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Abstract

For any simple graph H, let σ(H, n) be the minimum m so that
for any realizable degree sequence π = (d1, d2, . . . , dn) with sum of
degrees at least m, there exists an n-vertex graph G witnessing π
that contains H as a weak subgraph. Let Fk denote the friendship
graph on 2k +1 vertices, that is, the graph of k triangles intersecting
in a single vertex. In this paper, for n sufficiently large, σ(Fk, n) is
determine precisely.
Keywords: degree sequence, potentially graphic sequence, friend-
ship graph.

1 Introduction

Let G be a simple undirected graph, without loops or multiple edges. Let
V (G) and E(G) denote the vertex set and edge set of G respectively. For a
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vertex v ∈ V (G), let N(v) denote the set of neighbors (or neighborhood) of
v, and d(v) the degree of v, that is the order of N(v). We let G denote the
complement of G. Denote the complete graph on t vertices by Kt, and the
friendship graph by Fk, where Fk is the graph of k triangles intersecting in
a single vertex.

A sequence of nonincreasing, nonnegative integers

π = (d1, d2, . . . , dn)

is called graphic if there is a (simple) graph G of order n having degree se-
quence π. In this case, G is said to realize π, and we will write π = π(G). If a
sequence π consists of the terms d1, . . . , dt having multiplicities m1, . . . , mt,
we may write π = (dm1

1 , . . . , dmt
t ). There are numerous elementary methods

to check if a given sequence is graphic (for example, see [3, 7, 8]).

Define σ(H,n) to be the smallest integer m so that for every n-term
graphic degree sequence with degree sum at least m there exists a realization
containing H as a weak subgraph. Such sequences are said to be potentially
H-graphic. Note that in the definition of this function one only needs to
replace the quantifier ‘there exists a’ with ‘for every’ to obtain a value that
is two more than twice the Turán number, ex(n, H). In this paper we
determine the value of σ(Fk, n).

For a survey of similar results we refer the reader to [18], and for any
undefined terms to [1]

2 Useful Known Results

In [4] Erdős, Jacobson and Lehel conjectured that

σ(Kt, n) = (t− 2)(2n− t + 1) + 2.

The conjecture rises from consideration of the graph K(t−2) + K(n−t+2),
where + denotes the join. It is easy to observe that this graph contains no
Kt, is the unique realization of the sequence

((n− 1)t−2, (t− 2)n−t+2),

and has degree sum (t−2)(2n−t+1). Erdős et al. proved the conjecture for
t = 3 and n ≥ 6. The cases t = 4 and 5 were proved separately (see [6] and
[10], and [11]). For t ≥ 6 and n ≥

(
t
2

)
+ 3, Li, Song & Luo [12] proved the

conjecture true via linear algebraic techniques. Later, the present authors
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proved all cases of the conjecture via induction on t using graph theoretic
techniques [5].

The following summarizes these results.

Theorem 1 For t ≥ 3 and n > n0(t),

σ(Kt, n) = (t− 2)(2n− t + 1) + 2.

The following results will be used in the proof of our main result.

Theorem 2 (Erdős-Gallai [3]) A nonincreasing sequence of nonnegative
integers

π = (d1, d2, . . . , dn)

(n ≥ 2) is graphic if, and only if, the sum of the degrees is even and for
each integer k, 1 ≤ k ≤ n− 1,

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}.

The following is an extension of a theorem of Rao [17].

Theorem 3 ([6]) If π is a graphic sequence with a realization G containing
H as a subgraph, then there is a realization G′ of π containing H with the
vertices of H having the |V (H)| largest degrees of π.

Theorem 4 ([13], [14]) Let π = (d1, d2, . . . dn) be a non-increasing se-
quence of non-negative integers, where d1 = m and the degree sum is
even. If there exists an integer n1 ≤ n such that dn1 ≥ h ≥ 1 and
n1 ≥ 1

h

[
(m+h+1)2

4

]
, then π is graphic.

Theorem 5 ([15]) Let n ≥ 2r + 2 and π = (d1, d2, . . . dn) be graphic with
dr+1 ≥ r. If d2r+2 ≥ r − 1, then π is potentially Kr+1-graphic.

The value of σ(kK2, n) was determined in [6].

Theorem 6 ([6]) σ(kK2, n) = (k − 1)(2n− k) + 2.

The lower bound for σ(kK2, n) is easy to obtain by considering the
graph G′ = Kk−1 + Kn−k+1. This graph is the unique realization of the
degree sequence π = ((n − 1)k−1, (k − 1)n−k+1), contains no matching of
size k, and has degree sum (k − 1)(2n− k).
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3 The Main Theorem

Erdős et al. [2], showed that any graph on n vertices having at least⌊
n2

4

⌋
+

{
k2 − k + 1 if k is odd,
k2 − 3

2k + 1 if k is even

edges contains a copy of Fk. The following is an analogue to this result.
Our proof utilizes a technique developed in [16].

Theorem 7 For k ≥ 1 and n ≥ 9
2k2 + 7

2k − 1
2 ,

σ(Fk, n) = k(2n− k − 1) + 2. (1)

As F1 is isomorphic to K3, (1) is established for k = 1 by Theorem 1.
Equation (1) was established for k = 2 by Lai in [9]. Our proof of Theorem
7 holds for all k ≥ 1.

Proof: To see that σ(Fk, n) ≥ k(2n − k − 1) + 2, consider the graph
G = K1+G′, where G′ is any graph on n−1 vertices where no realization of
the degree sequence given by G′ contains k disjoint edges. We may choose
G′ to be the graph Kk−1 + Kn−k as in Theorem 6. Thus G is the graph
Kk + Kn−k. The graph G is the unique realization of the degree sequence
π = ((n− 1)k, (k)n−k) and has degree sum equal to k(n− 1) + (n− k)k =
k(2n − k − 1). To see that G contains no copy of Fk first notice that any
k + 1 vertices of Fk must contain at least one edge. Now if G were to
contain a copy of Fk it must contain at least k + 1 of its vertices from
the subgraph Kn−k of G, however this subgraph does not contain an edge.
This establishes the lower bound.

We now establish the upper bound through a sequence of lemmas.

The following establishes that there are sufficiently many vertices of
sufficiently large degree in any graph with the degree sum at least that
given by (1).

Lemma 1 Let S = (d1, . . . , dn) be a non-increasing graphic degree se-
quence with with degree sum at least k(2n− k− 1) + 2 and n > k2 + k− 2,
then d1 ≥ 2k and d2k+1 ≥ 2.

Proof: To see that d1 ≥ 2k, suppose otherwise, so S contains no term
larger than 2k − 1. Then the degree sum of S is at most n(2k − 1), a
contradiction.
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Suppose now that d2k+1 ≤ 1. Then, by Theorem 2,

n∑
i=1

di =
2k∑
i=1

di +
n∑

i=2k+1

di

≤ (2k)(2k − 1) +
n∑

i=2k+1

min{2k, di}+
n∑

i=2k+1

di

= 4k2 − 2k + 2
n∑

i=2k+1

1

≤ 4k2 − 2k + 2(n− 2k)
= 2n + 4k2 − 6k.

This is a contradiction. 2

Let π = (d1, . . . , dn) be a non-increasing, n-term graphic sequence with
degree sum at least k(2n − k − 1) + 2. We will now recursively define a
sequence π1, . . . , π2k+1 of degree sequences. We begin by constructing the
sequence π′1 , on n− 1 terms, by deleting d1 from π and subtracting 1 from
the first d1 remaining terms. That is,

π′1 = (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn).

We then obtain the sequence π1 from π′1 by subtracting one from each of
the first 2k terms in π′1 and arranging the first 2k terms in non-increasing
order and then arranging the last n− 2k− 1 terms in non-increasing order.
(As Lemma 1 guarantees that d2k+1 ≥ 2 we are assured that this step is
feasible.) Let

π1 = (d(1)
2 , d

(1)
3 , . . . , d(1)

n ).

For 2 ≤ i ≤ 2k + 1, we obtain the sequence

πi = (d(i)
i+1, . . . , d(i)

n )

of length n− i from

πi−1 = (d(i−1)
i , . . . , d(i−1)

n )

by deleting d
(i−1)
i from πi−1, subtracting one from the largest d

(i−1)
i non-

negative remaining terms and arranging the first 2k + 1 − i terms in non-
increasing order and then arranging the last n − 2k − 1 terms in non-
increasing order.
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Lemma 2 If π2k+1 is graphic then π is potentially Fk-graphic.

Proof: Clearly, if π2k+1 is graphic, then π1 is graphic. As π is graphic,
the Havel-Hakimi algorithm [7, 8] implies that π′1 is graphic. If we can
show that there is a realization of π′1 that has a matching on those vertices
of degree d2 − 1, . . . , d2k+1 − 1, then clearly π is potentially Fk-graphic.
Let G′

1 be a realization of π′1 and let G1 be a realization of π1 such that
V1 = V (G1) = V (G′

1) = {v2, . . . , vn} with dG1(vi) = dG′
1
(vi) − δi where

δi=1 for 2 ≤ i ≤ 2k + 1 and δi = 0 otherwise.

Let H be a copy of Kn−1 on V1, and consider the function W : E(H) →
{−1, 0, 1} defined by

W (vivj) =

 −1 vivj ∈ E(G1) \ E(G′
1)

1 vivj ∈ E(G′
1) \ E(G1)

0 otherwise.

The function W induces a weighting w : V1 → Z, where the weight of a
vertex v is the sum of the weights of the edges incident to v in H. If we let
X = {v2, . . . , v2k+1}, then one can see that w(v) = 1 if v is a member of
X and w(v) = 0 otherwise.

It will be shown that there exists a collection of trails T1, . . . , Tk in H
that satisfy the following four properties.

(1) T1, . . . , Tk are edge disjoint.

(2) The end-vertices of T1, . . . , Tk are distinct vertices in X, and hence
cover X.

(3) The first edge, and last edge, in each trail has weight 1 under W .

(4) If Tj = e1e2 . . . ep then W (ei+1) = −W (ei) for 1 ≤ i ≤ p− 1.

If v lies on Ti, let wi denote the vertex weighting induced by W |E(Ti).
Note that if v is an end-vertex of Ti then wi(v) = 1 and if v is an internal
vertex of Ti, then wi(v) = 0.

We begin by showing that T1 exists. Select v2 as an end-vertex of T1.
Note that as v2 is in X, w(v2) = 1 so there is some edge e in H incident
to v2 with W (e) = 1. If there is such an edge between v2 and some other
vertex x in X, let T1 consist of the edge v2x. Otherwise, there is an edge
v2y such that W (v2y) = 1 and y is not in X. Include the edge v2y in T1. As
w(y) = 0, there is some edge incident to y having weight −1, which is then
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included in T1. Continue this process, and construct an alternating +1/−1
trail in H. If at any point there exists an edge e with W (e) = 1 satisfying
(1) – (4) above then include e in T1. As this process clearly terminates, we
wish to show that it must terminate with such a choice. Assume not, so
that T1 is an alternating +1/−1 trail that violates (2) or (3) above. We
show that such a trail can be extended. Assume first that (2) is violated.
If the end-vertex of this trail is v2, then as w(v2) = 1, our choice for the
initial edge of T1 implies that we can clearly continue the trail regardless
of the weight of the final edge. If the end-vertex of the trail is some v in
V \ X then we note that w(v) = 0, and each time, if any, that v appears
previously in the trail, it is adjacent to one edge of weight +1 and one edge
of weight −1. Thus, if the last edge e on the trail has weight W (e) (which
is necessarily +1 or −1), there is some edge not already in the trail which
is adjacent to v and has weight −W (e) and the trail can be extended. If
we assume that (2) is satisfied, but (3) is violated then the last vertex on
the trail is some x in X \ {v2} but the last edge e added to the trail has
weight W (e) = −1. However, w(x) = 1, which implies that we can extend
the trail. Hence, T1 exists.

Assume that trails T1, . . . , Tj exist satisfying (1) – (4) and without loss
of generality, let the end vertices of Ti be v2i, v2i+1. Note that if v is in
{v2, . . . , v2j+1} then

j∑
i=1

wi(v) = 1

and otherwise,
j∑

i=1

wi(v) = 0.

To show trail Tj+1 exists, begin with v2j+2 as an end-vertex. As w(v2j+2) =
1 and

j∑
i=1

wi(v2j+2) = 0,

there is some edge e in H adjacent to v2j+2 with W (e) = 1 that does not
lie in any of T1, . . . , Tj . If there is such an edge between v2j+2 and some
other vertex x in X \ {v2, . . . , v2j+2}, let Tj+1 consist of the edge v2j+2x.
Otherwise, we will proceed in a manner similar to the construction of T1,
described above. That is, it can be shown that Tj+1 is an alternating +1/−1
trail, which is edge disjoint from T1 . . . , Tj . If at any point Tj+1 can be
extended by an edge e of weight W (e) = 1 to a vertex in X \{v2, . . . , v2j+2}
the edge e will be added to Tj+1. Otherwise, we will assume that Tj+1 is an
alternating trail that violates either (2) or (3). Then, as above, we can use
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the induced weights from the previous trails to extend Tj+1. As the process
of extending Tj+1 must terminate, we can see that Tj+1 exists satisfying
(1) – (4).

Thus there exists trails T1, . . . , Tk satisfying (1) – (4), and assume with-
out loss of generality that the end-vertices of Ti are v2i and v2i+1 for all
1 ≤ i ≤ k. Note that if an edge in H has weight 1 then it is in G′

1 and an
edge in H having weight −1 is not in G′

1. For each trail Ti, if v2iv2i+1 is
an edge in G′

1 do nothing. If v2iv2i+1 is not an edge in G′
1 add this edge

and all edges of weight −1 on Ti to G′
1 and remove all edges of weight 1

on Ti from G′
1. In the event that W (v2iv2i+1) = −1 and v2iv2i+1 lies in

some Tj , we examine ej = v2jv2j+1. If ej is in G′
1, then we will proceed as

above to add v2iv2i+1 to G′
1. If ej is not in G′

1, we will add ej to G′
1 and

“switch” the edges in Tj . This will also serve to add the edge v2iv2i+1 to
G′

1. Note that it is not possible for v2iv2i+1 to lie in some Tj with j 6= i if
W (v2iv2i+1) = +1. Thus we can create a realization of π′1 that contains the
matching v2v3, . . . , v2kv2k+1, implying that π is potentially Fk-graphic.2

Lemma 3 If n ≥ 4k + 2, and d4k+2 ≥ 2k − 1 then π is potentially Fk-
graphic.

Proof: If d2k+1 ≥ 2k then π is potentially K2k+1-graphic by Theorem
5, and thus obviously Fk-graphic.

Otherwise d2k+1 ≤ 2k − 1, which together with the hypothesis implies
that d2k+1 = d2k+2 = . . . = d4k+2 = 2k − 1. Thus, for i = 0, 1, . . . , 2k + 1
the values of d

(i)
2k+2, . . . , d

(i)
4k+2 differ by at most 1. Hence π2k+1 satisfies,

for some m ≥ 1,

2k − 1 ≥ m = d
(2k+1)
2k+2 ≥ . . . ≥ d

(2k+1)
4k+2 ≥ m− 1.

If m = 1, π2k+1 must be graphic as the degree sum of π2k+1 is even. If
m ≥ 2, then

1
m− 1

[
(m + (m− 1) + 1)2

4

]
≤ m + 2 ≤ 2k + 1.

By Theorem 4, π2k+1 is graphic, and hence, by Lemma 2, π is Fk-
graphic.2
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Lemma 4 Let π be an n-term graphic degree sequence with n ≥ 9
2k2+ 7

2k−
1
2 and degree sum at least k(2n − k − 1) + 2. If d4k+2 ≤ 2k − 2 then π is
potentially Fk-graphic.

Proof: First, we claim that d1 ≥ 4k. If not, then the degree sum of
π is at most (4k − 1)(4k + 1) + (n − 4k − 1)(2k − 2), which is less than
k(2n− k − 1) + 2 for the given values of n.

If d1 = n − 1 then the degree sum of π′1 is at least σ(kK2, n − 1).
Therefore, there exists a realization of π′1 that contains a copy of kK2 and
thus a realization of π that contains a copy of Fk.

Now suppose there exists an r such that 2k + 1 ≤ r ≤ d1 + 1 such that
dr+1 < dr. As the degree sum of (π′1) is at least σ(kK2, n−1) there exists a
graph realizing π′1 that contains a copy of kK2. Furthermore, by Theorem
3 there exists a realization of π′1 with kK2 on those vertices having degree
d2 − 1, . . . d2k+1 − 1. This implies that π is potentially Fk-graphic.

Otherwise, n − 2 ≥ d1 ≥ d2 ≥ . . . ≥ d2k+1 = d2k+2 = . . . d4k+2 = . . . =
dd1+2.

We may conclude that there exists an m such that

2k − 2 ≥ m = d
(2k+1)
2k+2 ≥ . . . ≥ d

(2k+1)
4k+2 ≥ m− 1.

We may then complete the proof as in the previous lemma.2

Together, Lemma 3 and Lemma 4 imply that σ(Fk, n) ≤ k(2n−k−1)+2,
completing the proof of Theorem 7. 2

Acknowledgements: The authors wish to thank the anonymous ref-
eree for his many useful comments, which improved the clarity of our work.
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