, 1, 9, 0, 4, 8, 12, 11, 3, 7, 2] 4
(7, 1) [7, 3, 9, 4, 8, 2, 6, 0, 1, 5] 4
(7, 2) [8, 4, 0, 10, 3, 7, 1, 6, 2, 9, 5] 4
(7, 3) [4, 8, 0, 1, 5, 9, 2, 6, 11, 7, 3, 10] 7
(7, 4) [8, 3, 12, 0, 4, 9, 5, 1, 10, 2, 6, 11, 7] 6
(7, 5) [5, 10, 0, 9, 13, 4, 8, 7, 3, 12, 2, 6, 1, 11] 4
(8, 1) [7, 3, 10, 0, 4, 8, 1, 6, 2, 9, 5] 3
(8, 2) [4, 8, 0, 5, 9, 1, 6, 2, 10, 11, 3, 7] 3
(8, 3) [6, 10, 11, 2, 7, 3, 12, 8, 4, 0, 5, 9, 1] 5
(9, 2) [4, 9, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 0] 3
(10, 1) [6, 10, 1, 5, 9, 0, 4, 8, 12, 11, 2, 7, 3] 3
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4 A Complete Solution for U ⊆ {1, 2, 3, 4}
In this section we prove BHR

(
{1a, 2b, 3c, 4d}

)
. In view of Theorem 1.2.2 and 1.2.3, we

may assume c, d ≥ 1. Also, by Theorem 1.2.4 we have as a starting point that BHR(L)
holds for a ≥ 3 and also for a = 2 when b ≥ 1. We begin by closing the case a = 2.

Lemma 4.1. Let L = {12, 3c, 4d} be an admissible multiset with c, d ≥ 1. Then BHR(L)
holds.

Proof. First, note that L is admissible only if c+ d ≥ 5. The first part of Table 7 collects
{3, 4}-growable cyclic realizations for L in each of the 12 possibilities of congruence class
combinations of (c, d) (mod (3, 4)). Using Theorem 2.6, this proves BHR(L) except in
the following cases: d = 1, 2; d = 3 and c 6≡ 0 (mod 3); d = 4 and c ≡ 1 (mod 3). So, we
prove the validity of BHR(L) for these exceptional cases using the 3-growable cyclic re-
alizations for the cases (c, d) ∈ {(4, 1), (5, 1), (6, 1), (3, 2), (4, 2), (5, 2), (2, 3), (4, 3), (4, 4)}
given in Table 7. The last case left open is L = {12, 3, 44}, for which we take the following
cyclic realization: [0, 4, 5, 1, 2, 6, 3, 7].

Lemma 4.2. Let L = {1, 2b, 3c, 4d} be an admissible multiset, where b ≥ 0 is even and
c, d ≥ 1. Then BHR(L) holds.

Proof. Suppose first d ≥ 5. We start with the {2, 3, 4}-growable cyclic realizations of
{1, 3c, 4d} described in the first part of Table 8 (note that in this case c + d ≥ 6). These
realizations allow to cover all the 12 possibilities of the congruence class combinations of
(c, d) (mod (3, 4)). Using Theorem 2.6 this proves BHR(L) except when c = 1 and d 6≡ 2
(mod 4). So, suppose c = 1. Table 8 also gives {2, 3, 4}-growable cyclic realizations for
d = 7, 8, proving the validity of BHR(L) for b ≥ 0 even, c = 1 and d ≡ 0, 3 (mod 4).
Hence, we may assume d ≡ 1 (mod 4). Note that the multiset L = {1, 3, 44k+5} does
not satisfy the necessary condition, as 4k + 5 > v − 4 = 4k + 4. On the other hand, a
{2, 3, 4}-growable cyclic realization of {1, 22, 3, 45} is given in Table 9.

Next, we consider the cases 1 ≤ d ≤ 4. Table 8 provides {2, 3}-growable cyclic
realizations for {1, 3c, 4d}, in the following cases: d = 1 and 5 ≤ c ≤ 7; d = 2 and
4 ≤ c ≤ 6; d = 3, 4 and 3 ≤ c ≤ 5. It also provides a 2-growable cyclic realization for
the multiset {1, 32, 44}. This completes the analysis for the admissible multisets with
b = 0. Now, Table 9 gives 2-growable cyclic realizations for the multiset {1, 22, 3c, 4d}
when (c, d) ∈ {(1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}, that is with 4 ≤ c + d ≤ 5.
This completes the analysis for the admissible multisets with b = 2. Finally, Table 9 also
gives 2-growable cyclic realizations for the multiset {1, 24, 3c, 4d} for each (c, d) in the set
{(1, 1), (1, 2), (2, 1)}, concluding our proof.

Lemma 4.3. Let L = {1, 2b, 3c, 4d} be an admissible multiset, where b ≥ 1 is odd and
c, d ≥ 1. Then BHR(L) holds.

Proof. The first part of Table 10 gives {2, 3, 4}-growable cyclic realizations for {1, 2, 3c, 4d}
for each of the 12 possibilities of congruence class combinations of (c, d) (mod (3, 4)).
Note that c + d ≥ 5. Using Theorem 2.6, this proves BHR(L) except for the following
cases: d = 1, 2; d = 3 and c 6≡ 0 (mod 3); d = 4 and c ≡ 1 (mod 3). So, we prove the
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Table 7: {3, 4}-growable cyclic realizations for {12, 3c, 4d}: they are x-growable at mx.
The congruence classes of (c, d) are taken modulo (3, 4).

Classes Realizations (c, d) (m3,m4) Missing cases
(0, 0) [3, 7, 1, 4, 0, 9, 2, 6, 5, 8] (3, 4) (2, 3)
(0, 1) [3, 7, 10, 2, 6, 5, 1, 9, 8, 4, 0] (3, 5) (2, 5) d = 1
(0, 2) [6, 9, 10, 2, 1, 5, 8, 0, 4, 7, 3, 11] (3, 6) (5, 6) d = 2
(0, 3) [1, 5, 6, 2, 8, 0, 3, 7, 4] (3, 3) (3, 4)
(1, 0) [3, 7, 11, 10, 6, 2, 1, 5, 9, 0, 4, 8] (1, 8) (2, 7) d = 4
(1, 1) [3, 6, 2, 7, 8, 4, 0, 1, 5] (1, 5) (2, 4) d = 1
(1, 2) [5, 9, 8, 4, 1, 7, 3, 2, 6, 0] (1, 6) (4, 5) d = 2
(1, 3) [4, 8, 7, 3, 0, 1, 5, 9, 2, 6, 10] (1, 7) (3, 6) d = 3
(2, 0) [4, 8, 0, 3, 7, 6, 1, 5, 2] (2, 4) (3, 4)
(2, 1) [5, 9, 3, 6, 2, 8, 7, 4, 0, 1] (2, 5) (4, 5) d = 1
(2, 2) [4, 0, 10, 6, 9, 2, 5, 1, 8, 7, 3] (2, 6) (2, 3) d = 2
(2, 3) [8, 0, 4, 3, 11, 7, 6, 9, 1, 5, 2, 10] (2, 7) (8, 3) d = 3
(0, 1) [5, 8, 9, 2, 6, 3, 0, 1, 4, 7] (6, 1) (4, 5)
(0, 2) [6, 3, 2, 5, 1, 4, 0, 7] (3, 2) (3,−)
(1, 0) [8, 5, 6, 2, 10, 9, 1, 4, 0, 7, 3] (4, 4) (2, 3) (c, d) = (1, 4)
(1, 1) [2, 5, 6, 3, 7, 4, 1, 0] (4, 1) (4,−)
(1, 2) [3, 7, 8, 5, 2, 1, 4, 0, 6] (4, 2) (2, 3)
(1, 3) [2, 6, 3, 0, 9, 5, 1, 8, 7, 4] (4, 3) (3, 5)
(2, 1) [0, 4, 1, 7, 8, 2, 5, 6, 3] (5, 1) (2, 3)
(2, 2) [5, 8, 1, 4, 7, 3, 2, 6, 9, 0] (5, 2) (4, 5)
(2, 3) [7, 6, 2, 3, 0, 4, 1, 5] (2, 3) (2,−)

validity of BHR(L) for these exceptional cases using {2, 3}-growable cyclic realizations
for {1, 2, 3c, 4d} and a 2-growable cyclic realization for {1, 2, 3, 44}, which can be found in
Table 10.

To conclude the proof we have to consider the cases when c + d ≤ 4. Table 10
also provides 2-growable cyclic realizations for {1, 23, 3c, 4d} when (c, d) is in the set
{(1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}, and for {1, 25, 3, 4}.

Lemma 4.4. Let L = {2b, 3c, 4d} be an admissible multiset, where b ≥ 1 is odd and
c, d ≥ 1. Then BHR(L) holds.

Proof. The first part of Table 11 gives {2, 3, 4}-growable cyclic realizations for {2, 3c, 4d}
in each of the 12 possibilities of congruence class combinations of (c, d) (mod (3, 4)).
Note that c + d ≥ 6. Using Theorem 2.6, this proves BHR(L) except for the following
cases: d = 1, 2, 3; d = 4, 5 and c ≡ 2 (mod 3); c = 1 and d ≡ 0, 1 (mod 4). Next,
we consider the case c ≥ 2 and 1 ≤ d ≤ 5, using {2, 3}-growable cyclic realizations for
{2, 3c, 4d}. For the exceptional case {2, 32, 44} we use a 2-growable cyclic realization. Now
we complete the case c ≥ 2: Table 11 also provides 2-growable cyclic realization for the
multisets {23, 3c, 4d} when (c, d) ∈ {(2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}, and for the multiset
{25, 32, 4}.

Finally, we assume c = 1. Note that the multiset {2, 3, 44k+5} does not satisfy the
necessary condition. For the multisets {2, 3, 44k+8} we use the 4-growable realization
[2, 6, 10, 3, 7, 4, 0, 9, 5, 1, 8] of {2, 3, 48}. Table 11 gives {2, 4}-growable cyclic realizations
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Table 8: {2, 3, 4}-growable cyclic realizations for {1, 3c, 4d}: they are x-growable at mx.
The congruence classes of (c, d) are taken modulo (3, 4).

Classes Realizations (c, d) (m2,m3,m4) Missing cases
(0, 0) [3, 6, 1, 4, 0, 5, 2, 7, 8] (3, 4) (6, 2, 3)
(0, 1) [3, 6, 2, 8, 4, 1, 7, 0, 9, 5] (3, 5) (2, 4, 5) d = 1
(0, 2) [4, 5, 1, 8, 0, 3, 7, 10, 6, 2, 9] (3, 6) (7, 3, 4) d = 2
(0, 3) [3, 7, 6, 2, 10, 1, 5, 9, 0, 4, 8, 11] (3, 7) (9, 2, 6) d = 3
(1, 0) [4, 7, 0, 6, 3, 9, 8, 2, 5, 1] (4, 4) (7, 3, 4) c = 1
(1, 1) [6, 9, 2, 10, 3, 7, 4, 0, 1, 8, 5] (4, 5) (4, 5, 6) c = 1 or d = 1
(1, 2) [2, 6, 1, 5, 0, 3, 7, 8, 4] (1, 6) (1, 3, 4) d = 2
(1, 3) [4, 7, 1, 5, 0, 8, 2, 6, 3] (4, 3) (2, 3, 4) c = 1
(2, 0) [7, 11, 3, 4, 0, 8, 5, 1, 9, 6, 2, 10] (2, 8) (6, 8, 3) d = 4
(2, 1) [3, 7, 2, 6, 0, 1, 5, 8, 4] (2, 5) (2, 3, 4) d = 1
(2, 2) [4, 5, 1, 8, 2, 6, 0, 7, 3, 9] (2, 6) (7, 3, 4) d = 2
(2, 3) [4, 8, 1, 0, 7, 10, 3, 6, 2, 9, 5] (2, 7) (3, 4, 5) d = 3
(1, 0) [4, 5, 1, 8, 0, 7, 3, 10, 6, 2, 9] (1, 8) (7, 3, 4)
(1, 3) [3, 7, 1, 4, 8, 2, 6, 0, 9, 5] (1, 7) (2, 4, 5)
(0, 1) [7, 1, 4, 5, 8, 2, 6, 0, 3] (6, 1) (6, 2,−)
(0, 2) [5, 6, 3, 9, 2, 8, 1, 4, 7, 0] (6, 2) (4, 5,−)
(0, 3) [0, 3, 7, 6, 2, 5, 1, 4] (3, 3) (1, 2,−)
(1, 1) [5, 2, 9, 8, 1, 4, 7, 0, 6, 3] (7, 1) (7, 4, 9)
(1, 2) [0, 5, 2, 6, 1, 4, 3, 7] (4, 2) (2, 3,−)
(2, 0) [10, 9, 2, 6, 3, 0, 7, 4, 1, 8, 5] (5, 4) (8, 4, 5) (c, d) = (2, 4)
(2, 1) [2, 5, 0, 1, 6, 3, 7, 4] (5, 1) (3, 4,−)
(2, 2) [2, 5, 8, 7, 3, 0, 6, 1, 4] (5, 2) (1, 3,−)
(2, 3) [3, 0, 6, 7, 1, 4, 8, 5, 2, 9] (5, 3) (5, 2, 7)
(2, 0) [2, 6, 7, 3, 0, 4, 1, 5] (2, 4) (1,−,−)

Table 9: {2, 3, 4}-growable cyclic realizations for {1, 2b, 3c, 4d}, with b ≥ 2 even: they are
x-growable at mx. The congruence classes of (c, d) are taken modulo (3, 4).

Classes Realizations (b, c, d) (m2,m3,m4)
(1, 1) [7, 8, 2, 6, 0, 4, 1, 9, 5, 3] (2, 1, 5) (6, 2, 3)
(0, 1) [6, 4, 1, 2, 5, 7, 3, 0] (2, 3, 1) (5, 2,−)
(0, 2) [4, 7, 5, 1, 8, 0, 3, 6, 2] (2, 3, 2) (1, 3, 4)
(1, 0) [1, 5, 8, 6, 2, 7, 0, 4, 3] (2, 1, 4) (6, 2, 3)
(1, 1) [3, 6, 0, 4, 1, 8, 7, 5, 2] (2, 4, 1) (6, 2, 3)
(1, 3) [1, 0, 4, 6, 2, 5, 3, 7] (2, 1, 3) (3, 4,−)
(2, 2) [7, 6, 2, 4, 1, 5, 3, 0] (2, 2, 2) (1, 3,−)
(2, 3) [3, 5, 7, 8, 2, 6, 1, 4, 0] (2, 2, 3) (6, 2, 3)
(1, 1) [0, 3, 1, 7, 5, 4, 2, 6] (4, 1, 1) (1, 2,−)
(1, 2) [3, 5, 7, 8, 6, 2, 0, 4, 1] (4, 1, 2) (6, 2, 3)
(2, 1) [1, 3, 5, 8, 2, 4, 0, 7, 6] (4, 2, 1) (6, 2,−)
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Table 10: {2, 3, 4}-growable cyclic realizations for {1, 2b, 3c, 4d}, with b ≥ 1 odd: they are
x-growable at mx. The congruence classes of (c, d) are taken modulo (3, 4).

Classes Realizations (b, c, d) (m2,m3,m4) Missing cases
(0, 0) [9, 2, 6, 0, 4, 1, 7, 8, 5, 3] (1, 3, 4) (6, 2, 3)
(0, 1) [5, 8, 1, 9, 10, 2, 6, 4, 0, 7, 3] (1, 3, 5) (8, 4, 5) d = 1
(0, 2) [3, 5, 9, 1, 4, 0, 8, 7, 10, 6, 2, 11] (1, 3, 6) (6, 2, 3) d = 2
(0, 3) [4, 7, 3, 0, 1, 5, 8, 6, 2] (1, 3, 3) (1, 3, 4)
(1, 0) [10, 6, 2, 11, 3, 7, 9, 1, 5, 4, 0, 8] (1, 1, 8) (7, 8, 4) d = 4
(1, 1) [2, 6, 7, 3, 0, 5, 1, 8, 4] (1, 1, 5) (1, 3, 4) d = 1
(1, 2) [3, 4, 0, 6, 2, 8, 1, 5, 9, 7] (1, 1, 6) (6, 2, 3) d = 2
(1, 3) [9, 2, 6, 5, 1, 10, 3, 7, 0, 8, 4] (1, 1, 7) (8, 3, 5) d = 3
(2, 0) [2, 6, 1, 4, 0, 8, 5, 7, 3] (1, 2, 4) (1, 2, 3)
(2, 1) [8, 1, 5, 4, 0, 6, 2, 9, 7, 3] (1, 2, 5) (7, 2, 4) d = 1
(2, 2) [3, 7, 0, 4, 6, 10, 2, 5, 1, 8, 9] (1, 2, 6) (7, 2, 4) d = 2
(2, 3) [7, 11, 3, 4, 0, 9, 1, 5, 8, 10, 6, 2] (1, 2, 7) (6, 8, 3) d = 3
(0, 1) [4, 7, 9, 2, 6, 3, 0, 1, 8, 5] (1, 6, 1) (3, 4, 5)
(0, 2) [2, 5, 1, 0, 6, 3, 7, 4] (1, 3, 2) (3, 4,−)
(1, 0) [3, 7, 10, 8, 0, 4, 5, 1, 9, 6, 2] (1, 4, 4) (7, 2, 4) (c, d) = (1, 4)
(1, 1) [0, 6, 3, 7, 4, 1, 2, 5] (1, 4, 1) (2, 4,−)
(1, 2) [3, 7, 6, 0, 4, 1, 8, 5, 2] (1, 4, 2) (1, 2, 3)
(1, 3) [3, 6, 9, 7, 0, 1, 5, 2, 8, 4] (1, 4, 3) (2, 3, 4)
(2, 1) [3, 6, 7, 1, 4, 0, 2, 5, 8] (1, 5, 1) (6, 2, 3)
(2, 2) [7, 1, 4, 0, 2, 5, 8, 9, 6, 3] (1, 5, 2) (6, 2, 3)
(2, 3) [4, 0, 3, 1, 5, 2, 6, 7] (1, 2, 3) (1, 2,−)
(1, 0) [3, 7, 6, 2, 0, 4, 1, 5] (1, 1, 4) (1,−,−)
(0, 1) [3, 6, 8, 7, 5, 2, 0, 4, 1] (3, 3, 1) (6, 2, 3)
(1, 0) [4, 6, 0, 8, 7, 3, 9, 1, 5, 2] (3, 1, 4) (7, 3, 4)
(1, 1) [4, 2, 0, 8, 6, 3, 1, 5, 7] (5, 1, 1) (6, 3,−)
(1, 2) [4, 6, 2, 5, 3, 7, 1, 0] (3, 1, 2) (3, 4,−)
(1, 3) [2, 6, 7, 0, 3, 5, 1, 8, 4] (3, 1, 3) (1, 3, 4)
(2, 1) [5, 2, 0, 1, 7, 3, 6, 4] (3, 2, 1) (3, 4,−)
(2, 2) [4, 6, 0, 2, 5, 1, 8, 7, 3] (3, 2, 2) (2, 3, 4)
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for the multisets {23, 3, 44} and {23, 3, 45}; it also gives 2-growable cyclic realizations for
the multisets {23, 3, 43}, {25, 3, 4} and {25, 3, 42}.

Table 11: {2, 3, 4}-growable cyclic realizations for {2b, 3c, 4d}, with b ≥ 1 odd: they are
x-growable at mx. The congruence classes of (c, d) are taken modulo (3, 4).

Classes Realizations (b, c, d) (m2,m3,m4) Missing cases
(0, 0) [2, 6, 8, 5, 0, 4, 1, 7, 3] (1, 3, 4) (1, 2, 3)
(0, 1) [2, 5, 1, 8, 4, 0, 6, 9, 7, 3] (1, 3, 5) (1, 2, 4) d = 1
(0, 2) [3, 6, 10, 7, 0, 9, 2, 5, 1, 8, 4] (1, 3, 6) (2, 3, 4) d = 2
(0, 3) [6, 10, 2, 5, 9, 0, 8, 4, 1, 3, 11, 7] (1, 3, 7) (5, 6, 7) d = 3
(1, 0) [3, 6, 9, 5, 2, 8, 0, 4, 1, 7] (1, 4, 4) (6, 2, 3) c = 1
(1, 1) [2, 5, 9, 6, 3, 10, 8, 1, 4, 0, 7] (1, 4, 5) (6, 7, 3) c = 1 or d = 1
(1, 2) [3, 7, 2, 6, 0, 5, 1, 8, 4] (1, 1, 6) (2, 3, 4) d = 2
(1, 3) [2, 6, 0, 4, 8, 1, 5, 9, 7, 3] (1, 1, 7) (1, 2, 5) d = 3
(2, 0) [10, 2, 6, 3, 11, 7, 5, 1, 9, 0, 8, 4] (1, 2, 8) (8, 3, 5) d = 4
(2, 1) [7, 11, 8, 12, 3, 5, 9, 0, 4, 1, 10, 6, 2] (1, 2, 9) (6, 7, 3) d = 1, 5
(2, 2) [2, 6, 0, 3, 7, 9, 5, 1, 8, 4] (1, 2, 6) (1, 3, 5) d = 2
(2, 3) [9, 2, 5, 1, 8, 0, 7, 3, 10, 6, 4] (1, 2, 7) (7, 3, 4) d = 3
(0, 1) [3, 6, 0, 4, 1, 7, 5, 2, 8] (1, 6, 1) (6, 2, 3)
(0, 2) [4, 7, 1, 5, 2, 9, 6, 3, 0, 8] (1, 6, 2) (7, 3, 4)
(0, 3) [0, 4, 1, 7, 3, 6, 2, 5] (1, 3, 3) (2, 3,−)
(1, 1) [3, 6, 9, 2, 5, 1, 8, 0, 7, 4] (1, 7, 1) (7, 3, 4)
(1, 2) [7, 1, 4, 0, 5, 2, 6, 3] (1, 4, 2) (2, 3,−)
(1, 3) [3, 6, 0, 4, 2, 7, 1, 5, 8] (1, 4, 3) (6, 2, 3)
(2, 0) [6, 10, 2, 9, 1, 4, 8, 0, 3, 7, 5] (1, 5, 4) (4, 5, 6) (c, d) = (2, 4)
(2, 1) [2, 6, 1, 3, 7, 4, 0, 5, 8] (1, 2, 5) (1, 4,−)

[1, 4, 7, 3, 6, 0, 5, 2] (1, 5, 1) (2, 4,−)
(2, 2) [3, 6, 0, 4, 1, 8, 5, 2, 7] (1, 5, 2) (6, 2, 3)
(2, 3) [9, 6, 2, 8, 1, 5, 3, 0, 7, 4] (1, 5, 3) (7, 3, 4)
(2, 0) [7, 3, 6, 2, 4, 0, 5, 1] (1, 2, 4) (3,−,−)
(0, 1) [1, 6, 0, 2, 5, 3, 7, 4] (3, 3, 1) (3, 4,−)
(0, 2) [7, 1, 4, 0, 2, 6, 8, 5, 3] (3, 3, 2) (6, 2, 3)
(1, 1) [3, 6, 8, 2, 5, 7, 0, 4, 1] (3, 4, 1) (6, 2, 3)
(2, 1) [5, 7, 3, 1, 8, 2, 0, 6, 4] (5, 2, 1) (4, 5,−)
(2, 2) [2, 4, 1, 5, 7, 3, 0, 6] (3, 2, 2) (1, 2,−)
(2, 3) [3, 5, 7, 0, 4, 1, 6, 2, 8] (3, 2, 3) (6, 2, 3)
(1, 0) [3, 7, 5, 0, 4, 1, 8, 6, 2] (3, 1, 4) (1, 2, 3)
(1, 1) [5, 7, 1, 3, 0, 6, 2, 4] (5, 1, 1) (1, 2,−)
(1, 2) [4, 6, 8, 1, 5, 2, 0, 7, 3] (5, 1, 2) (2, 3, 4)
(1, 3) [1, 7, 3, 5, 2, 6, 4, 0] (3, 1, 3) (3, 4,−)
(1, 4) [5, 9, 1, 7, 3, 0, 8, 2, 6, 4] (3, 1, 5) (3, 4, 5)

Theorem 4.5. Let L = {1a, 2b, 3c, 4d} be an admissible multiset with a, b, c, d ≥ 0. Then
BHR(L) holds.

Proof. By Theorem 1.2.2–4 we may assume 0 ≤ a ≤ 2 and c, d ≥ 1. If a = 2 the result
follows from Theorem 1.2.4 and Lemma 4.1. Suppose now a = 1. If b is even we apply
Lemma 4.2, otherwise we apply Lemma 4.3. Finally, assume a = 0. By [5] we may
assume b ≥ 1. If b is odd we apply Lemma 4.4 and so, we may also assume b ≥ 2 is even.
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We start with the {2, 3, 4}-growable cyclic realizations of L = {22, 3c, 4d} for each of
the 12 possibilities of congruence class combinations of (c, d) (mod (3, 4)) described in
the first part of Table 12. Note that c + d ≥ 5. Using Theorem 2.6, this proves BHR(L)
except for the following cases: d = 1, 2; d = 3 and c 6≡ 0 (mod 3); d = 4 and c ≡ 1
(mod 3). For these exceptions, Table 12 also gives {2, 3}-growable cyclic realizations
when (c, d) ∈ {(4, 1), (5, 1), (6, 1), (3, 2), (4, 2), (5, 2), (2, 3), (4, 3), (4, 4)} and a 2-growable
cyclic realization for {22, 3, 44}.

We are left to the cases c + d ≤ 4. This table also provides a 2-growable cyclic
realization for the multiset {24, 3c, 4d} when (c, d) ∈ {(1, 2), (1, 3), (2, 1), (2, 2), (3, 1)},
and for the multiset {26, 3, 4}.

Table 12: {2, 3, 4}-growable cyclic realizations for {2b, 3c, 4d}, with b ≥ 2 even: they are
x-growable at mx. The congruence classes of (c, d) are taken modulo (3, 4).

Classes Realizations (b, c, d) (m2,m3,m4) Missing cases
(0, 0) [2, 5, 9, 6, 8, 0, 4, 1, 7, 3] (2, 3, 4) (1, 2, 3)
(0, 1) [8, 0, 7, 3, 10, 1, 5, 2, 9, 6, 4] (2, 3, 5) (7, 3, 4) d = 1
(0, 2) [8, 0, 4, 2, 10, 1, 5, 7, 11, 3, 6, 9] (2, 3, 6) (7, 8, 3) d = 2
(0, 3) [3, 6, 1, 5, 8, 2, 4, 0, 7] (2, 3, 3) (6, 2, 3)
(1, 0) [4, 8, 0, 2, 6, 10, 1, 9, 5, 3, 11, 7] (2, 1, 8) (3, 6, 7) d = 4
(1, 1) [4, 8, 5, 1, 6, 2, 0, 7, 3] (2, 1, 5) (2, 3, 4) d = 1
(1, 2) [4, 8, 0, 2, 6, 9, 5, 1, 7, 3] (2, 1, 6) (2, 3, 5) d = 2
(1, 3) [4, 8, 1, 5, 7, 0, 9, 2, 6, 3, 10] (2, 1, 7) (8, 3, 5) d = 3
(2, 0) [2, 6, 0, 3, 7, 5, 1, 8, 4] (2, 2, 4) (1, 3, 4)
(2, 1) [4, 7, 1, 5, 3, 9, 6, 2, 8, 0] (2, 2, 5) (7, 3, 4) d = 1
(2, 2) [5, 8, 10, 3, 7, 0, 4, 6, 2, 9, 1] (2, 2, 6) (8, 4, 5) d = 2
(2, 3) [10, 2, 6, 8, 0, 9, 5, 1, 11, 3, 7, 4] (2, 2, 7) (9, 3, 6) d = 3
(0, 1) [4, 7, 9, 6, 3, 0, 8, 1, 5, 2] (2, 6, 1) (7, 3, 4)
(0, 2) [2, 5, 7, 3, 6, 0, 4, 1] (2, 3, 2) (2, 3,−)
(1, 0) [0, 3, 7, 10, 8, 1, 5, 2, 9, 6, 4] (2, 4, 4) (7, 3, 4) (c, d) = (1, 4)
(1, 1) [0, 3, 1, 6, 2, 5, 7, 4] (2, 4, 1) (5, 2,−)
(1, 2) [3, 6, 1, 4, 0, 7, 5, 2, 8] (2, 4, 2) (6, 2, 3)
(1, 3) [8, 1, 5, 2, 0, 7, 3, 9, 6, 4] (2, 4, 3) (7, 3, 4)
(2, 1) [7, 5, 2, 8, 1, 4, 0, 6, 3] (2, 5, 1) (6, 2, 3)
(2, 2) [9, 1, 5, 2, 8, 6, 3, 0, 7, 4] (2, 5, 2) (7, 3, 4)
(2, 3) [7, 3, 6, 4, 0, 2, 5, 1] (2, 2, 3) (3, 4,−)
(1, 0) [0, 4, 2, 6, 1, 5, 3, 7] (2, 1, 4) (3,−,−)
(0, 1) [2, 5, 7, 0, 4, 1, 8, 6, 3] (4, 3, 1) (6, 2, 3)
(1, 1) [7, 5, 2, 0, 4, 6, 8, 1, 3] (6, 1, 1) (6, 2,−)
(1, 2) [7, 1, 3, 5, 2, 6, 4, 0] (4, 1, 2) (3, 4,−)
(1, 3) [3, 7, 0, 4, 6, 8, 1, 5, 2] (4, 1, 3) (1, 2, 4)
(2, 1) [1, 3, 0, 6, 2, 4, 7, 5] (4, 2, 1) (5, 2,−)
(2, 2) [8, 6, 2, 0, 4, 1, 7, 5, 3] (4, 2, 2) (6, 2, 3)

The success in proving these small cases leads us to make the following conjecture,
which says that the method of the previous section and this one is always successful.

Conjecture 4.6. For any fixed set U , there is a finite set of growable realizations with un-
derlying set U that implies the existence of realizations for all but finitely many admissible
multisets L that have underlying set U .
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If Conjecture 4.6 is true, then the BHR Conjecture for any given underlying set can
be proved with a finite set of realizations.

5 A Partial Solution for U = {1, x, 2x}
In previous sections we have seen how it is possible to completely prove the BHR Con-
jecture for a fixed U by the construction of one or more base case realizations for each of∏

x∈U x cases. In this section we develop ways to produce general results with fewer base
cases.

Our main goal is Theorem 5.10, which says that BHR(L) holds for L = {1a, xb, (2x)c}
when a ≥ x − 2, c is even, and b ≥ 5x − 2 + c/2. When x is even, this covers many
instances not covered by Theorem 1.2.8. When x is odd, the instances covered are all
new.

Lemma 5.1. Suppose L has an X-growable realization and take x ∈ X. Take i with
1 ≤ i ≤ x. Then L ∪ {x3x−2i, (2x)2i} has an X-growable realization.

Proof. Apply Theorem 2.4 three times to the x-growable realization of L to obtain an
X-growable realization of L ∪ {x3x} with each of the subsequences

[m,m + x,m + 2x,m + 3x], [m− 1,m− 1 + x,m− 1 + 2x,m− 1 + 3x], . . . ,

[m− x + 1,m + 1,m + 1 + x,m + 1 + 2x]

appearing, possibly reversed. Each subsequence has differences {x3}. Take i of the
subsequences and in each switch the middle two elements (so, for example, the first
would become [m,m + 2x,m + x,m + 3x]). Each time we perform this operation we
obtain a subsequence with differences {x, (2x)2} instead of {x3}. After performing it i
times the new differences are {x3x−2i, (2x)2i}.

These operations do not interfere with growability: if the original realization is y-
growable at m′, then the new realization is y-growable at m′ if m′ ≤ m and at m′ + 3x
otherwise.

Let L = {1a, xb, (2x)c}. When x = 1 or 2 BHR(L) follows from Theorem 1.2.1 or 1.2.2
respectively, so x = 3 is the first open case. We treat the x = 3 case first both as an
illustration of the general method and because some of the later constructions require
x > 3.

Lemma 5.2. Let L = {1a, 3b, 6c}. If c is even and b ≥ 13 + c/2, then BHR(L) holds; if
c is odd and b ≥ 18 + (c− 1)/2, then BHR(L) holds.

Proof. By Theorem 1.2.1 we may assume that a, b, c ≥ 1. The multiset L is not admissible
when a = 1 and b + c ≡ 1 (mod 3).

Table 13 gives {1, 3}-growable realizations for

(a, b, c) ∈ {(2, 4, 0), (1, 5, 0), (1, 6, 0), (1, 10, 1), (1, 11, 1), (2, 9, 1)}.

First we use Lemma 5.1 along with the realizations of Table 13 to obtain a {1, 3}-growable
realization of L′ = {1a′ , 3b′ , 6c′} with a′ ∈ {1, 2}, b′ ≡ b (mod 3) and c′ ≤ 5 such that
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Table 13: {1, 3}-growable realizations of {1a, 3b, 6c}. Where they are 1- or 3-growable is
indicated by (m1,m3).

name realization (a, b, c) (m1,m3)
g1 [6, 5, 1, 4, 0, 3, 2] (2, 4, 0) (4, 2)
g2 [3, 0, 6, 2, 5, 1, 4] (1, 5, 0) (5, 2)
g3 [5, 2, 7, 0, 3, 6, 1, 4] (1, 6, 0) (6, 2)
g4 [2, 12, 9, 6, 3, 0, 10, 7, 4, 5, 8, 1, 11] (1, 10, 1) (3, 5)
g5 [5, 2, 13, 10, 7, 8, 11, 0, 3, 6, 9, 12, 4, 1] (1, 11, 1) (6, 8)
g6 [9, 6, 3, 0, 10, 7, 8, 11, 1, 4, 5, 12, 2] (2, 9, 1) (6, 8)

c′ ≡ c (mod 6). We have to distinguish cases according to the congruence class of c
modulo 6.

When c is even, we start with g1, g2 or g3. If c ≡ 0 (mod 6), then start by taking g1,
g2 or g3 according to whether b is congruent to 1, 2 or 0 (mod 3) respectively. If c ≡ 2
(mod 6), then start by taking g1, g2 or g3 according to whether b is congruent to 2, 0 or
1 (mod 3) respectively and apply Lemma 5.1 with i = 1. If c ≡ 4 (mod 6), then start by
taking g1, g2 or g3 according to whether b is congruent to 0, 1 or 2 (mod 3) respectively
and apply Lemma 5.1 with i = 2.

When c is odd, we start with g4, g5 or g6. If c ≡ 1 (mod 6), then start by taking g4,
g5 or g6 according to whether b is congruent to 1, 2 or 0 (mod 3) respectively. If c ≡ 3
(mod 6), then start by taking g4, g5 or g6 according to whether b is congruent to 2, 0 or
1 (mod 3) respectively and apply Lemma 5.1 with i = 1. If c ≡ 5 (mod 6), then start by
taking g4, g5 or g6 according to whether b is congruent to 0, 1 or 2 (mod 3) respectively
and apply Lemma 5.1 with i = 2.

In each case we obtain the required realization of L′. Next, apply Lemma 5.1 (c−c′)/6
times with x = i = 3 to obtain a {1, 3}-growable realization of {1a′ , 3b′+(c−c′)/2, 6c}.
Finally, complete to the required realization using a − a′ applications of Theorem 2.4
with x = 1 and b−b′

3
− c−c′

6
applications with x = 3.

When c is even, the method requires up to six 3’s in the gi, up to seven 3’s to adjust
the congruency class of the number of 6’s, and then c/2 3’s to obtain the correct number
of 6’s. Hence it always works for b ≥ 6 + 7 + c/2 = 13 + c/2. When c is odd, the method
requires up to eleven 3’s in the gi, up to seven 3’s to adjust the congruency class of the
number of 6’s, and then up to (c− 1)/2 3’s to obtain the correct number of 6’s. Hence it
always works for b ≥ 11 + 7 + (c− 1)/2 = 18 + (c− 1)/2.

Example 5.3. Let L = {13, 318, 610}. Since b ≡ 0 (mod 3) and c ≡ 4 (mod 6), we start
applying Lemma 5.1 with i = 2 to g1. In this way we obtain the realization

[15, 14, 1, 7, 4, 10, 13, 0, 6, 3, 9, 12, 11, 8, 5, 2]

of the multiset {12, 39, 64}. Now we apply Lemma 5.1 once with i = x = 3 to this new
multiset and we get a realization of {12, 312, 610}:

[24, 23, 1, 7, 4, 10, 16, 13, 19, 22, 0, 6, 3, 9, 15, 12, 18, 21, 20, 17, 14, 11, 5, 8, 2].

We now apply Theorem 2.4 twice with x = 3 to get a realization of {12, 318, 610} and then
once with x = 1 to get a realization of L:
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[31, 30, 1, 4, 7, 13, 10, 16, 22, 19, 25, 28, 29, 0, 3, 6, 12,

9, 15, 21, 18, 24, 27, 26, 23, 20, 17, 11, 14, 8, 5, 2].

To use the method of proof of Lemma 5.2 for x > 3 we require {1, x}-growable
realizations for {1a, xb} for a as small as possible and for a b in each congruence class
modulo x. Lemmas 5.4, 5.6 and 5.8 provide these. Each of the constructions has at least
one subsequence consisting of multiple instances of pairs [t, t+ x], triples [t, t+ x, t+ 2x]
or their reverses; we indicate these pairs and triples with underbraces to help illuminate
the overall structure.

Lemma 5.4. Let x ≥ 4. The multisets {1x−1, xx+1}, {1x−2, xx+2} and {1x−2, x2x} have
{1, x}-growable realizations.

Proof. First, we cover {1x−1, xx+1}, in which case v = 2x + 1. When x is even, the
sequence

[1, x + 1, 0, 2x, x, x− 1, 2x− 1︸ ︷︷ ︸, 2x− 2, x− 2︸ ︷︷ ︸, x− 3, 2x− 3︸ ︷︷ ︸, . . . , x + 2, 2︸ ︷︷ ︸]
has edge-lengths [x, x, 1, x, 1, x, . . . , 1, x] and so realizes {1x−1, xx+1}. It is 1-growable at 1
and x-growable at x. When x is odd, the sequence

[x, x + 1, 1, 0, 2x, x− 1, 2x− 1, x− 2, 2x− 2︸ ︷︷ ︸, 2x− 3, x− 3︸ ︷︷ ︸, x− 4, 2x− 4︸ ︷︷ ︸, . . . , x + 2, 2︸ ︷︷ ︸]
has edge-lengths [1, x, 1, 1, x, x, x, x, 1, x, . . . , 1, x] and so realizes {1x−1, xx+1}. It is 1-
growable at 2x− 1 and x-growable at x.

Next, consider {1x−2, xx+2} and so v = 2x + 1. When x is even, the sequence

[x, 2x, 0, x + 1, 1, x + 2, 2, 3, x + 3︸ ︷︷ ︸, x + 4, 4︸ ︷︷ ︸, 5, x + 5︸ ︷︷ ︸, . . . , x− 1, 2x− 1︸ ︷︷ ︸]
has edge-lengths [x, 1, x, x, x, x, 1, x, 1, x, . . . , 1, x] and so realizes {1x−2, xx+2}. It is 1-
growable at 1 and x-growable at x. When x is odd, the sequence

[0, x, x−1, 2x, 2x−1, x−2, 2x−2, x− 3, 2x− 3︸ ︷︷ ︸, 2x− 4, x− 4︸ ︷︷ ︸, x− 5, 2x− 5︸ ︷︷ ︸, . . . , x + 1, 1︸ ︷︷ ︸]
has edge-lengths [x, 1, x, 1, x, x, x, x, 1, x, 1, x, . . . , 1, x] so this realizes {1x−2, xx+2}. It is
1-growable at 2x− 2 and x-growable at x− 1.

Finally, consider {1x−2, x2x} and so v = 3x− 1. When x is even, the sequence

[0, x, 2x︸ ︷︷ ︸, 2x + 1, x + 1, 1︸ ︷︷ ︸, 2, x + 2, 2x + 2︸ ︷︷ ︸, . . . , x− 4, 2x− 4, 3x− 4︸ ︷︷ ︸,
x− 3, 2x− 3, 2x− 2, x− 2, 3x− 3, 3x− 2, x− 1, 2x− 1]

has edge-lengths [x, x, 1, x, x, 1, . . . , 1, x, x, x, x, 1, x, x, 1, x, x] and so realizes {1x−2, x2x}.
It is 1-growable at 3x− 4 and x-growable at x− 1. When x is odd the sequence

[3x− 2, x− 1, 2x− 1, 2x, x, 0︸ ︷︷ ︸, 1, x + 1, 2x + 1︸ ︷︷ ︸, 2x + 2, x + 2, 2︸ ︷︷ ︸, . . . ,
x− 4, 2x− 4, 3x− 4︸ ︷︷ ︸, x− 3, 2x− 3, 2x− 2, x− 2, 3x− 3]
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has edge-lengths [x, x, 1, x, x, 1, x, x, . . . , 1, x, x, x, x, 1, x, x] and so realizes {1x−2, x2x}. It
is 1-growable at 3x− 4 and x-growable at x.

Example 5.5. Let x = 8. Lemma 5.4 gives the {1, 8}-growable realizations

[1, 9, 0, 16, 8, 7, 15, 14, 6, 5, 13, 12, 4, 3, 11, 10, 2],

[8, 16, 0, 9, 1, 10, 2, 3, 11, 12, 4, 5, 13, 14, 6, 7, 15],

[0, 8, 16, 17, 9, 1, 2, 10, 18, 19, 11, 3, 4, 12, 20, 5, 13, 14, 6, 21, 22, 7, 15]

of {17, 89}, {16, 810} and {16, 816} respectively.
Let x = 9. Lemma 5.4 gives the {1, 9}-growable realizations

[9, 10, 1, 0, 18, 8, 17, 7, 16, 15, 6, 5, 14, 13, 4, 3, 12, 11, 2],

[0, 9, 8, 18, 17, 7, 16, 6, 15, 14, 5, 4, 13, 12, 3, 2, 11, 10, 1],

[25, 8, 17, 18, 9, 0, 1, 10, 19, 20, 11, 2, 3, 12, 21, 22, 13, 4, 5, 14, 23, 6, 15, 16, 7, 24]

of {18, 910}, {17, 911} and {17, 918} respectively.

Lemma 5.6. Let x ≥ 4 be even. There is a {1, x}-growable realization for {1x−2, xb}
for b in range x + 3 ≤ b ≤ 2x− 1.

Proof. We consider odd b and even b separately, starting with odd b.
Take r in the range 0 ≤ r ≤ (x − 4)/2. Write x = 2r + 2s + 4 for some s ≥ 0. We

construct a realization for

L = {12r+2s+2, x4r+2s+7} = {1x−2, xx+2r+3}.

We have v = (2r + 2s + 2) + (4r + 2s + 7) + 1 = 6r + 4s + 10.
We build the required realization by concatenating three sequences. First:

[2r + 1, 4r + 2s + 5︸ ︷︷ ︸, 4r + 2s + 6, 2r + 2︸ ︷︷ ︸, 2r + 3, 4r + 2s + 7︸ ︷︷ ︸, . . . , 4r + 4s + 6, 2r + 2s + 2︸ ︷︷ ︸],
which has 2s + 2 pairs and produces edge-lengths {12s+1, x2s+2}. Second:

[6r + 4s + 8, 4r + 2s + 4, 2r︸ ︷︷ ︸, 2r − 1, 4r + 2s + 3, 6r + 4s + 7︸ ︷︷ ︸,
6r + 4s + 6, 4r + 2s + 2, 2r − 2︸ ︷︷ ︸, . . . , 4r + 4s + 8, 2r + 2s + 4, 0︸ ︷︷ ︸],

which has 2r + 1 triples and produces {12r, x4r+2}. Third:

[6r + 4s + 9, 2r + 2s + 3, 4r + 4s + 7]

which produces {x2}.
Upon concatenation we have a difference of x where the first and second sequences

join and a difference of 1 where the second and third join. Hence we have a realization of

L = {12s+1, x2s+2} ∪ {12r, x4r+2} ∪ {x2} ∪ {1, x} = {1x−2, xx+2r+3}.
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It is 1-growable at v−2 = 6r+4s+8: when embedding with m = 6r+4s+8, the only
lengthened edge is (2r+ 2s+ 2, 6r+ 4s+ 8). It is x-growable at x−1 = 2r+ 2s+ 3: when
embedding with m = 2r + 2s + 3 the lengthened edges are (i, i + x) for 0 ≤ i ≤ x− 1.

For the case with b even, first note that when x = 4 there are no values of b to
be considered. Let x ≥ 6 be even and take r in the range 0 ≤ r ≤ (x − 6)/2. Write
x = 2r + 2s + 6 for some s ≥ 0. We construct a realization for

L = {12r+2s+4, x4r+2s+10} = {1x−2, xx+2r+4}.

We have v = (2r + 2s + 4) + (4r + 2s + 10) + 1 = 6r + 4s + 15.
We build the required realization by concatenating three sequences. First:

[4r + 2s + 11, 2r + 5︸ ︷︷ ︸, 2r + 6, 4r + 2s + 12︸ ︷︷ ︸,
4r + 2s + 13, 2r + 7︸ ︷︷ ︸, . . . , 4r + 4s + 11, 2r + 2s + 5︸ ︷︷ ︸],

which has 2s + 1 pairs and produces the edge-lengths {12s, x2s+1}. Second:

[2r+2s+6, 4r+4s+12, 4r+4s+13, 2r+2s+7, 1, 4r+2s+10, 2r+4, 2r+3, 4r+2s+9, 0]

which produces {12, x7}. Third:

[6r + 4s + 14, 4r + 2s + 8, 2r + 2︸ ︷︷ ︸, 2r + 1, 4r + 2s + 7, 6r + 4s + 13︸ ︷︷ ︸,
6r + 4s + 12, 4r + 2s + 6, 2r︸ ︷︷ ︸, . . . , 4r + 4s + 14, 2r + 2s + 8, 2︸ ︷︷ ︸],

which has 2r + 1 triples and produces {12r, x4r+2}.
Upon concatenation we have a difference of 1 at each of the joins. Hence we have a

realization of

L = {12s, x2s+1} ∪ {12, x7} ∪ {12r, x4r+2} ∪ {12} = {1x−2, xx+2r+4}.

It is 1-growable at 1: when embedding with m = 1, the only lengthened edge is
(1, 2r+2s+7). It is x-growable at x = 2r+2s+6: when embedding with m = 2r+2s+6
the lengthened edges are (i, i + x) for 1 ≤ i ≤ x.

Example 5.7. To construct a {1, 8}-growable realization of {16, 813} using the proof of
Lemma 5.6 we take r = s = 1 to obtain

[3, 11, 12, 4, 5, 13, 14, 6, 18, 10, 2, 1, 9, 17, 16, 8, 0, 19, 7, 15],

which is 1-growable at 18 and 8-growable at 7.
To construct a {1, 10}-growable realization of {18, 1016} we take r = s = 1 to obtain

[17, 7, 8, 18, 19, 9, 10, 20, 21, 11, 1, 16, 6, 5, 15, 0, 24, 14, 4, 3, 13, 23, 22, 12, 2]

which is 1-growable at 1 and 10-growable at 10.

Lemma 5.8. Let x ≥ 5 be odd. There is a {1, x}-growable realization for {1x−2, xb} for b
in range x + 3 ≤ b ≤ 2x− 1.
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Proof. The constructions are similar to those of Lemma 5.6 in that they each are built
from the concatenation of three sequences and we need to consider odd and even b sepa-
rately. We start with odd b.

Take r in the range 0 ≤ r ≤ (x − 5)/2. Write x = 2r + 2s + 5 for some s ≥ 0. We
construct a realization for

L = {12r+2s+3, (2r + 2s + 5)4r+2s+9} = {1x−2, xx+2r+4}.

We have v = (2r + 2s + 3) + (4r + 2s + 9) + 1 = 6r + 4s + 13.
The first sequence is

[6r + 4s + 10, 4r + 2s + 5, 2r︸ ︷︷ ︸, 2r − 1, 4r + 2s + 4, 6r + 4s + 9︸ ︷︷ ︸,
6r + 4s + 8, 4r + 2s + 3, 2r − 2︸ ︷︷ ︸, . . . , 4r + 4s + 10, 2r + 2r + 5, 0︸ ︷︷ ︸].

There are 2r + 1 triples, so this sequence produces edge-lengths {12r, x4r+2}. The second
sequence is

[6r + 4s + 12, 2r + 2s + 4, 4r + 4s + 9, 4r + 4s + 8, 2r + 2s + 3, 6r + 4s + 11].

This has internal differences [2r + 2s + 5, 2r + 2s + 5, 1, 2r + 2s + 5, 2r + 2s + 5] and so
produces {1, x4}. The third sequence is

[4r + 2s + 6, 2r + 1︸ ︷︷ ︸, 2r + 2, 4r + 2s + 7︸ ︷︷ ︸, 4r + 2s + 8, 2r + 3︸ ︷︷ ︸, . . . , 2r + 2s + 2, 4r + 4s + 7︸ ︷︷ ︸].
There are 2s + 2 pairs, so this sequence produces {12s+1, x2s+2}.

Upon concatenation, we have a difference of 1 generated where the first and second
sequences join and a difference of 2r+ 2s+ 5 = x where the second and third join. Hence
we have a realization of

L = {12r, x4r+2} ∪ {1, x4} ∪ {12s+1, x2s+2} ∪ {1, x} = {1x−2, xx+2r+4}.

The realization is 1-growable at v − 2 = 6r + 4s + 11: when embedding with m =
6r + 4s + 11, the only lengthened edge is (2r + 2s + 3, 6r + 4s + 11). It is x-growable at
x − 1 = 2r + 2s + 4: when embedding with m = 2r + 2s + 4 the lengthened edges are
(i, i + x) for 0 ≤ i ≤ x− 1.

Moving to even b, take r in the range 0 ≤ r ≤ (x− 5)/2 and write x = 2r + 2s+ 5 for
some s ≥ 0. We construct a realization for

L = {12r+2s+3, (2r + 2s + 5)4r+2s+8} = {1x−2, xx+2r+3}.

We have v = (2r + 2s + 3) + (4r + 2s + 8) + 1 = 6r + 4s + 12.
The first sequence is

[4r + 2s + 6, 2r + 1︸ ︷︷ ︸, 2r + 2, 4r + 2s + 7︸ ︷︷ ︸, 4r + 2s + 8, 2r + 3︸ ︷︷ ︸, . . . , 4r + 4s + 8, 2r + 2s + 3︸ ︷︷ ︸].
There are 2s+ 3 pairs, so this sequence produces edge-lengths {12s+2, x2s+3}. The second
sequence is the same as the first sequence of the previous construction:
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[6r + 4s + 10, 4r + 2s + 5, 2r︸ ︷︷ ︸, 2r − 1, 4r + 2s + 4, 6r + 4s + 9︸ ︷︷ ︸,
6r + 4s + 8, 4r + 2s + 3, 2r − 2︸ ︷︷ ︸, . . . , 4r + 4s + 10, 2r + 2r + 5, 0︸ ︷︷ ︸].

As before, there are 2r + 1 triples, so this sequence produces {12r, x4r+2}. The third
sequence is

[6r + 4s + 11, 2r + 2s + 4, 4r + 4s + 9]

which has internal differences [2r + 2s + 5, 2r + 2s + 5] and so produces {x2}.
Upon concatenation, we have a difference of 2r+ 2s+ 5 = x generated where the first

and second sequences join and a difference of 1 where the second and third join. Hence
we have a realization of

L = {12s+2, x2s+3} ∪ {12r, x4r+2} ∪ {x2} ∪ {1, x} = {1x−2, xx+2r+3}.

The realization is 1-growable at v − 2 = 6r + 4s + 10: when embedding with m =
6r + 4s + 10, the only lengthened edge is (2r + 2s + 3, 6r + 4s + 10). It is x-growable at
x − 1 = 2r + 2s + 4: when embedding with m = 2r + 2s + 4 the lengthened edges are
(i, i + x) for 0 ≤ i ≤ x− 1.

Example 5.9. To construct a {1, 13}-growable realization of {111, 1321} using the proof
of Lemma 5.8 we take r = s = 2 to obtain

[30, 17, 4, 3, 16, 29, 28, 15, 2, 1, 14, 27, 26, 13, 0,

32, 12, 25, 24, 11, 31, 18, 5, 6, 19, 20, 7, 8, 21, 22, 9, 10, 23],

which is 1-growable at 31 and 13-growable at 12.
To construct a {1, 13}-growable realization of {17, 914} we take r = s = 1 to obtain

[12, 3, 4, 13, 14, 5, 6, 15, 16, 7, 20, 11, 2, 1, 10, 19, 18, 9, 0, 21, 8, 17]

which is 1-growable at 20 and 9-growable at 8.

We can now prove the main result of the section.

Theorem 5.10. Let L = {1a, xb, (2x)c}. If a ≥ x − 2, c is even and b ≥ 5x − 2 + c/2,
then BHR(L) holds.

Proof. If x ≤ 2, then BHR(L) holds without restriction and the case x = 3 is covered
in Lemma 5.2, so assume x ≥ 4. We follow the method of proof of Lemma 5.2, with
Lemmas 5.4, 5.6 and 5.8 providing the realizations to get started.

Take i in the range 0 ≤ i < c/2 such that 2i ≡ c (mod 2x).
To construct the required realization for L, start with the realization of {1a′ , xb′} that

has b′ ≡ b + 2i (mod x) given by Lemma 5.4, 5.6 or 5.8. So a′ = x − 2, except when
b + 2i ≡ 1 (mod x) and admissibility forces us to use a′ = x− 1.

If c 6≡ 0 (mod 2x), then apply Lemma 5.1 using i to give a realization whose number
of occurrences c′ of 2x differs from c by a multiple of 2x and whose number of occurrences
of x differs from b by a multiple of x. (If c ≡ 0 (mod 2x), then this is already the case.)
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Apply Lemma 5.1 a further (c− c′)/2x times with i = x to obtain a {1, x}-growable
realization of {1a′ , xb′′ , (2x)c} where b′′ ≡ b (mod x). Complete to the required realization
using the appropriate number of applications of Theorem 2.4 with 1 and x.

The method requires up to 2x occurrences of x in the initial realization, up to 3x− 2
occurrences of x to adjust the congruency class of the number of occurrences of 2x, and
c/2 occurrences of x to obtain the correct number of occurrences of 2x. Hence it always
works for b ≥ 2x + 3x− 2 + c/2 = 5x− 2 + c/2.

When c is odd, we are not aware of any reason why the same approach will not work.
However, without new ideas, it will take more work to get weaker results than in the even
case. This is because the starter realizations now need to be for {1x−2, xb, 2x}, which
means that we must have v ≥ 4x, compared to the constructions here which all have
v < 3x. As well as being larger, using the same approach as Lemmas 5.6 and 5.8 would
probably take more cases to cover all required values of b. Some of these issues are already
apparent in Lemma 5.2.

Lemma 5.1 can be thought of as combining the notion of growability with that of a
particular perfect realization. This can be generalized to other perfect realizations, which
we now do.

For a multiset L, define sL = {sy : y ∈ L}. When we apply Theorem 2.4 k times to
an x-growable realization we produce a realization with the x subsequences

[m + 1− x,m + 1,m + 1 + x, . . . ,m + 1 + (k − 1)x] + t

for 0 ≤ t ≤ x− 1. If we have a perfect linear realization of length k of a multiset L, then
we can multiply each element by x to get a sequence that realizes xL and then take a
translate of it to replace a subsequence of the above form.

Lemma 5.1 uses this process with the perfect linear realization [0, 2, 1, 3] of {1, 22}.
In general the approach gives the following lemma.

Lemma 5.11. Let L have an X-growable realization with x ∈ X. Let L1, . . . , Lx be
multisets of size k − 1 that have perfect linear realizations. Then

L ∪ xL1 ∪ · · · ∪ xLx

has an X-growable realization.

If we use the perfect linear realization [0, 1] of {1} in Lemma 5.11, then we end up
back at Theorem 2.4.

Example 5.12. Let x ≥ 3. In this section we have constructed {1, x}-growable realiza-
tions of the multisets {1x−1, xx+1} and {1x−2, xb} for x + 2 ≤ b ≤ 2x. Let c, d, e, f, g ≥ 0
with c + d + e + f + g ≡ 0 (mod x). Take c copies of the perfect linear realization
[0, 1, 2, 3, 4, 5] of {15}, d copies of the perfect realization [0, 2, 1, 3, 4, 5] of {13, 22}, e copies
of the perfect linear realization [0, 3, 1, 2, 4, 5] of {12, 22, 3}, f copies of the perfect lin-
ear realization [0, 3, 1, 4, 2, 5] of {22, 33}, and g copies of the perfect linear realization
[0, 2, 4, 1, 3, 5] of {24, 3}. Lemma 5.11 proves BHR(L) for

L = {1a, xb+5c+3d+2e, (2x)2d+2e+2f+4g, (3x)e+3f+g}

for a ≥ x− 2 and b ≥ x + 1.
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