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Abstract. The conjecture, still widely open, posed by Marco Buratti, Peter Horak and

Alex Rosa states that a list L of v−1 positive integers not exceeding
⌊
v
2

⌋
is the list of edge-

lengths of a suitable Hamiltonian path of the complete graph with vertex-set {0, 1, . . . , v−1}
if and only if, for every divisor d of v, the number of multiples of d appearing in L is at

most v − d. In this paper we present new methods that are based on linear realizations
and can be applied to prove the validity of this conjecture for a vast choice of lists. As

example of their flexibility, we consider lists whose underlying set is one of the following:

{x, y, x + y}, {1, 2, 3, 4}, {1, 2, 4, . . . , 2x}, {1, 2, 4, . . . , 2x, 2x + 1}. We also consider lists
with many consecutive elements.

1. Introduction

Throughout this paper Kv denotes the complete graph whose vertex-set is {0, 1, . . . , v− 1}
for any positive integer v. Following [13], we define the length `(x, y) of an edge [x, y] of Kv

as

`(x, y) = min(|x− y|, v − |x− y|).
Given a subgraph Γ of Kv, the list of edge-lengths of Γ is the list `(Γ) of the lengths (taken
with their respective multiplicities) of all the edges of Γ. For our convenience, if a list L
consists of a1 1s, a2 2s, . . . , at ts, we will write L = {1a1 , 2a2 , . . . , tat} and |L| =

∑
ai; the set

{i | ai > 0} ⊆ L will be called the underlying set of L.
The following conjecture was proposed in a private communication by Marco Buratti to

Alex Rosa in 2007. Buratti has never worked on it and he finally mentioned in 2013 (see [5,
p. 14]).

Conjecture 1.1 (M. Buratti). For any prime p = 2n+1 and any list L of 2n positive integers
not exceeding n, there exists a Hamiltonian path H of Kp with `(H) = L.

The conjecture is almost trivially true in the case that L has just one edge-length. The case
of exactly two distinct edge-lengths has been solved independently in [10, 13] and Mariusz
Meszka checked by computer that the conjecture is true for all primes p ≤ 23. Francesco
Monopoli in [19] showed that the conjecture is true when all the elements of the list L appear
exactly twice.

In [13] Peter Horak and Alex Rosa proposed a generalization of Buratti’s conjecture, which
has been restated in an easier way in [20] as follows.
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Conjecture 1.2 (P. Horak and A. Rosa). Let L be a list of v−1 positive integers not exceeding⌊
v
2

⌋
. Then there exists a Hamiltonian path H of Kv such that `(H) = L if, and only if, the

following condition holds:

(1.1)
for any divisor d of v, the number of multiples of d

appearing in L does not exceed v − d.
It is easy to see that in the statement of the conjecture of Horak and Rosa, here denoted

by BHR, the actual conjecture is the sufficiency. A list of v−1 positive integers not exceeding⌊
v
2

⌋
and satisfying the necessary condition (1.1) shall be said to be admissible. In [13] it was

proved that the conjecture is true when the list L has exactly two distinct elements. Also,
Mariusz Meszka checked by computer that the conjecture is true for all v ≤ 18. The case of
exactly three distinct edge-lengths has been solved when these lengths are 1, 2, 3 in [7], 1, 2, 5
or 1, 3, 5 or 2, 3, 5 in [20], 1, 2, 4 or 1, 2, 6 or 1, 2, 8 in [21] and when L = {1a, 2b, tc} with t
even and a + b ≥ t − 1 in [21]. The only case with four distinct edge-lengths for which the
conjecture has been shown to be true is 1, 2, 3, 5, see [20].

Before giving the main results of this paper we would like to show some connections between
the BHR conjecture and other problems. Mariusz Meszka proposed the following conjecture
very similar, but easier, to Buratti’s.

Conjecture 1.3 (M. Meszka). For any prime p = 2n+ 1 and any list L of n positive integers
not exceeding n, there exists a near 1-factor F of Kp with `(F ) = L.

The same problem has been independently proposed with a different terminology in [4] and
it has been completely solved by Emmanuel Preissmann and Maurice Mischler in [23]. Also
this conjecture has been generalized to the case in which the order of the complete graph is
any odd integer, see [22].

Conjecture 1.4 (A. Pasotti and M.A. Pellegrini). Let v = 2n+ 1 be an odd integer and L be
a list of n positive integers not exceeding n. Then there exists a near 1-factor F of Kv with
`(F ) = L if, and only if, the following condition holds:

for any divisor d of v, the number of multiples of d
appearing in L does not exceed v−d

2 .

Some partial results have been obtained about this problem, see [22, 24], but the con-
jecture remains wide open. A similar conjecture for v even has been proposed in a private
communication by Michal Adamaszek, see [14, 15].

BHR conjecture is also related to many recent problems on partial sums, see [2, 3, 8, 9, 12,
18]. Let A be a finite list of elements of a group (G,+). Let (a1, a2, . . . , ak) be an ordering

of the elements in A and define the partial sums s1, s2, . . . , sk by the formula sj =
j∑

i=1

ai

(1 ≤ j ≤ k). It is not hard to see that, even if the statement in terms of edge-lengths of a
Hamiltonian path is more elegant, BHR conjecture can be formulated also in terms of partial
sums of a given list as follows:

Let v be a positive integer and let L be a list of v − 1 nonzero elements of
the cyclic group (Zv,+). Then, there exists a suitable sequence (ε1, . . . , εv−1),
where each εi = ±1, and a suitable ordering (a1, . . . , av−1) of L such that the
partial sums of the sequence (ε1a1, . . . , εv−1av−1) are exactly the elements of
Zv\{0} if and only if for any divisor d of v the number of multiples of [d]v ∈ Zv

appearing in L does not exceed v − d.
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As shown in [20], BHR conjecture is also related to cyclic decompositions, in fact it can
be reformulated as follows. We refer to [6] for the concepts necessary to understand the
relationship.

Conjecture 1.5. A Cayley multigraph Cay[Zv : Λ] admits a cyclic decomposition into Hamil-
tonian paths if and only if Λ = L ∪ −L with L satisfying condition (1.1).

We can therefore conclude that BHR conjecture fits into a wide range of (open) problems
and we believe that it is worthy of being studied for this reason.

The main aim of this paper is to provide new techniques that can be applied to a vast range
of lists. In fact, in Section 2 we recall the concepts of cyclic and linear realization and then
we show how linear realizations of two lists L1, L2 can be manipulated in order to get a linear
realization of L1∪L2. We also introduce two particular classes of linear realizations that allow
to build inductive processes. To give an idea of the flexibility of these new constructions, in
Sections 3, 4 and 5 we obtain the following results. By BHR(L) we mean Conjecture 1.2 for
a given list L.

Theorem 1.6. Let x ≥ 3 be an integer and let L = {1a, xb, (x + 1)c} be an admissible list.
Then BHR(L) holds in each of the following cases:

(1) x is odd and a ≥ min{3x− 3, b+ 2x− 3};
(2) x is odd, a ≥ 2x− 2 and c ≥ 4

3b;
(3) x is even and a ≥ min{3x− 1, c+ 2x− 1};
(4) x is even, a ≥ 2x− 1 and b ≥ c.

Theorem 1.7. Let x ≥ 2 and c ≥ 1. Let

L =
{

1a, 2b2 , 4b4 , 6b6 , . . . , `b` , xc
}

be an admissible list, where ` = 2
⌊
x−1

2

⌋
. Then BHR(L) holds in each of the following cases:

(1) x is even and a ≥ x− 1;
(2) x is odd and a ≥ 3x− 4.

Theorem 1.8. Let L = {1a, 2b, 3c, 4d} be an admissible list, where c, d ≥ 1. Then BHR(L)
holds for all a ≥ 3 and all b ≥ 0. Also, BHR(L) holds when a = 2 and b ≥ 1.

Finally, in the last section we investigate lists whose underlying set consists of many con-
secutive elements.

Theorem 1.9. Let L = {1a1 , . . . ,mam} be an admissible list. Then BHR(L) holds whenever
a1 ≥ a2 ≥ · · · ≥ am > 0.

2. Some new methods to work with linear realizations

In this section we define cyclic and linear realizations of a list L and show how they are
useful to prove BHR(L). A cyclic realization of a list L with v− 1 elements each from the set
{1, . . . , b v2c} is a Hamiltonian path [x0, x1, . . . , xv−1] of Kv such that the list of edge-lengths
{`(xi, xi+1) | i = 0, . . . , v − 2} equals L. So it is clear that BHR(L) can be so reformulated:
every such a list L has a cyclic realization if and only if condition (1.1) is satisfied. For
example, the path [0, 5, 11, 3, 9, 1, 8, 2, 10, 4, 12, 6, 7] is a cyclic realization of {1, 55, 66}.

Now, let L be a list with v−1 positive integers not exceeding v−1. A linear realization of L,
denoted by rL, is a Hamiltonian path [x0, x1, . . . , xv−1] of Kv such that L = {|xi−xi+1| | i =
0, . . . , v− 2}. By standard linear realization, we mean a linear realization starting with 0. For
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instance, one can easily check that the path [0, 4, 1, 5, 2, 3, 7, 11, 8, 12, 9, 6, 10, 13, 17, 14, 18, 15,
16, 19] is a standard linear realization of {12, 39, 48}.

Remark 2.1. Every linear realization of a list L can be viewed as a cyclic realization of a
suitable list L′ but not necessarily of the same list. For example, the path [0, 1, 2, 7, 3, 4, 5, 6]
is a linear realization of L = {15, 4, 5} and a cyclic realization of L′ = {15, 3, 4}. Anyway, if

all the elements in the list are less than or equal to
⌊
|L|+1

2

⌋
, then every linear realization of L

is also a cyclic realization of the same list L (see [13, Section 3]).

2.1. Concatenating two standard linear realizations. If v = 2m+1, let L∗ = {12, 22, . . . ,
m2}; if v = 2m, let L∗ = {12, 22, . . . , (m − 1)2,m1}. Realizations of L∗ are also known as
terraces for Zv and have been well-studied; see, for example, [17]. The oldest, and most
well-known, terrace is the Walecki Construction (see [1] for more of its history and uses):

[0, v − 1, 1, v − 2, 2, . . . , bv/2c].
Additionally, this is a standard linear realization of {1, . . . , v − 1}. Linear realizations of

{1, . . . , v − 1} are known as graceful permutations or graceful labelings of paths; see [11] for
more on the theory of graceful labelings.

Now starting from a linear realization g we construct three kinds of linear realizations
related to g as follows. Let g = [g1, g2, . . . , gv] be a linear realization of a list L. The reverse,

rev(g) = [gv, gv−1, . . . , g1]

is also a linear realization of L, as is its complement,

ḡ = [v − 1− g1, v − 1− g2, . . . , v − 1− gv].

The translation of g by a is g+a = [g1 +a, . . . , gv +a], which has the same absolute differences
as g.

Theorem 2.2 generalizes a method from the constructions of Horak and Rosa [13] that we
shall use more widely.

Theorem 2.2. Let L1 and L2 be lists. If each of L1 and L2 has a standard linear realization,
then L = L1 ∪ L2 has a linear realization.

Proof. Let g = [g1, . . . , gm] and h = [h1, . . . , hn] be linear realizations of L1 and L2 respectively
with g1 = 0 = h1. Consider the sequence g ⊕ h obtained by concatenating rev(ḡ) and
[h2, . . . , hn] + (m− 1), which has length m+ n− 1.

The first m− 1 absolute differences give the elements of L1 and, as the mth element of the
sequence is m − 1 = h1 + m − 1, the remaining n − 1 absolute differences give the elements
of L2. Hence the sequence is a linear realization of L. �

Example 2.3. Let g = [0, 5, 3, 6, 4, 1, 2] and h = [0, 3, 7, 1, 5, 2, 6, 4] be standard linear real-
izations of L1 = {1, 22, 32, 5} and L2 = {2, 32, 43, 6} respectively. Then ḡ = [6, 1, 3, 0, 2, 5, 4]
and

g ⊕ h = [4, 5, 2, 0, 3, 1, 6, 9, 13, 7, 11, 8, 12, 10]

is a linear realization of L1 ∪ L2 = {1, 23, 34, 43, 5, 6}.

Note that, in general, the realization constructed in the proof of Theorem 2.2 is not standard
and so cannot be used inductively. On the other hand some kinds of linear realizations can
be used in an inductive construction, as we are going to show. Following the terminology
introduced in [7], we will say that a standard linear realization of a list L is perfect, and
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we denote it by RL, if the terminal vertex of the path is labeled by the largest element.
For instance, [0, 1, 2, . . . , a] is a perfect linear realization of {1a}. Given a perfect realization
RL1 = [0, x1, . . . , xs−1, s] and a standard linear realization rL2 = [0, y1, . . . , yt], not necessarily
perfect, we may form the standard linear realization of L1∪L2 denoted by RL1+rL2 so defined

RL1 + rL2 = [0, x1, . . . , xs−1, s, y1 + s, . . . , yt + s].

Note that RL1 +RL2 is perfect. It is important to underline that the previous construction,
in general, does not work if we consider cyclic realizations.

Horak and Rosa [13, Theorem 3.1] prove that BHR(L) holds for L = {1a1 , 2a2 , . . . ,mam}
where ai ≤ 2 for i > 1 when v is an odd prime. This was accomplished by showing that it has
a linear realization that is also the appropriate cyclic realization. We generalize the method
of proof used in [13], which already works for all odd v, to give Corollary 2.4, which includes
an analogous result for even v.

Corollary 2.4. Let M∗ be a sublist of L∗ with |M∗| = a. Then BHR(L) holds for L =
(L∗ \M∗) ∪ {1a}.

Proof. Let x, y be the two largest elements of L, possibly x = y. Write L = L1 ∪ L2 ∪ L3

where:

• L1 = {1a1 , 2a2 , . . . , xax}, with a1 = x−
x∑

i=2

ai and ai ≤ 1 for i > 1,

• L2 = {1b1 , 2b2 , . . . , yby}, with b1 = y −
y∑

i=2

bi and bi ≤ 1 for i > 1, and

• L3 = {1a−a1−b1}.
Horak and Rosa [13, Lemma 3.13] show that there are two standard linear realizations

rL1 and rL2. Now, taking a perfect linear realization RL3, we obtain the linear realization
rL1 ⊕ (RL3 + rL2) of L. �

2.2. Inserting elements to linear realizations of special type. We finally introduce
some particular kinds of linear realizations which turn out to be very useful in the following
sections.

Definition 2.5. Let x be a positive integer. We say that a linear realization rL of a list L is:

• of type Ax if the two vertices |L| − x and |L| − x+ 1 are adjacent in rL;
• of type Bx if the two vertices |L| − x and |L| are adjacent in rL.

Clearly, A1 = B1. The importance of these types of linear realizations is explained in the
following. We define a function ηx acting on linear realizations of type Ax as follows: the
path ηx(rL) is obtained from rL by inserting |L| + 1 between the adjacent vertices |L| − x
and |L| − x + 1. It is easy to see that ηx(rL) is a linear realization of (L \ {1}) ∪ {x, x + 1}.
Analogously, we define a function µx acting on linear realizations of type Bx in the following
way: the path µx(rL) is obtained from rL by inserting |L|+ 1 between the adjacent vertices
|L|−x and |L|. Note that µx(rL) is a linear realization of (L\{x})∪{1, x+ 1}. Furthermore,
if we apply the function ηx or µx to a standard linear realization, we obtain a linear realization
which is still standard.

Example 2.6. Let L = {15, 73, 8} and take rL = [0, 7, 8, 1, 9, 2, 3, 4, 5, 6]. Note that rL is of
type A7, since the vertices |L| − 7 = 2 and |L| − 7 + 1 = 3 are adjacent, and it is also of
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type B7, since the vertices |L| − 7 = 2 and |L| = 9 are adjacent. Hence, starting from rL and
applying the functions η7 and µ7, we obtain, for instance:

r{14, 74, 82} = η7(rL) = [0, 7, 8, 1, 9, 2,10, 3, 4, 5, 6],
r{13, 75, 83} = η7(η7(rL)) = [0, 7, 8, 1, 9, 2, 10, 3,11, 4, 5, 6],
r{16, 72, 82} = µ7(rL) = [0, 7, 8, 1, 9,10, 2, 3, 4, 5, 6],
r{15, 73, 83} = η7(µ7(rL)) = [0, 7, 8, 1, 9, 10, 2, 3,11, 4, 5, 6],
r{16, 72, 84} = µ7(η7(µ7(rL))) = [0, 7, 8, 1, 9, 10, 2, 3, 11,12, 4, 5, 6],
r{15, 73, 85} = η7(µ7(η7(µ7(rL)))) = [0, 7, 8, 1, 9, 10, 2, 3, 11, 12, 4, 5,13, 6].

Definition 2.7. Let x be a positive even integer. We say that a linear realization rL of a list
L is of type Cx if the vertices |L| − (2i+ 1) and |L| − 2i are adjacent for all i = 0, . . . , x−2

2 .

It is also immediate that, if rL is of type Cx, then it is of type Cy for all even integers
2 ≤ y ≤ x.

Proposition 2.8. If rL is a linear realization of a list L of type Cx, for some even x, then

(1) ϑx(rL) = µx−1 ◦ ηx−1(rL) is a linear realization of L ∪ {x2} of type Cx;
(2) σx(rL) = µx ◦ ηx−1(rL) is a linear realization of L ∪ {x− 1, x+ 1} of type Cx.

Proof. (1) Let rL be a linear realization of a given list L of type Cx. Then, in particular,
|L|− (x−1) and |L|− (x−2) are adjacent in rL and hence it is also a linear realization of type
Ax−1 so we can apply ηx−1. In this way we get a linear realization of (L \ {1}) ∪ {x − 1, x}
that is of type Bx−1 since |L| + 1 and |L| + 1 − (x − 1) are adjacent. So we can apply µx−1

obtaining a linear realization of L ∪ {x2} which is still of type Cx.
(2) As before, if rL is a linear realization of a given list L of type Cx, we can apply ηx−1

and, in this way, we get a linear realization of (L \ {1}) ∪ {x − 1, x} that is of type Bx since
|L| + 1 and |L| + 1 − x are adjacent. So we can apply µx obtaining a linear realization of
L∪ {x− 1, x+ 1}. Note that since x is even, we are adding to L two odd consecutive positive
integers. �

Example 2.9. We construct a linear realization of {13, 2, 3, 45, 52, 63, 7}. Start with the list
L = {13, 2, 4, 6} and its linear realization rL = [0, 6, 5, 1, 2, 4, 3] of type C6. Then

L1 = {13, 2, 4, 63} : rL1 = ϑ6(rL) = [0, 6, 5, 1,7,8, 2, 4, 3],
L2 = {13, 2, 4, 5, 63, 7} : rL2 = σ6(rL1) = [0, 6, 5, 1, 7, 8, 2, 4,9,10, 3],
L3 = {13, 2, 45, 5, 63, 7} : rL3 = ϑ2

4(rL2) = [0, 6, 5, 1, 7,11,12, 8, 2, 4, 9,13,14, 10, 3],

and then

r{13, 2, 3, 45, 52, 63, 7} = σ4(L3) = [0, 6, 5, 1, 7, 11,16,15, 12, 8, 2, 4, 9, 13, 14, 10, 3].

The constructions we described in this section are very flexible, as we are going to show
in the remaining parts of this paper. In particular, they can be applied for lists whose un-
derlying set is one of the following: {x, y, x+ y}, {1, 2, 4, 6, . . . , 2x}, {1, 2, 4, 6, . . . , 2x, 2x+ 1},
{1, 2, 3, . . . , x}.

3. On the lists whose underlying set is {1, x, x+ 1}

The results of this section are an example of application of the linear realizations and
the functions ηx and µx introduced in Section 2. In particular, we start considering BHR
conjecture for lists L = {1a, xb, (x+ 1)c}, where x ≥ 3. Note that if x = 1, the underlying set
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of L has size 2 and hence the validity of BHR(L) has already been proved in [13]. Also, the
case x = 2 has already been solved in [7].

We will make use of the following perfect linear realizations.

Lemma 3.1. There exists a perfect linear realization of the following lists:

(1) {1x−1, xqx} for any odd integer x and any integer q ≥ 0;
(2) {1x−1, x2, (x+ 1)x−1} for any even integer x;
(3) {xx, (x+ 1)x+1} for any integer x.

Proof. (1) Fix x and q ≥ 0: for any integer i ≥ 0 we denote by i ⇀ qx + i the sequence
i, x+ i, 2x+ i, . . . , qx+ i and by qx+ i ⇀ i the sequence qx+ i, (q− 1)x+ i, . . . , x+ i, i. Then

R{1x−1, xqx} = [0 ⇀ qx, qx+ 1 ⇀ 1, 2 ⇀ qx+ 2, qx+ 3 ⇀ 3, . . . , x− 3 ⇀ qx+ x− 3,
qx+ x− 2 ⇀ x− 2, x− 1 ⇀ qx+ x− 1].

(2) and (3) It suffices to take R{1x−1, x2, (x + 1)x−1} = [0, x + 1, x + 2, 1, 2, x + 3, x +
4, 3, 4, . . . , x−5, x−4, 2x−3, 2x−2, x−3, x−2, 2x−1, x−1, x, 2x] for x even, and R{xx, (x+
1)x+1} = [0, x+ 1, 1, x+ 2, 2, x+ 3, 3, . . . , 2x− 1, x− 1, 2x, x, 2x+ 1]. �

3.1. Case x odd. In this subsection we investigate BHR conjecture for lists {1a, xb, (x+1)c},
where x ≥ 3 is an odd integer. We also set η = ηx and µ = µx.

Lemma 3.2. Let x ≥ 3 be an odd integer. Then, for all c ≥ 0, there exists:

(1) a standard linear realization of type Ax of the list {1x, (x+ 1)c};
(2) a standard linear realization of type Bx of the list {1x−1, x, (x+ 1)c}.

Proof. Start by considering the following linear realization of L = {1x}: RL = [0, 1, 2, . . . , x].
Then, RL is of type Ax, in fact the vertices |L| − x = 0 and |L| − x+ 1 = 1 are adjacent, and
so we can apply the function η:

η(RL) = [0,x + 1, 1, 2, 3, . . . , x],

which is a linear realization of L′ = {1x−1, x, x+ 1} of type Bx, since the vertices |L′| − x = 1
and |L′| = x+ 1 are adjacent. We now apply the function µ:

(µ ◦ η)(RL) = [0, x+ 1,x + 2, 1, 2, 3, . . . , x],

obtaining a linear realization of L′′ = {1x, (x + 1)2} of type Ax, since |L′′| − x = 2 and
|L′′| − x + 1 = 3 are adjacent vertices. Applying alternatively the functions η and µ we
produce the following linear realizations of type Ax and Bx, respectively:

r{1x, (x+ 1)2c̄} = (µ ◦ η)c̄(RL) and r{1x−1, x, (x+ 1)2c̄+1} = (η ◦ (µ ◦ η)c̄)(RL)

for all c̄ ≥ 0.
Consider now the following linear realization of L = {1x−1, x}: rL = [0, x, x − 1, . . . , 2, 1].

This is a linear realization of type Bx, as the vertices |L| − x = 0 and |L| = x are adjacent.
So, we can apply the function µ:

µ(rL) = [0,x + 1, x, x− 1, . . . , 3, 2, 1],

which is a linear realization of L′ = {1x, x+ 1} of type Ax, since the vertices |L′| − x = 1 and
|L′| − x+ 1 = 2 are adjacent. We now apply the function η:

(η ◦ µ)(rL) = [0, x+ 1, x, x− 1, . . . , 5, 4, 3, 2,x + 2, 1],
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obtaining a linear realization of L′′ = {1x−1, x, (x + 1)2} of type Bx , since |L′′| − x = 2 and
|L′′| = x + 2 are adjacent vertices. Applying alternatively the functions µ and η we get the
following linear realizations of type Ax and Bx, respectively:

r{1x, (x+ 1)2c̄+1} = (µ ◦ (η ◦ µ)c̄)(rL) and r{1x−1, x, (x+ 1)2c̄} = (η ◦ µ)c̄(rL)

for all c̄ ≥ 0. �

Example 3.3. We show how it is possible to obtain a linear realization of type A3 of {13, 45}
and a linear realization of type B3 of {12, 3, 46} following the proof of Lemma 3.2. Start with
the list L = {12, 3} and its linear realization rL = [0, 3, 2, 1] of type B3. Then

r{13, 4} = µ3(rL) = [0,4, 3, 2, 1],
r{12, 3, 42} = (η3 ◦ µ3)(rL) = [0, 4, 3, 2,5, 1],
r{13, 43} = (µ3 ◦ η3 ◦ µ3)(rL) = [0, 4, 3, 2,6, 5, 1],

r{12, 3, 44} = (η3 ◦ µ3)2(rL) = [0, 4,7, 3, 2, 6, 5, 1],
r{13, 45} = (µ3 ◦ (η3 ◦ µ3)2)(rL) = [0, 4,8, 7, 3, 2, 6, 5, 1],

r{12, 3, 46} = (η3 ◦ µ3)3(rL) = [0, 4, 8, 7, 3, 2, 6,9, 5, 1].

Lemma 3.4. Let x ≥ 3 be an odd integer and let s be an even integer such that 2 ≤ s ≤ x−1.
Then there exists:

(1) a standard linear realization of type Ax of the list {1x−1, xs, (x + 1)c} for all even
c ≥ 0;

(2) a standard linear realization of type Bx of the list {1x−2, xs+1, (x + 1)c} for all odd
c ≥ 1.

Proof. For i ≥ 1, let Ui be the sequence x + 2i − 2, x + 2i − 1, 2i − 1, 2i and consider the
following linear realization of L = {1x−1, xs}, where 2 ≤ s ≤ x− 1 is even:

rL = [0, U1, U2, . . . , U s
2−1, U s

2
, s+ 1, s+ 2, s+ 3, . . . , x− 1].

This realization is of type Ax, since the vertices |L|−x = s−1 and |L|−x+1 = s are adjacent
(both in U s

2
). Hence, we can apply the function η:

η(rL) = [0, U1, . . . , U s
2−1, x+ s− 2, x+ s− 1, s− 1,x + s, s, s+ 1, s+ 2, . . . , x− 1].

Note that by the very particular structure of L it follows that η(rL) is a linear realization of
L′ = {1x−2, xs+1, x + 1} of type Bx, in fact the vertices |L′| − x = s and |L′| = x + s are
adjacent. Hence, we can apply the function µ, obtaining:

(µ ◦ η)(rL) = [0, U1, . . . , U s
2−1, x+ s− 2, x+ s− 1, s− 1, x+ s,x + s + 1, s,

s+ 1, s+ 2, . . . , x− 1].

This is a linear realization of L′′ = {1x−1, xs, (x+1)2} of type Ax, since the vertices |L′′|−x =
s+ 1 and |L′′| − x+ 1 = s+ 2 are adjacent. Applying alternatively the functions η and µ we
obtain the following linear realizations of type Ax and Bx, respectively:

r{1x−1, xs, (x+ 1)2c̄} = (µ ◦ η)c̄(rL) and r{1x−2, xs+1, (x+ 1)2c̄+1} = (η ◦ (µ ◦ η)c̄)(rL)

for all c̄ ≥ 0 and all even 2 ≤ s ≤ x− 1. �

Example 3.5. We construct a linear realization of type A5 of {14, 54, 66} and a linear realiza-
tion of type B5 of {13, 55, 67} following the proof of Lemma 3.4, Cases (1) and (2), respectively.
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Start with the list L = {14, 54} and its linear realization rL = [0, 5, 6, 1, 2, 7, 8, 3, 4] of type
A5. Then

r{13, 55, 6} = η5(rL) = [0, 5, 6, 1, 2, 7, 8, 3,9, 4],
r{14, 54, 62} = (µ5 ◦ η5)(rL) = [0, 5, 6, 1, 2, 7, 8, 3, 9,10, 4],
r{13, 55, 63} = (η5 ◦ µ5 ◦ η5)(rL) = [0, 5,11, 6, 1, 2, 7, 8, 3, 9, 10, 4],
r{14, 54, 64} = (µ5 ◦ η5)2(rL) = [0, 5, 11,12, 6, 1, 2, 7, 8, 3, 9, 10, 4],
r{13, 55, 65} = (η5 ◦ (µ5 ◦ η5)2)(rL) = [0, 5, 11, 12, 6, 1, 2, 7,13, 8, 3, 9, 10, 4],
r{14, 54, 66} = (µ5 ◦ η5)3(rL) = [0, 5, 11, 12, 6, 1, 2, 7, 13,14, 8, 3, 9, 10, 4],
r{13, 55, 67} = (η5 ◦ (µ5 ◦ η5)3)(rL) = [0, 5, 11, 12, 6, 1, 2, 7, 13, 14, 8, 3, 9,15, 10, 4].

Lemma 3.6. Let x ≥ 3 be an odd integer. Then there exists:

(1) a standard linear realization of type Bx of the list {12x−s, xs, (x+1)c} for all odd c ≥ 1
and all even 2 ≤ s ≤ x− 1;

(2) a standard linear realization of type Ax of the list {12x+1−s, xs−1, (x+1)c} for all even
c ≥ 2 and all even 2 ≤ s ≤ x− 1;

(3) a standard linear realization of {1x−1, xs} for all odd 1 ≤ s ≤ x.

Proof. For i ≥ 1, let Vi be the sequence 2x+ 2− 2i, 2x+ 1− 2i, x+ 1− 2i, x− 2i and consider
the following linear realization of L = {12x−s, xs, x+ 1}, where 2 ≤ s ≤ x− 1 is even:

rL = [0, x, x+ 1, 2x+ 1, V1, V2, . . . , V s
2−1, 2x− s+ 2, 2x− s+ 1, 2x− s, . . . , x+ 2,

1, 2, 3, . . . , x+ 1− s].
This realization is of type Bx, since the vertices |L| −x = x+ 1 and |L| = 2x+ 1 are adjacent.
Hence, we can apply the function µ:

µ(rL) = [0, x, x+ 1,2x + 2, 2x+ 1, V1, V2, . . . , V s
2−1, 2x− s+ 2, 2x− s+ 1,

2x− s, . . . , x+ 2, 1, 2, 3, . . . , x+ 1− s].
Note that by the very particular structure of L it follows that µ(rL) is a linear realization
of L′ = {12x+1−s, xs−1, (x + 1)2} of type Ax, in fact the vertices |L′| − x = x + 2 and
|L′| − x+ 1 = x+ 3 are adjacent. Hence, we can apply the function η, obtaining:

(η ◦ µ)(rL) = [0, x, x+ 1, 2x+ 2, 2x+ 1, V1, V2, . . . , V s
2−1, 2x− s+ 2, 2x− s+ 1,

2x− s, . . . , x+ 3,2x + 3, x+ 2, 1, 2, 3, . . . , x+ 1− s].
This is a linear realization of L′′ = {12x−s, xs, (x+1)3} of type Bx, since the vertices |L′′|−x =
x+ 3 and |L′′| = 2x+ 3 are adjacent. Applying alternatively the functions µ and η we obtain
the following linear realizations of type Bx and Ax, respectively:

r{12x−s, xs, (x+1)2c̄+1} = (η◦µ)c̄(rL) and r{12x+1−s, xs−1, (x+1)2c̄+2} = (µ◦(η◦µ)c̄)(rL)

for all c̄ ≥ 0 and all even 2 ≤ s ≤ x− 1. This proves (1) and (2).
Finally, to prove (3), define for all i ≥ 1 the sequence Wi = 2i, x + 2i, x + 2i − 1, 2i − 1.

Then, for all odd 1 ≤ s ≤ x, we obtain

r{1x−1, xs} = [0, x, x− 1, . . . , s+ 1, s,W s−1
2
, . . . ,W2,W1].

�

Example 3.7. Following the proof of Lemma 3.6, Cases (1) and (2), it is possible to ob-
tain a linear realization of {18, 76, 87} of type B7 and a linear realization of {19, 75, 88} of
type A7, respectively. Start with the list L = {18, 76, 8} and its linear realization rL =
[0, 7, 8, 15, 14, 13, 6, 5, 12, 11, 4, 3, 10, 9, 1, 2] of type B7. Then
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r{19, 75, 82} = µ7(rL) = [0, 7, 8,16, 15, 14, 13, 6, 5, 12, 11, 4, 3, 10, 9, 1, 2],

r{18, 76, 83} = (η7 ◦ µ7)(rL) = [0, 7, 8, 16, 15, 14, 13, 6, 5, 12, 11, 4, 3, 10,17, 9, 1, 2],
r{19, 75, 84} = (µ7 ◦ η7 ◦ µ7)(rL) = [0, 7, 8, 16, 15, 14, 13, 6, 5, 12, 11, 4, 3, 10,18, 17, 9, 1, 2],

r{18, 76, 85} = (η7 ◦ µ7)2(rL) = [0, 7, 8, 16, 15, 14, 13, 6, 5, 12,19, 11, 4, 3, 10, 18, 17, 9, 1, 2],

r{19, 75, 86} = (µ7 ◦ (η7 ◦ µ7)2)(rL) = [0, 7, 8, 16, 15, 14, 13, 6, 5, 12,20, 19, 11, 4, 3, 10, 18, 17, 9, 1, 2],
r{18, 76, 87} = (η7 ◦ µ7)3(rL) = [0, 7, 8, 16, 15, 14,21, 13, 6, 5, 12, 20, 19, 11, 4, 3, 10, 18, 17, 9,

1, 2],

r{19, 75, 88} = (µ7 ◦ (η7 ◦ µ7)3)(rL) = [0, 7, 8, 16, 15, 14,22, 21, 13, 6, 5, 12, 20, 19, 11, 4, 3, 10, 18, 17,
9, 1, 2].

Proposition 3.8. Let x ≥ 3 be an odd integer. Then there exists a standard linear realization
of {12x−2, xs, (x+ 1)c} for all c ≥ 0 and all 0 ≤ s ≤ x− 1.

Proof. Using the perfect realization R{1ā} = [0, 1, . . . , ā], for a suitable ā ≥ 0, we have a linear
realization of

(1) {12x−2, (x+ 1)c} for all c ≥ 0 by Lemma 3.2(1);
(2) {12x−2, xs, (x+ 1)c} for all c ≥ 0 and all odd 1 ≤ s ≤ x− 2 by Lemma 3.2(2), Lemma

3.4(2) and Lemma 3.6(2),(3);
(3) {12x−2, xs, (x + 1)c} for all c ≥ 0 and all even 2 ≤ s ≤ x − 1 by Lemma 3.4(1) and

Lemma 3.6(1).

�

Theorem 3.9. Let x ≥ 3 be an odd integer. Then there exists a standard linear realization
of {1a, xb, (x+ 1)c} in each of the following cases:

(1) b, c ≥ 0 and a ≥ 3x− 3;
(2) b, c ≥ 0 and a ≥ b+ 2x− 3;
(3) b ≥ 0, c ≥ 4b

3 and a ≥ 2x− 2.

Proof. If b = 0 the thesis follows from Lemma 3.2(1). So fix b > 0 and c ≥ 0, and write
b = qx + s with 0 ≤ s ≤ x − 1. Let g be the linear realization of {12x−2, xs, (x + 1)c} whose
existence is proved in Proposition 3.8. By Lemma 3.1(1) we obtain

r{13x−3, xb, (x+ 1)c} = R{1x−1, xqx}+ r{12x−2, xs, (x+ 1)c}.
Hence, there exists a linear realization

r{1a, xb, (x+ 1)c} = R{1a+3−3x}+ r{13x−3, xb, (x+ 1)c}
for all a ≥ 3x− 3. Furthermore, we also get

r{1q(x−1)+2x−2, xb, (x+ 1)c} = R{1x−1, xx}+ . . .+R{1x−1, xx}︸ ︷︷ ︸
q times

+g.

This proves the existence of a linear realization

r{1a, xb, (x+ 1)c} = R{1a+2−q(x−1)−2x}+ r{1q(x−1)+2x−2, xb, (x+ 1)c}
for all a ≥ b+ 2x− 3, since in this case a ≥ q(x− 1) + 2x− 2.

Now, for every c̄ ≥ 0, let hc̄ be the linear realization of {12x−2, xs, (x+1)c̄}, whose existence
is given by Proposition 3.8. Then we obtain

r{12x−2, xb, (x+ 1)q(x+1)+c̄} = R{xx, (x+ 1)x+1}+ . . .+R{xx, (x+ 1)x+1}︸ ︷︷ ︸
q times

+hc̄.
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If a ≥ 2x− 2 and c ≥ 4b
3 , then we can write c = q(x+ 1) + c̄, for a suitable c̄, and take

r{1a, xb, (x+ 1)c} = R{1a+2−2x}+ r{12x−2, xb, (x+ 1)c}.
�

3.2. Case x even. In this subsection we investigate BHR conjecture for lists {1a, xb, (x+1)c},
where x ≥ 4 is an even integer. We also set η = ηx−1 and µ = µx−1.

Lemma 3.10. Let x ≥ 4 be an even integer. Then there exists a standard linear realization
of type Ax−1 of the list {1x+1, xb, (x+ 1)s} for all even b ≥ 0 and all 0 ≤ s ≤ x.

Proof. For i ≥ 1, let Ui be the sequence x+ 2i, x+ 1 + 2i, 2i, 2i+ 1 and consider the following
linear realization of L = {1x+1, (x+ 1)s}, where 0 ≤ s ≤ x is even:

rL = [0, 1, U1, U2, . . . , U s
2
, s+ 2, s+ 3, s+ 4, . . . , x, x+ 1].

This realization is of typeAx−1, since the vertices |L|−(x−1) = s+2 and |L|−(x−1)+1 = s+3
are adjacent. Hence, we can apply the function η:

η(rL) = [0, 1, U1, U2, . . . , U s
2
, s+ 2,x + s + 2, s+ 3, s+ 4, . . . , x, x+ 1].

Note that by the very particular structure of L it follows that η(rL) is a linear realization of
L′ = {1x, x−1, x, (x+1)s} of type Bx−1, as the vertices |L′|−(x−1) = s+3 and |L′| = x+s+2
are adjacent. Hence, we can apply the function µ, obtaining:

(µ ◦ η)(rL) = [0, 1, U1, U2, . . . , U s
2
, s+ 2, x+ s+ 2,x + s + 3, s+ 3,

s+ 4, s+ 5, . . . , x, x+ 1].

This is a linear realization of L′′ = {1x+1, x2, (x + 1)s} of type Ax−1, since the vertices
|L′′| − (x− 1) = s+ 4 and |L′′| − (x− 1) + 1 = s+ 5 are adjacent. Applying alternatively the
functions η and µ we obtain the following linear realization of type Ax−1:

r{1x+1, x2b̄, (x+ 1)s} = (µ ◦ η)b̄(rL)

for all b̄ ≥ 0 and all even 0 ≤ s ≤ x.
Now, for i ≥ 1, let Vi be the sequence 2i+ 2, 2i+ 1, x+ 2 + 2i, x+ 1 + 2i and consider the

following linear realization of L = {1x+1, (x+ 1)s}, where 1 ≤ s ≤ x− 1 is odd:

rL = [0, 1, x+ 2, x+ 1, . . . , s+ 4, s+ 3, s+ 2, V s−1
2
, . . . , V2, V1, 2].

This realization is of typeAx−1, since the vertices |L|−(x−1) = s+2 and |L|−(x−1)+1 = s+3
are adjacent. Hence, we can apply the function η:

η(rL) = [0, 1, x+ 2, x+ 1, . . . , s+ 4, s+ 3,x + s + 2, s+ 2, V s−1
2
, . . . , V2, V1, 2].

Note that by the very particular structure of L it follows that η(rL) is a linear realization of
L′ = {1x, x−1, x, (x+1)s} of type Bx−1, as the vertices |L′|−(x−1) = s+3 and |L′| = x+s+2
are adjacent. Hence, we can apply the function µ, obtaining:

(µ ◦ η)(rL) = [0, 1, x+ 2, x+ 1, . . . , s+ 5, s+ 4, s+ 3,x + s + 3, x+ s+ 2, s+ 2,
V s−1

2
, . . . , V2, V1, 2].

This is a linear realization of L′′ = {1x+1, x2, (x + 1)s} of type Ax−1, since the vertices
|L′′| − (x− 1) = s+ 4 and |L′′| − (x− 1) + 1 = s+ 5 are adjacent. Applying alternatively the
functions η and µ we obtain the following linear realization of type Ax−1:

r{1x+1, x2b̄, (x+ 1)s} = (µ ◦ η)b̄(rL)
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for all b̄ ≥ 0 and all odd 1 ≤ s ≤ x− 1. �

Example 3.11. We construct a linear realization of type A3 of {15, 46, 53} following the
proof of Lemma 3.10. Start with the list L = {15, 53} and its linear realization rL =
[0, 1, 6, 5, 4, 3, 8, 7, 2] of type A3. Then

r{14, 3, 4, 53} = η3(rL) = [0, 1, 6,9, 5, 4, 3, 8, 7, 2],
r{15, 42, 53} = (µ3 ◦ η3)(rL) = [0, 1, 6,10, 9, 5, 4, 3, 8, 7, 2],

r{14, 3, 43, 53} = (η3 ◦ µ3 ◦ η3)(rL) = [0, 1, 6, 10, 9, 5, 4, 3, 8,11, 7, 2],
r{15, 44, 53} = (µ3 ◦ η3)2(rL) = [0, 1, 6, 10, 9, 5, 4, 3, 8,12, 11, 7, 2],

r{14, 3, 45, 53} = (η3 ◦ (µ3 ◦ η3)2)(rL) = [0, 1, 6, 10,13, 9, 5, 4, 3, 8, 12, 11, 7, 2],
r{15, 46, 53} = (µ3 ◦ η3)3(rL) = [0, 1, 6, 10,14, 13, 9, 5, 4, 3, 8, 12, 11, 7, 2].

Lemma 3.12. Let x ≥ 4 be an even integer. Then there exists:

(1) a standard linear realization of type Ax−1 of the list {1x−1, xb} for all b ≥ 0;
(2) a standard linear realization of type Ax−1 of the list {12x−1−s, xb, (x+ 1)s} for all odd

b ≥ 1 and all even 2 ≤ s ≤ x− 2;
(3) a standard linear realization of type Ax−1 of the list {1x, xb, (x+1)s} for all odd b ≥ 1

and all odd 1 ≤ s ≤ x− 1;
(4) a standard linear realization of the list {1x, x, (x+ 1)x} and a linear realization of the

list {12x−1, xb, (x+ 1)x} for all odd b ≥ 3.

Proof. (1) follows from Lemma 3.2(1).
(2) For i ≥ 1, let Ui be the sequence x + 2i − 1, x + 2i, 2i − 1, 2i and consider the following
linear realization of L = {12x−1−s, x, (x+ 1)s}, where 2 ≤ s ≤ x− 2 is even:

rL = [0, U1, U2, . . . , U s
2
, s+ 1, s+ 2, . . . , x− 1, x, 2x, 2x− 1, . . . , x+ s+ 1].

This realization is of typeAx−1, since the vertices |L|−(x−1) = x+1 and |L|−(x−1)+1 = x+2
are adjacent (both in U1). Hence, we can apply the function η:

η(rL) = [0, x+ 1,2x + 1, x+ 2, 1, 2, U2, . . . , U s
2
, s+ 1, s+ 2, . . . , x− 1, x,

2x, 2x− 1, . . . , x+ s+ 1].

Note that by the very particular structure of L it follows that η(rL) is a linear realization of
L′ = {12x−2−s, x − 1, x2, (x + 1)s} of type Bx−1, as the vertices |L′| − (x − 1) = x + 2 and
|L′| = 2x+ 1 are adjacent. Hence, we can apply the function µ, obtaining:

(µ ◦ η)(rL) = [0, x+ 1, 2x+ 1,2x + 2, x+ 2, 1, 2, U2, . . . , U s
2
, s+ 1, s+ 2, . . . , x− 1,

x, 2x, 2x− 1, . . . , x+ s+ 1].

This is a linear realization of L′′ = {12x−1−s, x3, (x + 1)s} of type Ax−1, since the vertices
|L′′| − (x − 1) = x + 3 and |L′′| − (x − 1) + 1 = x + 4 are adjacent (both in U2 or both at
the end of (µ ◦ η)(rL) if s = 2). Applying alternatively the functions η and µ we obtain the
following linear realization of type Ax−1:

r{12x−1−s, x2b̄+1, (x+ 1)s} = (µ ◦ η)b̄(rL)

for all b̄ ≥ 0 and all even 2 ≤ s ≤ x− 2.
(3) Now, for i ≥ 1, let Vi be the sequence 2i, 2i−1, x+2i, x+2i−1 and consider the following
linear realization of L = {1x, x, (x+ 1)s}, where 1 ≤ s ≤ x− 1 is odd:

rL = [0, x, x− 1, x− 2, . . . , s+ 3, s+ 2, V s+1
2
, . . . , V2, V1].



NEW METHODS TO ATTACK THE BURATTI-HORAK-ROSA CONJECTURE 13

This realization is of typeAx−1, since the vertices |L|−(x−1) = s+2 and |L|−(x−1)+1 = s+3
are adjacent. Hence, we can apply the function η:

η(rL) = [0, x, x− 1, x− 2, . . . , s+ 3,x + s + 2, s+ 2, V s+1
2
, . . . , V2, V1].

Note that by the very particular structure of L it follows that η(rL) is a linear realization
of L′ = {1x−1, x − 1, x2, (x + 1)s} of type Bx−1, as the vertices |L′| − (x − 1) = s + 3 and
|L′| = x+ s+ 2 are adjacent. Hence, we can apply the function µ, obtaining:

(µ ◦ η)(rL) = [0, x, x− 1, x− 2, . . . , s+ 5, s+ 4, s+ 3,x + s + 3, x+ s+ 2, s+ 2,
V s+1

2
, . . . , V2, V1].

This is a linear realization of L′′ = {1x, x3, (x + 1)s} of type Ax−1, since the vertices |L′′| −
(x−1) = s+4 and |L′′|−(x−1)+1 = s+5 are adjacent. Applying alternatively the functions
η and µ we obtain the following linear realization of type Ax−1:

r{1x, x2b̄+1, (x+ 1)s} = (µ ◦ η)b̄(rL)

for all b̄ ≥ 0 and all odd 1 ≤ s ≤ x− 1.
(4) Take the sequence Ui previously defined. Then

[0, U1, U2, . . . , U x
2−1, 2x− 1, x− 1, x, 2x+ 1, 2x]

is a linear realization of {1x, x, (x+ 1)x}. Hence, for all odd b ≥ 3 we have

r{12x−1, xb, (x+ 1)x} = R{1x−1, x2, (x+ 1)x−1}+ r{1x, xb−2, x+ 1},
where the existence of R{1x−1, x2, (x + 1)x−1} is proved in Lemma 3.1(2) and the existence
of r{1x, xb−2, x+ 1} is showed in the previous item. �

Example 3.13. We construct a linear realization of type A3 of {15, 47, 52} following the
proof of Lemma 3.12, Case (2). Consider the list L = {15, 4, 52} and its linear realization
rL = [0, 5, 6, 1, 2, 3, 4, 8, 7] of type A3. Then

r{14, 3, 42, 52} = η3(rL) = [0, 5,9, 6, 1, 2, 3, 4, 8, 7],
r{15, 43, 52} = (µ3 ◦ η3)(rL) = [0, 5, 9,10, 6, 1, 2, 3, 4, 8, 7],

r{14, 3, 44, 52} = (η3 ◦ µ3 ◦ η3)(rL) = [0, 5, 9, 10, 6, 1, 2, 3, 4, 8,11, 7],
r{15, 45, 52} = (µ3 ◦ η3)2(rL) = [0, 5, 9, 10, 6, 1, 2, 3, 4, 8,12, 11, 7],

r{14, 3, 46, 53} = (η3 ◦ (µ3 ◦ η3)2)(rL) = [0, 5, 9,13, 10, 6, 1, 2, 3, 4, 8, 12, 11, 7],
r{15, 47, 52} = (µ3 ◦ η3)3(rL) = [0, 1, 6, 10, 13,14, 9, 5, 4, 3, 8, 12, 11, 7, 2].

Example 3.14. We construct a linear realization of type A5 of {16, 69, 73} following the
proof of Lemma 3.12, Case (3). Consider the list L = {16, 6, 73} and its linear realization
rL = [0, 6, 5, 4, 3, 10, 9, 2, 1, 8, 7] of type A5. Then

r{15, 5, 62, 73} = η5(rL) = [0, 6,11, 5, 4, 3, 10, 9, 2, 1, 8, 7],

r{16, 63, 73} = (µ5 ◦ η5)(rL) = [0, 6,12, 11, 5, 4, 3, 10, 9, 2, 1, 8, 7],
r{15, 5, 64, 73} = (η5 ◦ µ5 ◦ η5)(rL) = [0, 6, 12, 11, 5, 4, 3, 10, 9, 2, 1, 8,13, 7],
r{16, 65, 73} = (µ5 ◦ η5)2(rL) = [0, 6, 12, 11, 5, 4, 3, 10, 9, 2, 1, 8,14, 13, 7],

r{15, 5, 66, 73} = (η5 ◦ (µ5 ◦ η5)2)(rL) = [0, 6, 12, 11, 5, 4, 3, 10,15, 9, 2, 1, 8, 14, 13, 7],
r{16, 67, 73} = (µ5 ◦ η5)3(rL) = [0, 6, 12, 11, 5, 4, 3, 10,16, 15, 9, 2, 1, 8, 14, 13, 7],

r{15, 5, 68, 73} = (η5 ◦ (µ5 ◦ η5)3)(rL) = [0, 6, 12,17, 11, 5, 4, 3, 10, 16, 15, 9, 2, 1, 8, 14, 13, 7],

r{16, 69, 73} = (µ5 ◦ η5)4(rL) = [0, 6, 12,18, 17, 11, 5, 4, 3, 10, 16, 15, 9, 2, 1, 8, 14, 13, 7].

From Lemmas 3.10 (for b even) and 3.12 (for b odd), and arguing as in the proof of Propo-
sition 3.8, we obtain the following.
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Proposition 3.15. Let x ≥ 4 be an even integer. Then there exists a standard linear realiza-
tion of {12x−1, xb, (x+ 1)s} for all b ≥ 0 and all 0 ≤ s ≤ x.

Theorem 3.16. Let x ≥ 4 be an even integer. Then there exists a standard linear realization
of {1a, xb, (x+ 1)c} in each of the following cases:

(1) b, c ≥ 0 and a ≥ 3x− 1;
(2) b, c ≥ 0 and a ≥ c+ 2x− 1;
(3) b ≥ c ≥ 0 and a ≥ 2x− 1.

Proof. Fix b, c ≥ 0 and write c = q(x+ 1) + s with 0 ≤ s ≤ x. Let g be the linear realization
of {12x−1, xb, (x + 1)s} whose existence is proved in Proposition 3.15. By Lemma 3.1(1), we
obtain

r{13x−1, xb, (x+ 1)c} = R{1x, (x+ 1)q(x+1)}+ g.

Hence, there exists a linear realization

r{1a, xb, (x+ 1)c} = R{1a−3x+1}+ r{13x−1, xb, (x+ 1)c}
for all a ≥ 3x− 1. Furthermore, we have

r{1(q+2)x−1, xb, (x+ 1)c} = R{1x, (x+ 1)x+1}+ . . .+R{1x, (x+ 1)x+1}︸ ︷︷ ︸
q times

+g.

So, we obtain a linear realization

r{1a, xb, (x+ 1)c} = R{1a+1−(q+2)x}+ r{1(q+2)x−1, xb, (x+ 1)c}
for all a ≥ c+ 2x− 1, since in this case a ≥ (q + 2)x− 1.

Now, for every b̄ ≥ 0, let hb̄ be the linear realization of {12x−1, xb̄, (x+1)s}, whose existence
is given by Proposition 3.15. Then we obtain

r{12x−1, xqx+b̄, (x+ 1)c} = R{xx, (x+ 1)x+1}+ . . .+R{xx, (x+ 1)x+1}︸ ︷︷ ︸
q times

+hb̄,

where the existence of R{xx, (x+ 1)x+1} is proved in Lemma 3.1(3). If a ≥ 2x− 1 and b ≥ c,
then we can write b = qx+ b̄, for a suitable b̄, and take

r{1a, xb, (x+ 1)c} = R{1a−2x+1}+ r{12x−1, xb, (x+ 1)c}.
�

3.3. Main result. We are now ready to prove our main result for this kind of list.

Proof of Theorem 1.6. Let x ≥ 3, L = {1a, xb, (x+1)c} with a, b, c ≥ 0 and set v = a+b+c+1.
Since x+ 1 ≤

⌊
v
2

⌋
, every linear realization of L is also a cyclic realization of the same list, see

Remark 2.1. Hence, the validity of BHR follows from Theorems 3.9 and 3.16. �

To conclude this section, we explain how starting from this result it is possible to obtain lists
of the form {ya, zb, (y+ z)c} for which BHR conjecture holds. Let a, b, c ≥ 0, v = a+ b+ c+ 1
and 1 ≤ y, z, t ≤

⌊
v
2

⌋
such that t ≡ y + z (mod v). If gcd(y, v) = 1 we can multiply by y−1

all the elements of the list L′ = {ya, zb, tc}, where y−1 denotes the unique integer w such that
1 ≤ w ≤ v − 1 and yw ≡ 1 (mod v). We then obtain the list L̄ = {1a, xb, (x + 1)c}, where
x ≡ y−1z (mod v) and 1 ≤ x ≤ v − 1. Let L be the list obtained from L̄ by replacing each
integer i >

⌊
v
2

⌋
in L̄, with v − i. The validity of BHR(L) for the cases described in Theorem

1.6 implies the validity of BHR(L′) for the same choice of a, b, c since, multiplying the vertices
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of a Hamiltonian path of Kv by an element coprime with v, we obtain again a Hamiltonian
path of Kv, for details see [10, Lemma 2]. Clearly, the same argument holds if gcd(z, v) = 1.
In particular, if v is a prime, namely if we consider the original Buratti’s conjecture, both
conditions gcd(y, v) = 1 and gcd(z, v) = 1 are satisfied.

For instance, consider the list L′ = {1320, 283, 4165}. Then v = 89 and multiplying by 48
we get the list L = {120, 93, 1065}. By Theorem 1.6(2), BHR(L) holds and so BHR(L′) also
holds. Now, consider the list L′ = {1320, 1980, 3210}. Then v = 111 and multiplying by 94
we get the list L = {120, 1080, 1110}. Applying Theorem 1.6(4), BHR(L) holds and then also
BHR(L′) holds.

Corollary 3.17. Let a, b, c ≥ 0, v = a + b + c + 1 and 1 ≤ y, z, t ≤
⌊
v
2

⌋
such that t ≡ y + z

(mod v). Suppose that gcd(y, v) = 1 or gcd(z, v) = 1. If a, b, c satisfy one of the conditions
given in Theorem 1.6, then BHR(L) holds for the list L = {ya, zb, tc}.

4. On the lists with almost all even elements

In this section we consider lists whose elements are all even integers plus the element 1,
and at most another odd integer. Our constructions are based on linear realizations of type
Cx. Here, given two nonnegative integers x, y, we denote by x ⇀ y the sequence x, x+ 1, x+
2, . . . , y − 1, y if x ≤ y, and the sequence x, x− 1, x− 2, . . . , y + 1, y, otherwise.

Proposition 4.1. Let t ≥ 2 be an even integer and suppose that c ≥ 1. For every choice of
b2, b4, . . . , bt−2 ≥ 0 there exists a standard linear realization of

L =
{

1t−1, 2b2 , 4b4 , 6b6 , . . . , (t− 2)bt−2 , tc
}
.

Proof. Suppose that the exponents bx1
, bx2

, . . . , bxk
are all odd integers, while the exponents

by1
, by2

, . . . , byh
are all even. Write L = L1 ∪ L2 ∪ {1k}, where

L1 =
{

1t−k−1, x1, x2, . . . , xk, t
c
}

and L2 = {22b̄2 , 42b̄4 , . . . , (t− 2)2b̄t−2}.

It will be convenient (and not restrictive) to assume x1 > x2 > . . . > xk. Define S0 = 0 and

Sj =
j∑

i=1

(−1)i+1xi for j = 1, . . . , k. We split the proof into two cases according to the parity

of c.
Suppose that c is odd. Write c = 2c̄ + 1 and define L′1 =

{
1t−k−1, x1, x2, . . . , xk, t

}
. We

construct the following linear realizations of L′1: if k = 0, take rL′1 = [0, t ⇀ 1]; if k > 0 is
even, take

rL′1 = [0, t ⇀ 1 + S1, 1 + S0 ⇀ S2, S1 ⇀ 1 + S3, . . . , 1 + Sk−4 ⇀ Sk−2,
Sk−3 ⇀ 1 + Sk−1, 1 + Sk−2 ⇀ Sk, Sk−1 ⇀ 1 + Sk];

if k is odd, take

rL′1 = [0, t ⇀ 1 + S1, 1 + S0 ⇀ S2, S1 ⇀ 1 + S3, . . . , 1 + Sk−3 ⇀ Sk−1, Sk−2 ⇀ 1 + Sk,
1 + Sk−1 ⇀ Sk].

Note that, in all cases, the vertices 2i + 1 and 2i + 2 are adjacent for all i = 0, . . . , t−2
2 .

This implies that rL′1 is of type Ct. So, by Proposition 2.8(1), we can apply the function ϑc̄t ,
obtaining rL1 = (ϑt)

c̄(rL′1).
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Next, suppose that c is even. We construct the following linear realizations of L′1 ={
1t−k−1, x1, x2, . . . , xk

}
: if k = 0, take rL′1 = [0 ⇀ t− 1]; if k > 0 is even, take

rL′1 = [0 ⇀ t− 1− S1, t− 1− S0 ⇀ t− S2, t− S1 ⇀ t− 1− S3, . . . ,
t− 1− Sk−4 ⇀ t− Sk−2, t− Sk−3 ⇀ t− 1− Sk−1, t− 1− Sk−2 ⇀ t− Sk,
t− Sk−1 ⇀ t− 1− Sk];

if k is odd, take

rL′1 = [0 ⇀ t− 1− S1, t− 1− S0 ⇀ t− S2, t− S1 ⇀ t− 1− S3, . . . ,
t− 1− Sk−3 ⇀ t− Sk−1, t− Sk−2 ⇀ t− 1− Sk, t− 1− Sk−1 ⇀ t− Sk].

Note that, in all cases, the vertices 2i and 2i+1 are adjacent for all i = 0, . . . , t−2
2 . This implies

that rL′1 is of type Ct. So, by Proposition 2.8(1), we can apply the function ϑc̄t , obtaining
rL1 = (ϑt)

c̄(rL′1), where c = 2c̄.
Hence, for all values of c ≥ 1, we were able to construct a linear realization of rL1 of type

Ct. So, we can apply ϑt−2, ϑt−4, . . . , ϑ2 in this order:

r(L1 ∪ L2) = ((ϑ2)b̄2 ◦ (ϑ4)b̄4 ◦ . . . ◦ (ϑt−2)b̄t−2)(rL1).

Finally, we get rL = R{1k}+ r(L1 ∪ L2). �

Example 4.2. Let L = {111, 22, 45, 66, 83, 123}. Following the proof of Proposition 4.1, we
write L = {12} ∪ L1 ∪ L2, where L1 = {19, 4, 8, 123} and L2 = {22, 44, 66, 82}. Hence,
rL = R{12}+ r(L1 ∪ L2), x1 = 8, x2 = 4, t = 12 and

rL′1 = r{19, 4, 8, 12} = [0, 12, 11, 10, 9, 1, 2, 3, 4, 8, 7, 6, 5],
rL1 = r{19, 4, 8,123} = [0, 12, 11, 10, 9, 1,13,14, 2, 3, 4, 8, 7, 6, 5],

r{19, 4,83, 123} = [0, 12, 11, 10, 9, 1, 13, 14, 2, 3, 4, 8,16,15, 7, 6, 5],
r{19, 4,66, 83, 123} = [0, 12,18,17, 11, 10, 9, 1, 13,19,20, 14, 2, 3, 4, 8, 16,22,21, 15,

7, 6, 5],
r{19,45, 66, 83, 123} = [0, 12, 18, 17, 11, 10, 9, 1, 13, 19,23,24, 20, 14, 2, 3, 4, 8, 16, 22,

26,25, 21, 15, 7, 6, 5],
r{19,22, 45, 66, 83, 123} = [0, 12, 18, 17, 11, 10, 9, 1, 13, 19, 23, 24, 20, 14, 2, 3, 4, 8, 16, 22, 26,

28,27, 25, 21, 15, 7, 6, 5].

Now, let L = {111, 45, 66, 83, 105, 124}. Always following the proof of Proposition 4.1, we
write L = {13} ∪ L1 ∪ L2, where L1 = {18, 4, 8, 10, 124} and L2 = {44, 66, 82, 104}. Hence,
rL = R{13}+ r(L1 ∪ L2), x1 = 10, x2 = 8, x3 = 4, t = 12 and

rL′1 = r{18, 4, 8, 10} = [0, 1, 11, 10, 2, 3, 4, 5, 9, 8, 7, 6],
rL1 = r{18, 4, 8, 10,124} = [0,12,13, 1, 11, 10, 2,14,15, 3, 4, 5, 9, 8, 7, 6],

r{18, 4, 8,105, 124} = [0, 12, 13, 1, 11, 10, 2, 14, 15, 3, 4, 5, 9,19,18, 8, 7,17,16, 6],
r{18, 4,83, 105, 124} = [0, 12,20,21, 13, 1, 11, 10, 2, 14, 15, 3, 4, 5, 9, 19, 18, 8, 7, 17,

16, 6],
r{18, 4,66, 83, 105, 124} = [0, 12, 20,26,27, 21, 13, 1, 11, 10, 2, 14, 15, 3, 4, 5, 9, 19,25,24,

18, 8, 7, 17,23,22, 16, 6],
r{18,45, 66, 83, 105, 124} = [0, 12, 20, 26,30,31, 27, 21, 13, 1, 11, 10, 2, 14, 15, 3, 4, 5, 9, 19,

25,29,28, 24, 18, 8, 7, 17, 23, 22, 16, 6].



NEW METHODS TO ATTACK THE BURATTI-HORAK-ROSA CONJECTURE 17

Proposition 4.3. Let x ≥ 3 be an odd integer and let 1 ≤ s ≤ x − 1. Then, there exists a
standard linear realization of any list{

1x−1, 2b2 , 4b4 , 6b6 , . . . , (x− 1)bx−1 , xs
}
,

where the exponents b2, b4, b6, . . . , bx−1 are all even and nonnegative.

Proof. Suppose firstly that s is even and write s = 2s̄. Consider the following linear realization
of L = {1x−1}: RL = [0 ⇀ x − 1]. Since (0, 1), (2, 3), . . . , (x − 3, x − 2) are pairs of adjacent
vertices, we can apply the function (µx ◦ηx)s̄, obtaining a linear realization of L′ = {1x−1, xs},
whose vertices |L′| − (2i+ 1) = x+ s− 2i− 2 and |L′| − 2i = x+ s− 2i− 1 are adjacent for
all i = 0, . . . , x−3

2 . This means that (µx ◦ ηx)s̄(RL) is of type Cx−1, and so we get

r{1x−1, 22b̄2 , 42b̄4 , . . . , (x− 1)2b̄x−1 , x2s̄} = ((ϑ2)b̄2 ◦ (ϑ4)b̄4 ◦ . . . ◦ (ϑx−1)b̄x−1 ◦ (µx ◦ ηx)s̄)(RL),

where b̄2, b̄4, . . . , b̄x−1 ≥ 0.
Now, suppose that s is odd and write s = 2s̄ + 1. Start considering the following linear

realization of L̃ = {1x−1, x}: rL̃ = [0, x ⇀ 1]. In this case, (1, 2), (3, 4), . . . , (x − 2, x − 1)
are pairs of adjacent vertices and so we can apply the function (µx ◦ ηx)s̄. We then obtain

a linear realization of L̃′ = {1x−1, xs}, whose vertices |L̃′| − (2i + 1) = x + s − 2i − 2 and

|L̃′| − 2i = x+ s− 2i− 1 are adjacent for all i = 0, . . . , x−3
2 . Now, (µx ◦ ηx)s̄(rL̃) = rL̃′ is of

type Cx−1 and hence we get

r{1x−1, 22b̄2 , 42b̄4 , . . . , (x− 1)2b̄x−1 , x2s̄+1} = ((ϑ2)b̄2 ◦ (ϑ4)b̄4 ◦ . . . ◦ (ϑx−1)b̄x−1 ◦ (µx ◦ ηx)s̄)(rL̃),

where b̄2, b̄4, . . . , b̄x−1 ≥ 0. �

Example 4.4. Consider L = {18, 24, 62, 86, 97}. According to the notation of Proposition 4.3

we have y = 9, s = 7, L̃ = {18, 9} and L̃′ = {18, 97}. Hence rL̃ = [0, 9 ⇀ 1] and

rL̃′ = r{18, 97} = [0, 9, 8, 7, 6,15,14, 5, 4,13,12, 3, 2,11,10, 1],
r{18,86, 97} = [0, 9,17,16, 8, 7, 6, 15, 14, 5, 4, 13,21,20, 12, 3, 2, 1,19,18, 10, 1],

r{18,62, 86, 97} = [0, 9, 17,23,22, 168, 7, 6, 15, 14, 5, 4, 13, 21, 20, 12, 3, 2, 1, 19, 18, 10, 1],
r{18,24, 86, 97} = [0, 9, 17, 23,25,27,26,24, 168, 7, 6, 15, 14, 5, 4, 13, 21, 20, 12, 3, 2, 1, 19,

18, 10, 1].

Proof of Theorem 1.7. Item (1) easily follows from Proposition 4.1. For item (2), write c =
qx + s with 0 ≤ s < x. By Proposition 4.1 there exists a standard linear realization g
of
{

1x−2, 2b2 , 4b4 , 6b6 , . . . , (x− 1)bx−1
}

. If s = 0, by Lemma 3.1(1) we construct a standard
linear realization of L taking

rL = R{1a−2x+3}+R{1x−1, xqx}+ g.

If s > 0, we first apply Lemmas 3.4 and 3.6 to construct a standard linear realization of
{1x−1, xs}. Then, using Theorem 2.2 we get

rL = (R{1a−3x+4}+R{1x−1, xqx}+ r{1x−1, xs})⊕ g.

�
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5. On the lists {1a, 2b, 3c, 4d}, a ≥ 2

Considering the existing results on the BHR conjecture for lists whose underlying set is
{1, 2, 3} or {1, 2, 3, 5}, we think it is natural to investigate the lists {1a, 2b, 3c, 4d}. In par-
ticular, the use of Theorem 2.2 will allow us to almost completely solve this case. As usual,
the more 1s that are available the easier it is to construct the required realizations. As we
remarked in the Introduction, the cases L = {1a, 2b, 3c} and L = {1a, 2b, 4d} have been com-
pletely solved in [7] and in [21], respectively. So, we may assume c, d ≥ 1. The main result is
that BHR(L) holds when a ≥ 3 and it also holds when a = 2 provided that b ≥ 1. In order to
do this we need the following well-known results.

Theorem 5.1. [7] A list {1a, 2b, 3c} has a standard linear realization if, and only if, the
integers a, b, c satisfy one of the following conditions

(1) a = 0, b ≥ 4, c ≥ 3;
(2) a = 0, b = 3 and c 6= 0, 3k + 9 with k ≥ 0;
(3) a = 0 and (b, c) ∈ {(2, 2), (2, 3), (4, 1), (4, 2), (7, 2), (8, 2)};
(4) a ≥ 2 and b = 0;
(5) a ≥ 1 and c = 0;
(6) a, b, c ≥ 1 with (a, b, c) 6= (1, 1, 3k + 5) and k ≥ 0.

Theorem 5.2. [21] If a ≥ 1, b ≥ 2 and d ≥ 0, the list {1a, 2b, 4d} admits a standard linear
realization.

Now we will see that Proposition 2.8 plays a fundamental role in proving the following one.

Proposition 5.3. The list {1a, 2b, 3c, 4d} admits a standard linear realization in each of the
following cases:

(1) a ≥ 3, b ≥ 0 even, 0 ≤ c ≤ a− 3 and d ≥ 0;
(2) a ≥ 2, b ≥ 1 odd, 0 ≤ c ≤ a− 2 and d ≥ 0;
(3) a ≥ 2, b ≥ 0 even, 2 ≤ c ≤ a and d ≥ 0 even.

Proof. (1) We split the proof into 2 subcases according to the parity of d.

(1a) d even. Set d = 2d′ and b = 2b′. Let L = {13} and note that RL = [0, 1, 2, 3] is a

standard linear realization of type C4. So if we apply ϑd
′

4 to rL, by Proposition 2.8(1),

we obtain a standard linear realization rL′ of L′ = L ∪ {42d′} = {13, 4d} of type C4
and hence also of type C2. Thus by Proposition 2.8(2), if we apply σc

2 to rL′ we obtain
a standard linear realization rL′′ of L′′ = L′ ∪ {1c, 3c} = {1c+3, 3c, 4d} of type C2.

Hence we can apply the function ϑb
′

2 to rL′′. In this way we get a standard linear

realization of L′′ ∪ {22b′} = {1c+3, 2b, 3c, 4d}. To conclude it is sufficient to consider
also the perfect linear realization of {1a−c−3}.

(1b) d odd. A linear realization of {1a, 2b, 3c, 4d} can be obtained in the same way of
case (1a) starting from L = {13, 4} and rL = [0, 4, 3, 2, 1] that is a standard linear
realization of type C4.

(2) We split the proof into 2 subcases according to the parity of d.

(2a) d even. Set d = 2d′ and b = 2b′+ 1. Let L = {12, 2} and note that rL = [0, 1, 3, 2] is a

standard linear realization of type C4. So if we apply ϑd
′

4 to rL, by Proposition 2.8(1),

we obtain a standard linear realization rL′ of L′ = L ∪ {42d′} = {12, 2, 4d} of type C4
and hence also of type C2. Thus by Proposition 2.8(2), if we apply σc

2 to rL′ we obtain
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a standard linear realization rL′′ of L′′ = L′ ∪ {1c, 3c} = {1c+2, 2, 3c, 4d} of type C2.

Hence we can apply the function ϑb
′

2 to rL′′. In this way we get a standard linear

realization of L′′ ∪ {22b′} = {1c+2, 2b, 3c, 4d}. To conclude it is sufficient to consider
also the perfect linear realization of {1a−c−2}.

(2b) d odd. A linear realization of {1a, 2b, 3c, 4d} can be obtained in the same way of
case (2a) starting from L = {12, 2, 4} and rL = [0, 4, 3, 1, 2] that is a standard linear
realization of type C4.

(3) Set d = 2d′ and b = 2b′. Let L = {12, 32} and note that rL = [0, 3, 4, 1, 2] is a standard

linear realization of type C4. So if we apply ϑd
′

4 to rL, by Proposition 2.8(1), we obtain a

standard linear realization rL′ of L′ = L ∪ {42d′} of type C4 and hence also of type C2. Thus
by Proposition 2.8(2), if we apply σc−2

2 to rL′ we obtain a standard linear realization rL′′ of

L′′ = L′ ∪ {1c−2, 3c−2} of type C2. Hence we can apply the function ϑb
′

2 to rL′′. In this way

we get a standard linear realization of L′′∪{22b′} = {1c, 2b, 3c, 4d}. To conclude it is sufficient
to consider also the perfect linear realization of {1a−c}. �

Corollary 5.4. Suppose c, d ≥ 1. The list {1a, 2b, 3c, 4d} admits a linear realization in each
of the following cases:

(1) a ≥ 3 and b ≥ 2;
(2) a ≥ 4 and b = 1;
(3) a ≥ 5 and b = 0.

In particular, {1a, 2b, 3c, 4d} admits a linear realization for all a ≥ 5.

Proof. Applying Theorem 2.2, we can concatenate a standard linear realization of Theorem
5.1 with one of Theorem 5.2 or one of Proposition 5.3(2):

r{1a, 2b, 3c, 4d} = r{12, 3c} ⊕ r{1a−2, 2b, 4d} if a ≥ 3 and b ≥ 2,
r{1a, 21, 3c, 4d} = r{1a−2, 3c} ⊕ r{12, 21, 4d} if a ≥ 4,

r{1a, 3c, 4d} = r{1a−3, 3c} ⊕ r{13, 4d} if a ≥ 5.

�

Lemma 5.5. Suppose b, d ≥ 0 and c ≥ 1. The list {1a, 2b, 3c, 4d} admits a standard linear
realization in each of the following cases:

(1) a ≥ 1, b = 0, c ∈ {3, 4} and d is odd;
(2) a ≥ 1, b = 1 and c ∈ {1, 2, 3};
(3) a ≥ 1, b = 1, c ≡ 0, 2 (mod 3) and d = 1;
(4) a ≥ 2, b = 0, c = 1;
(5) a ≥ 2, b = 0, c = 3 and d is even;
(6) a ≥ 2, b = 0, c ≡ 0, 1 (mod 3) and d = 1;
(7) a ≥ 3, c = 2 and d is odd.

Proof. First, take the following standard linear realizations, where x
y
⇁ z means the arithmetic

progression x, x+ 4, x+ 8, . . . , x+ 4y = z if x ≤ z, or the arithmetic progression x, x− 4, x−
8, . . . , x− 4y = z otherwise.

(1)


r{11, 33, 44k+1} = [0, 3

k
⇁ 4k + 3, 4k + 4

k
⇁ 4, 1

k+1
⇁ 4k + 5, 4k + 2

k
⇁ 2],

r{11, 33, 44k+3} = [0, 3
k+1
⇁ 4k + 7, 4k + 4

k
⇁ 4, 1

k+1
⇁ 4k + 5, 4k + 6

k+1
⇁ 2],

r{11, 34, 44k+1} = [0, 3
k
⇁ 4k + 3, 4k + 6

k+1
⇁ 2, 5

k
⇁ 4k + 5, 4k + 4

k
⇁ 4, 1],

r{11, 34, 44k+3} = [0, 3
k+1
⇁ 4k + 7, 4k + 6

k+1
⇁ 2, 5

k
⇁ 4k + 5, 4k + 8

k+1
⇁ 4, 1].
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(2)



r{11, 21, 31, 44k} = [0
k
⇁ 4k, 4k + 3

k
⇁ 3, 1

k
⇁ 4k + 1, 4k + 2

k
⇁ 2],

r{11, 21, 31, 44k+1} = [0
k+1
⇁ 4k + 4, 4k + 1

k
⇁ 1, 3

k
⇁ 4k + 3, 4k + 2

k
⇁ 2],

r{11, 21, 31, 44k+2} = [0
k+1
⇁ 4k + 4, 4k + 3

k
⇁ 3, 1

k+1
⇁ 4k + 5, 4k + 2

k
⇁ 2],

r{11, 21, 31, 44k+3} = [0
k+1
⇁ 4k + 4, 4k + 5

k+1
⇁ 1, 3

k
⇁ 4k + 3, 4k + 6

k+1
⇁ 2],

r{11, 21, 32, 44k} = [0, 3
k
⇁ 4k + 3, 4k + 2

k
⇁ 2, 4

k
⇁ 4k + 4, 4k + 1

k
⇁ 1],

r{11, 21, 32, 44k+1} = [0, 3
k
⇁ 4k + 3, 4k + 4

k
⇁ 4, 2

k
⇁ 4k + 2, 4k + 5

k+1
⇁ 1],

r{11, 21, 32, 44k+2} = [0, 3
k
⇁ 4k + 3, 4k + 6

k+1
⇁ 2, 4

k
⇁ 4k + 4, 4k + 5

k+1
⇁ 1],

r{11, 21, 32, 44k+3} = [0, 3
k+1
⇁ 4k + 7, 4k + 4

k
⇁ 4, 2

k+1
⇁ 4k + 6, 4k + 5

k+1
⇁ 1],

r{11, 21, 33, 44k} = [0, 3
k
⇁ 4k + 3, 4k + 5, 4k + 2

k
⇁ 2, 1

k
⇁ 4k + 1, 4k + 4

k
⇁ 4],

r{11, 21, 33, 44k+1} = [0, 3
k
⇁ 4k + 3, 4k + 6, 4k + 5

k+1
⇁ 1, 4

k
⇁ 4k + 4, 4k + 2

k
⇁ 2],

r{11, 21, 33, 44k+2} = [0, 3
k
⇁ 4k + 3, 4k + 6

k+1
⇁ 2, 1

k+1
⇁ 4k + 5, 4k + 7, 4k + 4

k
⇁ 4],

r{11, 21, 33, 44k+3} = [0, 3
k+1
⇁ 4k + 7, 4k + 8, 4k + 5

k+1
⇁ 1, 4

k
⇁ 4k + 4, 4k + 6

k+1
⇁ 2].

(4)


r{12, 31, 44k} = [0

k
⇁ 4k, 4k + 3

k
⇁ 3, 2

k
⇁ 4k + 2, 4k + 1

k
⇁ 1],

r{12, 31, 44k+1} = [0
k+1
⇁ 4k + 4, 4k + 1

k
⇁ 1, 2

k
⇁ 4k + 2, 4k + 3

k
⇁ 3],

r{12, 31, 44k+2} = [0
k+1
⇁ 4k + 4, 4k + 3

k
⇁ 3, 2

k
⇁ 4k + 2, 4k + 5

k+1
⇁ 1],

r{12, 31, 44k+3} = [0
k+1
⇁ 4k + 4, 4k + 5

k+1
⇁ 1, 2

k+1
⇁ 4k + 6, 4k + 3

k
⇁ 3].

(5)

{
r{12, 33, 44k} = [0, 3

k
⇁ 4k + 3, 4k + 2

k
⇁ 2, 5

k
⇁ 4k + 5, 4k + 4

k
⇁ 4, 1],

r{12, 33, 44k+2} = [0, 3
k+1
⇁ 4k + 7, 4k + 6

k+1
⇁ 2, 5

k
⇁ 4k + 5, 4k + 4

k
⇁ 4, 1].

(7)

{
r{13, 32, 44k+1} = [0

k
⇁ 4k, 4k + 3

k
⇁ 3, 2

k+1
⇁ 4k + 6, 4k + 5, 4k + 4, 4k + 1

k
⇁ 1],

r{13, 32, 44k+3} = [0
k+1
⇁ 4k + 4, 4k + 1

k
⇁ 1, 2

k+1
⇁ 4k + 6, 4k + 5, 4k + 8, 4k + 7

k+1
⇁ 3].

To prove (3) and (6) take the following standard linear realizations. Here x
y
 z means the

arithmetic progression x, x + 3, x + 6, . . . , x + 3y = z if x ≤ z, or the arithmetic progression
x, x− 3, x− 6, . . . , x− 3y = z otherwise.

(3)

{
r{11, 21, 33k+2, 41} = [0

k
 3k, 3k + 4

k+1
 1, 2

k+1
 3k + 5, 3k + 3],

r{11, 21, 33k+3, 41} = [0
k
 3k, 3k + 4

k+1
 1, 2

k+1
 3k + 5, 3k + 3

1
 3k + 6].

(6)

{
r{12, 33k+1, 41} = [0

k
 3k, 3k + 4

k+1
 1, 2

k
 3k + 2, 3k + 3],

r{12, 33k+3, 41} = [0
k+2
 3k + 6, 3k + 2

k
 2, 1

k+1
 3k + 4, 3k + 5].

The statement follows by adding in each case R{1ã} for all ã ≥ 0. �

Proposition 5.6. Suppose c, d ≥ 1. The lists {13, 2b, 3c, 4d} and {14, 2b, 3c, 4d} admit a linear
realization for all b ≥ 0.

Proof. Assume a = 3: by Corollary 5.4 we are left to the case b ∈ {0, 1}. If b = 1, by Theorem
5.1(4) and Lemma 5.5(2) we have

r{13, 21, 3c, 4d} = r{12, 3c−1} ⊕ r{11, 21, 31, 4d}.

Suppose b = 0. If c = 1, apply Lemma 5.5(4); if c = 2, apply Lemma 5.5(7) when d is odd
and Proposition 5.3(3) when d is even. If c ≥ 3 and d is odd, by Theorem 5.1(4) and Lemma
5.5(1) we have

r{13, 3c, 4d} = r{12, 3c−3} ⊕ r{11, 33, 4d}.



NEW METHODS TO ATTACK THE BURATTI-HORAK-ROSA CONJECTURE 21

If c = 3 and d is even, apply Lemma 5.5(5). If c ≥ 4 and d is even, by Lemma 5.5, cases (1)
and (6), we have

r{13, 33k+4, 4d} = r{12, 33k+1, 41} ⊕ r{11, 33, 4d−1},
r{13, 33k+5, 4d} = r{12, 33k+1, 41} ⊕ r{11, 34, 4d−1},
r{13, 33k+6, 4d} = r{12, 33k+3, 41} ⊕ r{11, 33, 4d−1}.

Now, assume a = 4: by Corollary 5.4 we are left to the case b = 0. We can use Theorem
5.1(4) and Lemma 5.5(4):

r{14, 3c, 4d} = r{12, 3c−1} ⊕ r{12, 31, 4d}.
�

Proposition 5.7. Suppose c, d ≥ 1. The list {12, 2b, 3c, 4d} admits a linear realization for all
b ≥ 1.

Proof. If b ≥ 2, then we use a standard linear realization of Theorem 5.1(6) and one of
Lemma 5.5(2):

r{12, 2b, 33k+c̄, 4d} = r{11, 2b−1, 33k} ⊕ r{11, 21, 3c̄, 4d},
where c̄ = 1, 2, 3.

Assume now b = 1. If c ∈ {1, 2, 3}, the result follows directly from Lemma 5.5(2). So we
may suppose c ≥ 4. If d is odd, we use a standard linear realization of Theorem 5.1(6) and
one of Lemma 5.5(1):

r{12, 21, 33k+4, 4d} = r{11, 21, 33k} ⊕ r{11, 34, 4d},
r{12, 21, 33k+5, 4d} = r{11, 21, 33k+1} ⊕ r{11, 34, 4d},
r{12, 21, 33k+6, 4d} = r{11, 21, 33k+3} ⊕ r{11, 33, 4d}.

Finally, if d is even, we use standard realizations of Lemma 5.5, cases (1) and (3):

r{12, 21, 33k+4, 4d} = r{11, 21, 33k, 41} ⊕ r{11, 34, 4d−1},
r{12, 21, 33k+5, 4d} = r{11, 21, 33k+2, 41} ⊕ r{11, 33, 4d−1},
r{12, 21, 33k+6, 4d} = r{11, 21, 33k+2, 41} ⊕ r{11, 34, 4d−1}.

�

Note that in order to give a complete solution also for a = 2 it remains to consider the lists
{12, 3c, 4d} with c = 2 or c ≥ 4.

Proof of Theorem 1.8. The three cases a = 2, a ∈ {3, 4} and a ≥ 5 follow, respectively, from
Proposition 5.7, Proposition 5.6 and Corollary 5.4. �

We remark that the cases a = 0, 1 cannot be solved using only linear realizations since, for
instance, there is no linear realization of the lists {2, 3, 46} and {1, 2, 46} (see [21, Lemma 13]).

A similar result to Theorem 1.8 can be obtained also for lists {1a, 2b, 3c, 4d, 5e, 6f}. In this
case, we recall the following.

Theorem 5.8. [20, Theorem 2.6] If a ≥ 5 the list {1a, 2b, 3c, 5e} admits a standard linear
realization.

Proposition 5.9. The following lists L admit a linear realization:

(1) L = {1a, 2b, 3c, 4d, 5e} with a ≥ 8 and e ≥ 1;
(2) L = {1a, 2b, 3c, 4d, 5e, 6f} with a ≥ 10 and f ≥ 1.
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Proof. Concatenate a standard linear realization of Proposition 4.1 with one of Theorem 5.8:

r{1a, 2b, 3c, 4d, 5e} = r{1a−5, 4d} ⊕ r{15, 2b, 3c, 5e} if a ≥ 8 and e ≥ 1,
r{1a, 2b, 3c, 4d, 5e, 6f} = r{1a−5, 4d, 6f} ⊕ r{15, 2b, 3c, 5e} if a ≥ 10 and f ≥ 1.

�

6. On the lists with many distinct elements

In this section we give constructions of linear realizations for lists that are “close” to L∗, in a
way we make precise below, and also for lists of the form {1a1 , . . . ,mam} with a1 ≥ a2 ≥ · · · ≥
am. We recall that L∗ = {12, 22, . . . ,m2} if v = 2m+ 1, and L∗ = {12, 22, . . . , (m− 1)2,m1}
if v = 2m. Graceful permutations are central to both constructions and we make heavy use
of the following result:

Lemma 6.1. [16] For all v and all x with 0 ≤ x < v, there is a graceful permutation [g1, . . . , gv]
with g1 = x.

Horak and Rosa [13] introduced a graph Gv for prime v where the vertices are lists of
size v − 1 with underlying set a subset of {1, . . . , (v − 1)/2}. Two vertices L and M are
adjacent in Gv if M = L \ {x} ∪ {y} for some x 6= y. Buratti’s Conjecture is equivalent to
saying that all vertices of this graph are realizable. Horak and Rosa showed that L∗ and its
neighbors are realizable.

If v is composite we make a similar definition for Gv. The only difference is that we now insist
that the vertex labels meet the necessary conditions of the BHR Problem, and so Conjecture
1.2 is equivalent to saying that all vertices of this graph are realizable.

Theorems 6.2 and 6.4 cover many instances of the conjecture that are distance 2 from L∗

in Gv.

Theorem 6.2. Let v = 2m or 2m + 1 and let 1 ≤ k < m. BHR(L) holds when L =
L∗ \ {k, k + 1} ∪ {z1, z2} for any 1 ≤ z1 ≤ k and 1 ≤ z2 ≤ m.

Proof. Let g = [g1, . . . , gk] be a graceful permutation of length k with gk = k − z1, which
exists by Lemma 6.1. Let h = [h1, . . . , hv−k−1] be a graceful permutation of length v − k − 1
with h1 = z2− 1, which again exists by Lemma 6.1. The differences of h in Zv are {1, . . . , k+
1, (k + 2)2, . . . ,m2} if v is odd and {1, . . . , k + 1, (k + 2)2, . . . , (m− 1)2,m} if v is even.

The concatenation of g, [k], and h + k + 1 has the differences

{1, . . . , k − 1} ∪ {k − gk, h1 + k + 1− k} ∪ {1, . . . , k + 1, (k + 2)2, . . . ,m2}

when v is odd, and

{1, . . . , k − 1} ∪ {k − gk, h1 + k + 1− k} ∪ {1, . . . , k + 1, (k + 2)2, . . . , (m− 1)2,m}

when v is even. Now, k − gk = z1 and h1 + k + 1− k = z2, completing the proof. �

Example 6.3. In the notation of Theorem 6.2, let v = 2m+1 = 17, k = 6 and (z1, z2) = (2, 4).
Take g = [3, 2, 0, 5, 1, 4], a graceful permutation of length k = 6 with final element k− z1 = 4.
Take h = [3, 6, 0, 9, 1, 8, 4, 5, 7, 2], a graceful permutation of length v − k − 1 = 10 with first
element z2 − 1 = 3. Then the proof of Theorem 6.2 gives the realization

[3, 2, 0, 5, 1, 4, 6, 10, 13, 7, 16, 8, 15, 11, 12, 14, 9]

of {12, . . . , 82} \ {6, 7} ∪ {2, 4}.
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A variation of the construction works for some cases with the removed elements equal to
each other:

Theorem 6.4. If v = 2m + 1 then BHR(L) holds when L = L∗ \ {m,m} ∪ {z1, z2} for any
1 ≤ z1, z2 < m. If v = 2m then BHR(L) holds when L = L∗ \ {m − 1,m − 1} ∪ {z1, z2} for
any 1 ≤ z1, z2 < m− 1.

Proof. Let v = 2m + 1 and 1 ≤ z1, z2 < m. Let g = [g1, . . . , gm] be a graceful permutation
of length m with gm = m − z1. Let h = [h1, . . . , hm] be a graceful permutation of length m
with h1 = z2 − 1. Then the concatenation of g, [m] and h + m + 1 is the required sequence
as we have the differences

{1, . . . ,m− 1} ∪ {m− gm, (h1 +m+ 1)−m} ∪ {1, . . . ,m− 1},

and m− gm = z1 and (h1 +m+ 1)−m = z2.
Let v = 2m and 1 ≤ z1, z2 < m − 1. Let g = [g1, . . . , gm−1] be a graceful permutation of

length m − 1 with gm−1 = m − 1 − z1. Let h = [h1, . . . , hm−1] be a graceful permutation of
length m− 1 with h1 = m− 1− z2. Then the concatenation of g, [m− 1, 2m− 1] and h +m
is the required sequence as we have the differences

{1, . . . ,m− 2} ∪ {m− 1− gm−1,m, 2m− 1− (h1 +m)} ∪ {1, . . . ,m− 2},

and m− 1− gm = z1 and 2m− 1− (h1 +m) = z2. �

Example 6.5. In the notation of Theorem 6.4, let v = 2m + 1 = 21 and (z1, z2) = (6, 4).
Take g = [5, 3, 8, 0, 9, 2, 6, 7, 1, 4], a graceful permutation of length m = 10 with final element
m − z1 = 4. Take h = [3, 6, 0, 9, 1, 8, 4, 5, 7, 2], a graceful permutation of length m = 10 with
first element z2 − 1 = 3. Then the proof of Theorem 6.2 gives the realization

[5, 3, 8, 0, 9, 2, 6, 7, 1, 4, 10, 14, 17, 11, 20, 12, 19, 15, 16, 18, 13]

of {12, . . . , 102} \ {10, 10} ∪ {6, 4}.

While the results of Theorems 6.2 and 6.4 may seem narrow as stated, we can use the
same idea described at the end of Section 3 to extend their scope. For example, considering
the realization in Example 6.3 and multiplying by 2 (modulo 17), we see that BHR(L) holds
for L = {12, . . . , 82} \ {3, 5} ∪ {4, 8}. With this method we cover a large number of cases at
distance 2 from L∗ in Gv.

Theorems 6.2 and 6.4 were proved by concatenating translations of graceful permutations
while using Lemma 6.1 to control the differences introduced at the joins. The same is true for
Theorem 6.6, which easily implies Theorem 1.9.

Theorem 6.6. Let L = {1a1 , . . . ,mam} with a1 ≥ a2 ≥ · · · ≥ am > 0. Then L has a standard
linear realization.

Proof. Write

L = {1, . . . , k1} ∪ {1, . . . , k2} ∪ · · · ∪ {1, . . . , kq}
= {1, . . . , k1 − 1} ∪ {1, . . . , k2 − 1} ∪ · · · ∪ {1, . . . , kq−1 − 1} ∪
{1, . . . , kq} ∪ {k1, . . . , kq−1}

with k1 ≤ · · · ≤ kq = m. Set Li = {1, . . . , ki − 1} for 1 ≤ i < q and Lq = {1, . . . , kq}.
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For 1 ≤ i ≤ q − 1, let gi = [gi,1, . . . , gi,ki ] be a graceful permutation of length ki and let
gq = [gq,1, . . . , gq,kq+1] be a graceful permutation of length kq + 1. Construct these so that
g1,1 = 0 and gi+1,1 = gi,ki

for each i, which is possible by Lemma 6.1.
Consider the sequence obtained by concatenating the following sequences:

g1, g2 + k1, g3 + k1 + k2, . . . , gq + k1 + · · ·+ kq−1.

Internally to the translations of linear realizations we get the differences L1 ∪ · · · ∪Lq as each
gi is a graceful permutation. At the ith join we have

(gi+1,1 + k1 + · · ·+ ki)− (gi,ki
+ k1 + · · ·+ ki−1) = ki

as gi+1,1 = gi,ki , and so the remaining differences from our sequence are {k1, . . . , kq−1}. Hence
the sequence is a linear realization for L. As g1,1 = 0, it is standard. �

Example 6.7. Suppose v = 19 and L = {16, 23, 33, 42, 52, 62}. In the notation of the proof
of Theorem 6.6, q = 6 and (k1, . . . , k6) = (1, 1, 1, 3, 6, 6). Using the graceful permutations

[0], [0], [0], [0, 2, 1], [1, 5, 0, 3, 2, 4], [4, 2, 3, 6, 0, 5, 1],

results in the sequence

[0, 1, 2, 3, 5, 4, 7, 11, 6, 9, 8, 10, 16, 14, 15, 18, 12, 17, 13]

to satisfy BHR(L).

As the realization in Theorem 6.6 is standard, we may combine it with other standard
realizations using Theorem 2.2. For example, we can remove the restriction that a1 ≥ a2

provided that a1 > a3.

Corollary 6.8. Let L = {1a1 , . . . ,mam} with a2 ≥ a3 ≥ · · · ≥ am and a1 > a3. Then L has
a linear realization.

Proof. Construct a standard linear realization for

L1 = {1a1−1, 2a3 , 3a3 , . . . ,mam}

using Theorem 6.6. Construct a standard linear realization for L2 = {1, 2a2−a3} using Theo-
rem 5.1(5). Apply Theorem 2.2 to obtain a linear realization for L1 ∪ L2 = L. �
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