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(1999) 451–460) considered a variation of the classical Turán-type extremal problems as follows:

for any simple graph H, determine the smallest even integer σ(H,n) such that every n-term

graphic sequence π = (d1, d2, . . . , dn) with term sum σ(π) = d1 + d2 + · · ·+ dn ≥ σ(H,n) has a

realization G containing H as a subgraph. Let Ft,r,k denote the generalized friendship graph

on kt− kr + r vertices, that is, the graph of k copies of Kt meeting in a common r set, where

Kt is the complete graph on t vertices and 0 ≤ r ≤ t. In this paper, we determine σ(Ft,r,k, n)

for k ≥ 2, t ≥ 3, 1 ≤ r ≤ t− 2 and n sufficiently large.

Keywords: degree sequence, potentially Ft,r,k-graphic sequence, generalized friendship graph.

2000 MR Subject Classification: 05C35, 05C07.

1. Introduction

The set of all sequences π = (d1, d2, . . . , dn) of non-negative, non-increasing integers with d1 ≤

n− 1 is denoted by NSn. A sequence π ∈ NSn is said to be graphic if it is the degree sequence

of a simple graph G on n vertices, and such a graph G is called a realization of π. The set of
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all graphic sequences in NSn is denoted by GSn. For a sequence π = (d1, d2, . . . , dn) ∈ NSn,

denote σ(π) = d1 + d2 + · · · + dn. For a given graph H, a graphic sequence π is said to be

potentially (respectively, forcibly) H-graphic if there exists a realization of π containing H as a

subgraph (respectively, each realization of π contains H as a subgraph). Given any two graphs

G and H, G ∪ H is the disjoint union of G and H and G + H, their join, is the graph with

V (G + H) = V (G) ∪ V (H) and E(G + H) = E(G) ∪ E(H) ∪ {uv|u ∈ V (G), v ∈ V (H)}.

The classical problem in extremal graph theory is as follows: given a subgraph H determine

the smallest integer m such that every graph G on n vertices with edge number e(G) ≥ m

contains H as a subgraph. This m is denoted by ex(H,n), and is called the Turán number of

H. In terms of graphic sequences, the number 2ex(H,n) is the smallest even integer such that

each sequence π ∈ GSn with σ(π) ≥ 2ex(H,n) is forcibly H-graphic. Gould, Jacobson and

Lehel [7] considered the following variation of the classical Turán number ex(H,n): determine

the smallest even integer σ(H,n) such that each sequence π ∈ GSn with σ(π) ≥ σ(H,n) is

potentially H-graphic. The instance of this problem when H = Kr, the complete graph on r

vertices, was considered by Erdős, Jacobson and Lehel [3] where they showed that σ(K3, n) = 2n

for n ≥ 6 and conjectured that σ(Kr, n) = (r− 2)(2n− r + 1) + 2 for n sufficiently large. Gould

et al. [7] and Li and Song [11] independently proved it for r = 4. In [12,13], Li, Song and

Luo showed that the conjecture holds for r = 5 and n ≥ 10 and for r ≥ 6 and n ≥
(r−1

2

)
+ 3.

Recently, Li and Yin [14] further determined σ(Kr, n) for r ≥ 7 and n ≥ 2r + 1. The problem

of determining σ(Kr, n) is completely solved.

For 0 ≤ r ≤ t, denote the generalized friendship graph on kt−kr+r vertices by Ft,r,k, where

Ft,r,k is the graph of k copies of Kt meeting in a common r set. Clearly, Ft,r,k = Kr + kKt−r,

where kKt−r is the disjoint union of k copies of Kt−r. Since Ft,r,1 = Ft,t,k = Kt, we have that

σ(Ft,r,1, n) = σ(Ft,t,k, n) = σ(Kt, n). The graph F2,0,k = kK2 was considered by Gould et al.

in [7], where they determined that σ(F2,0,k, n) = (k − 1)(2n − k) + 2. The graph F3,1,k, the

friendship graph, was considered by Ferrara, Gould and Schmitt in [5], where they determined

that σ(F3,1,k, n) = k(2n− k− 1) + 2 for n ≥ 9
2k2 + 7

2k− 1
2 . Lai [10] determined σ(F3,1,2, n). The

graph Ft,t−1,k, the r1 × · · · × rt complete t-partite graph with r1 = · · · = rt−1 = 1 and rt = k,
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was considered by Yin and Chen in [16], where they determined that

σ(Ft,t−1,k, n) =

 (k + 2t− 5)n− (t− 2)(k + t− 2) + 2 if k or n− t + 1 is odd,

(k + 2t− 5)n− (t− 2)(k + t− 2) + 1 if k and n− t + 1 are even

for n ≥ 3t+2k2 +3k−6. In fact, [16] also contains a proof of the conjecture of Erdős et al. as a

consequence of this main result (the case of k = 1). The graph Ft,0,k = kKt and the graph Ft,t−2,k

were considered by Ferrara in [4], where he determined that σ(Ft,0,k, n) = (kt− k− 1)(2n− kt+

k) + 2 for a sufficiently large choice of n and σ(Ft,t−2,k, n) = (t + k − 3)(2n− t− k + 2) + 2 for

a sufficiently large choice of n. The purpose of this paper is to determine σ(Ft,r,k, n) for k ≥ 2,

t ≥ 3, 1 ≤ r ≤ t − 2 and n sufficiently large. That is, we establish all remaining cases. The

following is our main result.

Theorem 1.1 Let k ≥ 2, t ≥ 3 and 1 ≤ r ≤ t − 2. Then there exists a positive integer

g(t, r, k) such that for all n ≥ g(t, r, k),

σ(Ft,r,k, n) = (n(t, r, k)− k − 1)(2n− n(t, r, k) + k) + 2, (1)

where n(t, r, k) = kt− kr + r is the order of Ft,r,k.

One can see that σ(Ft,r,k, n) ≥ (n(t, r, k)− k − 1)(2n− n(t, r, k) + k) + 2 by considering the

graphic sequence

π = ((n− 1)n(t,r,k)−k−1, (n(t, r, k)− k − 1)n−n(t,r,k)+k+1),

which has degree sum

σ(π) = (n(t, r, k)− k − 1)(n− 1) + (n− n(t, r, k) + k + 1)(n(t, r, k)− k − 1)

= (n(t, r, k)− k − 1)(2n− n(t, r, k) + k),

where the symbol xy in a sequence stands for y consecutive terms, each equal to x. This sequence

is uniquely realized by Kn(t,r,k)−k−1+Kn−n(t,r,k)+k+1. To see that Kn(t,r,k)−k−1+Kn−n(t,r,k)+k+1

contains no copy of Ft,r,k first notice that any k + 1 vertices of Ft,r,k must contain at least one

edge. Now if Kn(t,r,k)−k−1 + Kn−n(t,r,k)+k+1 were to contain a copy of Ft,r,k it must contain at

least k + 1 of its vertices from the subgraph Kn−n(t,r,k)+k+1 of Kn(t,r,k)−k−1 + Kn−n(t,r,k)+k+1,

however this subgraph does not contain an edge. This lower bound first appeared in [15] and
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can also be generated using the techniques in [6]. For r = 1, Chen et al. [1] determined the

Turán number of Ft,1,k as follows:

ex(Ft,1,k, n) = ex(Kt, n) +

 k2 − k + 1 if k is odd,

k2 − 3
2k + 1 if k even.

The Turán number of Ft,r,k in the more general case is unknown.

2. Useful Known Results

For π = (d1, d2, . . . , dn) ∈ NSn, let d′
1 ≥ d′

2 ≥ · · · ≥ d′
n−1 be the rearrangement in non-increasing

order of d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn. Then π′ = (d′
1, d

′
2, . . . , d

′
n−1) is called the

residual sequence of π. For example, let π = (4, 3, 3, 2, 2, 2). By deleting d1 = 4, and then

reducing the first 4 remaining terms of π by one, we get the integer sequence 2, 2, 1, 1, 2. Reorder

the integer sequence 2, 2, 1, 1, 2 in non-increasing order, we get that the residual sequence of π

is π′ = (2, 2, 2, 1, 1). It is easy to see that if π′ is graphic then so is π, since a realization G of

π can be obtained from a realization G′ of π′ by adding a new vertex of degree d1 to G′ and

joining it to the vertices whose degrees are reduced by one in going from π to π′. Each of the

following results will be useful as we proceed with the proof of Theorem 1.1.

Theorem 2.1 [17,18] Let π = (d1, d2, . . . , dn) ∈ NSn, x = d1 and σ(π) be even. If there

exists an integer n1, n1 ≤ n such that dn1 ≥ y ≥ 1 and n1 ≥ 1
y

⌊
(x+y+1)2

4

⌋
, then π is graphic.

Theorem 2.2 [7] If π = (d1, d2, . . . , dn) ∈ GSn has a realization G containing H as a

subgraph, then there exists a realization G′ of π containing H as a subgraph so that the vertices

of H have the largest degrees of π.

Theorem 2.3 [19] Let n ≥ 2m + 2 and π = (d1, d2, . . . , dn) ∈ GSn with dm+1 ≥ m. If

d2m+2 ≥ m− 1, then π is potentially Km+1-graphic.

Theorem 2.4 [4] Let H = Km1 ∪ · · · ∪ Kmk
, where each mi ≥ 2. Then for a sufficiently

large choice of n,

σ(H,n) = (m− k − 1)(2n−m + k) + 2,

where m =
∑k

i=1 mi.
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3. Proof of Main Result

From here forward, let k ≥ 2, t ≥ 3, 1 ≤ r ≤ t − 2 and n be a sufficiently large integer. We

begin the proof of Theorem 1.1 by showing that any graphic degree sequence with sum at least

that given in Equation (1) has certain properties. In each part of the following lemma the proof

follows by a contradiction to the degree sum.

Lemma 3.1 Let π = (d1, d2, . . . , dn) ∈ GSn with σ(π) ≥ (n(t, r, k)−k− 1)(2n−n(t, r, k)+

k) + 2. Then

(1) dr ≥ n(t, r, k)− 1,

(2) dn(t,r,k) ≥ n(t, r, k)− k − 1,

(3) dn(t,r,k)−k+1 ≥ n(t, r, k)− k,

(4) If there is some `, 0 ≤ ` ≤ kt − kr − k − 2 such that dr+` ≥ n(t, r, k) − 1 and

dr+`+1 ≤ n(t, r, k)− 2, then dn(t,r,k) ≥ n(t, r, k)− k,

(5) p(π) ≥
√

σ(π), where p(π) = max{i|di ≥ 1}.

Proof. (1) If dr ≤ n(t, r, k)− 2, then for n sufficiently large,

σ(π) ≤ (r − 1)(n− 1) + (n− r + 1)(n(t, r, k)− 2)

< (n(t, r, k)− k − 1)(2n− n(t, r, k) + k) + 2.

(2) If dn(t,r,k) ≤ n(t, r, k)− k− 2, then by applying the well-known Erdős-Gallai [2] charac-

terization of degree sequences,

σ(π) =
∑n(t,r,k)−1

i=1 di +
∑n

i=n(t,r,k) di

≤ (n(t, r, k)− 1)(n(t, r, k)− 2) +
∑n

i=n(t,r,k) min{n(t, r, k)− 1, di})

+
∑n

i=n(t,r,k) di

= (n(t, r, k)− 1)(n(t, r, k)− 2) + 2
∑n

i=n(t,r,k) di

≤ (n(t, r, k)− 1)(n(t, r, k)− 2)

+2(n− (n(t, r, k)− 1))(n(t, r, k)− k − 2)

< (n(t, r, k)− k − 1)(2n− n(t, r, k) + k) + 2 for n sufficiently large.

(3) If dn(t,r,k)−k+1 ≤ n(t, r, k) − k − 1, then as in the proof of part (2) we apply the result

of Erdős-Gallai to reach a contradiction.
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(4) If dn(t,r,k) ≤ n(t, r, k)− k − 1, then

σ(π) ≤ (n− 1)(r + `) + (n(t, r, k)− 2)(kt− kr − `− 1)

+(n(t, r, k)− k − 1)(n− (n(t, r, k)− 1))

≤ (2n(t, r, k)− 2k − 3)n + (n(t, r, k)− 2)(kt− kr − 1)

−(n(t, r, k)− k − 1)(n(t, r, k)− 1)

< (n(t, r, k)− k − 1)(2n− n(t, r, k) + k) + 2 for n sufficiently large.

(5) Since (p(π))2 ≥ p(π)(p(π)− 1) ≥ p(π)d1 ≥
∑n

i=1 di = σ(π), we have p(π) ≥
√

σ(π). 2

Let π = (d1, d2, . . . , dn) ∈ GSn with

n− 2 ≥ d1 ≥ · · · ≥ dn(t,r,k) = · · · = dd1+2 ≥ dd1+3 ≥ · · · ≥ dn

and

σ(π) ≥ (n(t, r, k)− k − 1)(2n− n(t, r, k) + k) + 2.

By Lemma 3.1, dr ≥ n(t, r, k)− 1 and dn(t,r,k) ≥ n(t, r, k)− k − 1. We construct the sequence

π1 = (d(1)
2 , . . . , d

(1)
n(t,r,k), d

(1)
n(t,r,k)+1, . . . , d

(1)
n )

from π by deleting d1, reducing the first d1 remaining terms of π by one, and then reordering

the last n− n(t, r, k) terms to be non-increasing. For 2 ≤ i ≤ r, we construct

πi = (d(i)
i+1, . . . , d

(i)
n(t,r,k), d

(i)
n(t,r,k)+1, . . . , d

(i)
n )

from

πi−1 = (d(i−1)
i , . . . , d

(i−1)
n(t,r,k), d

(i−1)
n(t,r,k)+1, . . . , d

(i−1)
n )

by deleting d
(i−1)
i , reducing the first d

(i−1)
i nonzero remaining terms of πi−1 by one, and then

reordering the last n− n(t, r, k) terms to be non-increasing. The manner in which we construct

πi, r + 1 ≤ i ≤ n(t, r, k) depends on two cases.

Case 1. dn(t,r,k)−k−1 ≥ n(t, r, k)− 1.

In this case, we proceed as above and construct πi, r + 1 ≤ i ≤ n(t, r, k) from πi−1 by

removing d
(i−1)
i , reducing the first d

(i−1)
i nonzero remaining terms of πi−1 by one, and then

reordering the last n− n(t, r, k) terms to be non-increasing.
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Case 2. There is some `, 0 ≤ ` ≤ kt − kr − k − 2 such that dr+` ≥ n(t, r, k) − 1 and

dr+`+1 ≤ n(t, r, k)− 2.

By Lemma 3.1, dn(t,r,k) ≥ n(t, r, k)− k. In this case, we first construct πi, r + 1 ≤ i ≤ r + `

as above, by removing d
(i−1)
i from πi−1, reducing the first d

(i−1)
i nonzero remaining terms of

πi−1 by one, and then reordering the last n − n(t, r, k) terms to be non-increasing. From the

definition of πi for 1 ≤ i ≤ r + `, it is easy to see that

πr+` = (d(r+`)
r+`+1, . . . , d

(r+`)
n(t,r,k), d

(r+`)
n(t,r,k)+1, . . . , d

(r+`)
n )

= (dr+`+1 − (r + `), . . . , dn(t,r,k) − (r + `), d(r+`)
n(t,r,k)+1, . . . , d

(r+`)
n ),

and hence

kt− kr − `− 2 ≥ d
(r+`)
r+`+1 ≥ · · · ≥ d

(r+`)
n(t,r,k) ≥ kt− kr − `− k

= k(t− r − `
k − 1)

= (t− r − `
k − 1) + (k − 1)(t− r − `

k − 1)

≥ (t− r − `
k − 1) + (k − 1)(t− r − kt−kr−k−2

k − 1)

≥ t− r − `
k .

Moreover,

d
(r+`)
n(t,r,k)+1 ≥ dn(t,r,k)+1 − (r + `) ≥ kt− kr − `− k ≥ 2

and the terms d
(r+`)
n(t,r,k)+1, . . . , d

(r+`)
d1+2 differ by at most one. This implies that p(πr+`) = p(π). Let

` = `1 + `2 + · · · + `k, where `i = b `
kc or b `

kc + 1 for each i = 1, . . . , k. In other words, ` is

partitioned into k parts of sizes `1, . . . , `k as evenly as possible. Denote xi = t− r − `i for each

i = 1, . . . , k. Then for each i = 1, . . . , k, we have

kt− kr − `− 2 ≥ d
(r+`)
r+`+1 ≥ · · · ≥ d

(r+`)
n(t,r,k) ≥ xi ≥ 1.

Let
d

(r+`)
r+`+j = fr+`+j + (x1 − 1) for 1 ≤ j ≤ x1,

d
(r+`)
r+`+x1+j = fr+`+x1+j + (x2 − 1) for 1 ≤ j ≤ x2,
...

...
...

...
...

...
...

d
(r+`)
r+`+x1+···+xk−1+j = fr+`+x1+···+xk−1+j + (xk − 1) for 1 ≤ j ≤ xk.

Clearly, 1 ≤ fr+`+m ≤ (kt− kr − `− 2)− (t− r − b `
kc) + 2 for each m = 1, . . . , kt− kr − `. We

now construct πi, r + ` + 1 ≤ i ≤ n(t, r, k) from πi−1 by removing d
(i−1)
i , reducing the first fi
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nonzero terms, starting with d
(i−1)
n(t,r,k)+1 by one, and then ordering the last n− n(t, r, k) terms to

be non-increasing. Note that if n is sufficiently large, then p(πr+`) = p(π) ≥
√

σ(π) (by Lemma

3.1) is also sufficiently large. Moreover, fr+`+m ≤ kt− kr for each m = 1, . . . , kt− kr− `. Thus,

we can be assured that for n large enough, there is a sufficient number of positive terms in each

πi−1 (r + ` + 1 ≤ i ≤ n(t, r, k)) to construct πi without forcing any terms in πi to be negative.

We now present the following crucial lemma.

Lemma 3.2 If πn(t,r,k) is graphic, then π is potentially Ft,r,k-graphic (i.e. potentially

Kr + kKt−r)-graphic.

Proof. Let Gn(t,r,k) be a realization of πn(t,r,k) with V (Gn(t,r,k)) = {vn(t,r,k)+1, . . . , vn} and

d(vn(t,r,k)+j) = d
(n(t,r,k))
n(t,r,k)+j for 1 ≤ j ≤ n− n(t, r, k), where d(vn(t,r,k)+j) is the degree of vn(t,r,k)+j

in Gn(t,r,k). Denote π0 = π. The proof of Lemma 3.2 now breaks into the following two cases.

Case 1. dn(t,r,k)−k−1 ≥ n(t, r, k)− 1.

For i = n(t, r, k)−1, . . . , 1, 0 in turn, we can construct a realization Gi of πi from the realiza-

tion Gi+1 of πi+1 by adding a new vertex vi+1 to Gi+1 and joining it to the vertices whose degrees

were reduced by one in going from πi to πi+1. Since dn(t,r,k)−k+1 ≥ n(t, r, k)−k (by Lemma 3.1),

we have d
(n(t,r,k)−k−1)
n(t,r,k)−k ≥ d

(n(t,r,k)−k−1)
n(t,r,k)−k+1 ≥ 1, and hence vn(t,r,k)−kvn(t,r,k)−k+1 ∈ E(Gn(t,r,k)−k−1).

In creating π1, . . . , πn(t,r,k)−k−1, the fact that dn(t,r,k)−k−1 ≥ n(t, r, k) − 1 implies that the real-

ization G0 of π created in this manner will contain a copy of Kr + (Kkt−kr−k−1 + (K2 ∪ (k −

1)K1)) such that V (Kr) = {v1, . . . , vr}, V (Kkt−kr−k−1) = {vr+1, . . . , vn(t,r,k)−k−1}, V (K2) =

{vn(t,r,k)−k, vn(t,r,k)−k+1} and V ((k − 1)K1) = {vn(t,r,k)−k+2, . . . , vn(t,r,k)}. It is easy to see that

Kkt−kr−k−1 + (K2 ∪ (k − 1)K1) contains kKt−r as a subgraph. Thus, G0 contains Kr + kKt−r

as a subgraph.

Case 2. There is some `, 0 ≤ ` ≤ kt − kr − k − 2 such that dr+` ≥ n(t, r, k) − 1 and

dr+`+1 ≤ n(t, r, k)− 2.

For i = n(t, r, k)− 1, . . . , r + ` + 1, r + ` in turn, we can construct Gi from Gi+1 by adding

a new vertex vi+1 to Gi+1 and joining it to vertices of those degrees that were reduced by one

in the formation of πi+1. It is easy to see that Gr+` is a realization of

(fr+`+1, . . . , fn(t,r,k), d
(r+`)
n(t,r,k)+1, . . . , d

(r+`)
n )
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such that d(vr+`+j) = fr+`+j for 1 ≤ j ≤ kt − kr − ` and {vr+`+1, . . . , vn(t,r,k)} forms an

independent set in Gr+`. We now construct a realization G′
r+` of πr+` from Gr+` by adding those

edges such that {vr+`+x0+···+xj−1+1, . . . , vr+`+x0+···+xj−1+xj
} forms a clique for each j = 1, . . . , k,

where x0 = 0. For convenience, the graph G′
r+` is still denoted by Gr+`. For i = r+`−1, . . . , 1, 0

in turn, we then can construct a realization Gi of πi from the realization Gi+1 of πi+1 by

adding a new vertex vi+1 to Gi+1 and joining it to the vertices whose degrees were reduced

by one in going from πi to πi+1. The fact that dr+` ≥ n(t, r, k) − 1 implies that G0 contains

Kr + (K` + (Kx1 ∪ · · · ∪ Kxk
)) as a subgraph. It is easy to see that K` + (Kx1 ∪ · · · ∪ Kxk

)

contains kKt−r as a subgraph. Therefore, G0 contains Kr + kKt−r as a subgraph. 2

Proof of Theorem 1.1. In order to prove

σ(Ft,r,k, n) ≤ (n(t, r, k)− k − 1)(2n− n(t, r, k) + k) + 2,

it is enough to prove that if π = (d1, d2, . . . , dn) ∈ GSn with

σ(π) ≥ (n(t, r, k)− k − 1)(2n− n(t, r, k) + k) + 2,

then π is potentially Ft,r,k-graphic (i.e. potentially Kr + kKt−r-graphic). The proof follows by

induction on r (and any t ≥ r+2). If r = 0, then σ(π) ≥ (kt−k−1)(2n−kt+k)+2. By Theorem

2.4 (the case of m1 = · · · = mk = t), π is potentially Ft,0,k -graphic (i.e. potentially kKt-graphic)

for any t ≥ 2. Now we assume that the result holds for r − 1 (and any t ≥ (r − 1) + 2), where

r ≥ 1. We will prove that the result holds for r (and any t ≥ r + 2). Let π′ = (d′
1, d

′
2, . . . , d

′
n−1)

be the residual sequence of π. By the well-known result of Havel [9] and Hakimi [8], π′ is graphic

and
σ(π′) = σ(π)− 2d1

≥ (n(t, r, k)− k − 1)(2n− n(t, r, k) + k) + 2− 2(n− 1)

= (n(t− 1, r − 1, k)− k − 1)(2(n− 1)− n(t− 1, r − 1, k) + k) + 2.

By t − 1 ≥ (r − 1) + 2 and the induction hypothesis, π′ is potentially Ft−1,r−1,k -graphic (i.e.

potentially Kr−1 + kK(t−1)−(r−1)-graphic). In other words, there is some realization of π′ that

contains a copy of Kr−1 + kK(t−1)−(r−1). Furthermore, by Theorem 2.2, this implies that there

exists a realization of π′ with Kr−1 + kK(t−1)−(r−1) = Kr−1 + kKt−r on those vertices having

degree d′
1, d

′
2, . . . , d

′
n(t,r,k)−1. Now suppose that either d1 = n − 1 or there exists an integer h,
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n(t, r, k) ≤ h ≤ d1 + 1 such that dh > dh+1. Then d′
i = di+1 − 1 for each i = 1, . . . , n(t, r, k)− 1.

This implies that π would be potentially Kr + kKt−r-graphic. Thus, we may assume that no

such h exists and hence that

n− 2 ≥ d1 ≥ · · · ≥ dn(t,r,k) = · · · = dd1+2 ≥ dd1+3 ≥ · · · ≥ dn.

If d2n(t,r,k) ≥ n(t, r, k) − 1, then π is potentially Kn(t,r,k)-graphic by Theorem 2.3, which is

sufficient to show that π is potentially Kr + kKt−r-graphic. We now may further assume that

d2n(t,r,k) ≤ n(t, r, k)− 2. If d1 ≤ 2n(t, r, k)− 3, then

σ(π) ≤ (2n(t, r, k)− 3)(2n(t, r, k)− 1) + (n(t, r, k)− 2)(n− (2n(t, r, k)− 1)).

This is less than (n(t, r, k) − k − 1)(2n − n(t, r, k) + k) + 2 for n sufficiently large. Hence

d1 ≥ 2n(t, r, k)− 2, i.e., d1 + 2 ≥ n(t, r, k). This implies that

n(t, r, k)− 2 ≥ dn(t,r,k) = dn(t,r,k)+1 = · · · = d2n(t,r,k) = · · · = dd1+2.

For each j = 1, . . . , n(t, r, k), the terms d
(j)
n(t,r,k)+1, . . . , d

(j)
2n(t,r,k), . . . , d

(j)
d1+2 differ by at most one.

Hence πn(t,r,k) satisfies, for some x ≥ 1,

n(t, r, k)− 2 ≥ x = d
(n(t,r,k))
n(t,r,k)+1 ≥ · · · ≥ d

(n(t,r,k))
2n(t,r,k) ≥ · · · ≥ d

(n(t,r,k))
d1+2 ≥ x− 1.

If x = 1, πn(t,r,k) must be graphic as σ(πn(t,r,k)) is even. If x ≥ 2, then

1
x− 1

⌊
(x + (x− 1) + 1)2

4

⌋
≤ x + 2 ≤ n(t, r, k).

By Theorem 2.1, πn(t,r,k) is also graphic. Thus, π is potentially Kr + kKt−r-graphic by Lemma

3.2. 2
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