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Abstract. We extend the notion of a potentially H-graphic sequence as fol-
lows. Let A and B be nonnegative integer sequences. The sequence pair S =
(A, B) is said to be bigraphic if there is some bipartite graph G = (X ∪ Y, E)
such that A and B are the degrees of the vertices in X and Y , respectively. If
S is a bigraphic pair, let σ(S) denote the sum of the terms in A.

Given a bigraphic pair S, and a fixed bipartite graph H, we say that S

is potentially H-bigraphic if there is some realization of S containing H as a
subgraph. We define σ(H, m, n) to be the minimum integer k such that every
bigraphic pair S = (A, B) with |A| = m, |B| = n and σ(S) ≥ k is poten-
tially H-bigraphic. In this paper, we determine σ(Ks,t, m, n), σ(Pt, m, n) and
σ(C2t , m, n).

1. Introduction

Let S = (A, B) = (a1, . . . , am; b1, . . . , bn) be a pair of positive integer sequences.
We say that S is a bigraphic pair if there exists some simple bipartite graph G with
partite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn} such that the degree of xi is ai

and the degree of yj is bj. In this case, we say that G is a bigraphic realization of S.
In this paper, as the bipartite context is clear, we will simply call G a realization of
S. One easy method to determine if a given sequence pair is bigraphic is the Gale-
Ryser condition [3, 11]. Given a bipartite graph H and a bigraphic pair S, we say
that S is potentially H-bigraphic if there is some realization of S that contains H

as a subgraph. This is a weakening of the Zarankiewicz problem [12], which is the
bipartite analogue to determining the extremal function for arbitrary subgraphs.
This seemingly innocent variant to the classical Turán problem has proven to be
much more challenging over time. A good discussion of the problem and its rich
history can be found in [1].

Given a bigraphic sequence pair S = (A, B), let σ(S) denote the sum of the terms
in either A or B (which are necessarily equal). For a given bipartite graph H , let
σ(H, m, n) denote the minimum integer k such that any bigraphic pair S = (A, B)
with |A| = m, |B| = n and σ(S) ≥ k is potentially H-bigraphic. This is a natural
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extension of the notion of a potentially H-graphic sequence, which has been widely
studied.

In this paper, we will determine σ(H, m, n) for several graphs H . In Section 2, we
determine σ(Ks,t, m, n), where Ks,t is the complete bipartite graph with vertex sets
of size s and t. In Section 3 we find σ(Pt, m, n), where Pt is the path on t vertices.
Finally, in Section 4, we use the two previous results to determine σ(C2t, m, n) for
even cycles C2t.

The following useful lemma is an extension of a result found in [4].

Lemma 1.1. Let S be a bigraphic pair with realization G = (X ∪ Y, E) having

partite sets X and Y . Let H = (X ′ ∪ Y ′, E′) be a subgraph of G such that X ′

and Y ′ are contained in X and Y , respectively. Then there exists a realization

G1 = (X ∪ Y, E1) of S containing H as a subgraph such that X ′ and Y ′ lie on the

vertices of highest degree in X and Y , respectively.

Proof. Let G = G(X ∪ Y, E) be a realization of bigraphic sequence S containing
a graph H as a subgraph, such that {u, v} ⊂ X , (or {u, v} ⊂ Y ,) u 6∈ V (H),
v ∈ V (H), and degG(u) ≥ degG(v). Let T = NH(v) \ NG(u, v) be the neighbors of
v in H that are not neighbors of u. Since |NG(u)| ≥ |NG(v)|, we have that

|NG(u) \ NG(u, v)| ≥ |NG(v) \ NG(u, v)| ≥ |T |,

thus there exists subset T ′ of NG(u) \NG(u, v) of size |T |. Let G′ = G′(X ∪ Y, E′)
where

E′ = E \
(

E(u + T ′) ∪ E(v + T )
)

∪
(

E(u + T ) ∪ E(v + T ′)
)

.

Then G′ is a realization of S containing a copy of H with vertex u in place of vertex
v. The lemma follows. �

Throughout this paper, we will assume each sequence in a given sequence pair
is nonincreasing. We will also often use exponential notation for a degree sequece.

That is, we will write (aα1

1 , . . . , aαr

r ; bβ1

1 , . . . , bβs

s ) to denote the sequence pair

(a1, . . . , a1, a2, . . . , a2, . . . , ar, . . . , ar; b1, . . . , b1, b2, . . . , b2, . . . , bs, . . . , bs)

in which ai and bj occur αi and βj times respectively.

2. Complete Bipartite Graphs

In this section, we determine σ(Ks,t, m, n). The problem of determining when
a graphic sequence contains a copy of Ks,t has been studied, and the interested
reader may wish to compare the corresponding results, found in [8] and [9]. In
the bipartite setting, determining σ(Ks,t, m, n) might be considered analagous to
determining when a graphic sequence has a realization containing a copy of Kt, as
in [2], [4], [6], and [7].

Theorem 2.1. For all 1 ≤ s ≤ t, there exists m0 such that for n ≥ m ≥ m0 the

following holds.

σ(Ks,t, m, n) = n(s − 1) + m(t − 1) − (t − 1)(s − 1) + 1.

Proof. We begin by exhibiting a bigraphic pair S with σ(S) = n(s−1)+m(t−1)−
(t − 1)(s − 1) which is not potentially Ks,t-bigraphic. Consider the sequence pair

S = (ns−1, (t − 1)m−s+1; ms−1, (t − 1)m−s+1, (s − 1)n−m).
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This sequence is bigraphic, and neither partite set in any realization of S has s

vertices of degree t. Hence S is not potentially Ks,t-graphic.
Moving forward, let S be a bigraphic pair with σ(S) at least n(s − 1) + m(t −

1)− (t− 1)(s− 1) + 1. Let G be a realization of S with partite sets X and Y , with
|X | = n and |Y | = m. Let Xt be the set of t highest degree vertices of X , and Ys

be the set of s highest degree vertices of Y . Assume that G is a realization of S

that maximizes the number of edges between Xt and Ys. If the graph on Xt ∪ Ys

is Ks,t we are done, so assume otherwise. Let x and y be nonadjacent members of
Xt and Ys, and let HX = Xt \ {x} and HY = Ys \ {y}.

Let A denote N(y) \ HX and let B denote N(x) \ HY . Note that neither A nor
B is empty, as it is straightfoward to show that x and y have degrees at least s and
t, respectively.

Claim 2.2. Let a and b lie in A and B respectively. Then ab is an edge of G.

Proof. Assume otherwise, and exchange the edges ya and xb for the nonedges ab

and xy. This preserves the degree sequence of G, but contradicts our assumption
that G had the maximum number of edges between Xt and Ys among all realizations
of S. �

Claim 2.2 implies that the subgraph of G induced by A and B is a complete
bipartite graph.

Claim 2.3. For each b in B there exists a vertex hx in HX such that b is not

adjacent to hx. Similarily, for each a in A there exists a vertex hy in HY such that

a is not adjacent to hy.

Proof. We prove the first statement. The proof of the second is similar. Assume
the first statement is false. Then, as b is adjacent to x,

d(b) ≥ |HX | + |A| + 1 > d(y).

This contradicts the fact that y is one of the s highest degree vertices in Y . �

Claim 2.3 immediately implies the following two claims.

Claim 2.4. Let b and hx be nonadjacent vertices in B and HX respectively. Then

for all a in A and all v in N(hx) \ (Ys ∪ B), av is an edge of G.

The analagous statement about nonadjacent a and hy in A and HY respectively,

is also true.

Proof. Again, we prove just the first statement. Assume it is false, i.e., that there
is some a ∈ A and some v ∈ N(hx) \ (Yt ∪B) that are not adjacent. Then we could
exchange the edges ay, bx and hxv for the nonedges hxb, av and xy. This is, again,
a contradiction to our choice of G. �

This allows us to bound the number of vertices in A and B as follows.

Claim 2.5. Let A and B be as defined above. Then both A and B contain at most

(s − 1)(t − 1)

vertices.
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Proof. We prove |B| ≤ (s − 1)(t − 1). The proof for |A| is similar. Assume that
|B| > (s−1)(t−1). By Claim 2.3 and the pigeonhole principle there must be some
hx in HX that is non-adjacent to at least s vertices in B. Its neighborhood is

N(hx) = [N(hx) \ (Ys ∪ B)] ∪ [N(hx) ∩ Ys] ∪ [N(hx) ∩ B],

so we have that

d(hx) ≤ |N(hx) \ (Ys ∪ B)| + s + (|B| − s) = |N(hx) \ (Ys ∪ B)| + |B|.

On the other hand, for any vertex a in A, Claim 2.4 and the comment following
Claim 2.2 implies that the neighborhood of a contains

[N(hx) \ (Ys ∪ B)] ∪ B ∪ {y},

so we have

d(a) ≥ |N(hx) \ (Ys ∪ B)| + |B| + 1 > d(hx). (1)

This contradicts the fact that hx is in Xt. �

Claim 2.6. Let hx and hy be as given above. Then

d(hx) < 2s + |B| and d(hy) < 2t + |A|.

Proof. Assume d(hx) ≥ |B| + 2s. Then by equation (1), we have for any a in A

that

d(a) ≥ [d(hx) − |(Ys ∪ B)|] + |B| + 1 > |B| + s > d(x).

This contradicts the assumption that d(x) ≥ d(a). The proof for hy is similar. �

Now since both d(x) and d(hx) are bounded by 2s + |B|, and they are both in
Xt the number of edges in G that are incident to vertices of either Xt or A is at
most

(t − 2)m + (2s + |B|)(|A| + 2).

Similarly the number of edges incident to Ys or B is at most

(s − 2)n + (2t + |A|)(|B| + 2).

By Claim 2.5, this accounts for at most

(t − 2)m + (s − 2)n + (2s + (s − 1)(t − 1))((s − 1)(t − 1) + 2)

+ (2t + (s − 1)(t − 1))((s − 1)(t − 1) + 2),

which is less than (t−2)m+(s−2)n+6s2t2, edges from G. Taking m and n larger
than 4s2t2 this is strictly less than σ(S).

Furthermore, A has at most |A|d(hx) neighbors, which by Claims 2.5 and 2.6, is
at most

(2s + (s − 1)(t − 1)) (s − 1)(t − 1) < 3s2t2.

Each of these vertices which is outside of Ys has at most d(hy) < 2t+ (s− 1)(t− 1)
neighbors. Thus at most 9s4t3 vertices in X have neighbors outside of Ys which are
adjacent to vertices of A. Assuming that m0 = 9s4t4, together n > m0 > 9s4t3 and
m > m0 > 9t4s3, ensure that there exists some edge e = x′y′, with x′ ∈ X−Xt−A

and y′ ∈ Y −Yt−B, and vertices a and b in A and B respectively, such that x′b and
y′a are not edges in G. We can then exchange the edges ab and e for the non-edges
x′a and y′b, contradicting Claim 2.2, and completing the proof. �
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We note in the proof that the sets A and B induce a complete bipartite graph.
Hence at least one of A and B contains at most t−1 vertices, and if either contains
more than t − 1 vertices, the other set contains at most s − 1 vertices. This would
be useful if one were interested in finding smaller bounds on the n and m necessary
to assure Theorem 2.1.

3. Paths

Recall that Pt denotes the path on t vertices. In this section we determine the
quantity σ(Pt, m, n). In particular, we prove the following.

Theorem 3.1. For t ≥ 2 and integers n ≥ m ≥ t + 1,

σ(P2t+1, m, n) = σ(P2t+2, m, n) = n(t − 1) + m − (t − 1) + 1.

To see that both σ(P2t+1, m, n) and σ(P2t+2, m, n) are greater than n(t − 1) +
m − (t − 1), consider the sequence pair S = (m1, (t − 1)n−1; nt−1, 1m−t+1). This
pair has σ(S) = n(t− 1)+m− (t− 1) and has a unique realization, which contains
no P2t+1.

The remainder of the section is dedicated to showing that a bigraphic sequence
with the above sum has a realization containing a P2t+1 and a realization containing
a P2t+2. The proof will be by induction on t. The following lemma is sufficient to
act as a basis for this induction, and is also of interest for the sake of completeness.

Lemma 3.2. Let n ≥ m be integers. Then,

(i) σ(P3, m, n) = m + 1, and

(ii) σ(P4, m, n) = n + 1.

Proof. That σ(P3, m, n) ≥ m + 1 and σ(P4, m, n) ≥ n + 1 is obvious. Equality
for statement (i) follows from the fact that with degree sum m + 1 some vertex
in any realization must have degree 2, and hence be the center vertex of a P3.
For statement (ii) observe that with degree sum n + 1, at least one vertex in each
partite set has degree 2 or more. Applying Lemma 1.1 with H = K1,1, there exists
a realization in which these vertices are adjacent, and hence lie in a P4. �

The induction follows immediately from the following two lemmas.

Lemma 3.3. For t ≥ 2 and integers n ≥ m ≥ t + 1, if S is a bigraphic pair with

σ(S) ≥ n(t − 1) + m − (t − 1) + 1,

and S is potentially P2t-bigraphic, then S is potentially P2t+1-bigraphic.

Lemma 3.4. For t ≥ 2 and integers n ≥ m ≥ t + 1, if S is a bigraphic pair with

σ(S) ≥ n(t − 1) + m − (t − 1) + 1,

and S is potentially P2t+1-bigraphic, then S is potentially P2t+2-bigraphic.

To finish the proof of Theorem 3.1 we thus prove Lemmas 3.3 and 3.4.

Proof. (of Lemma 3.3)
Let S = (A, B) = (a1 . . . , an; b1, . . . , bm) be a bigraphic pair with σ(S) = n(t −

1) + m− (t− 1) + 1, and let G = G(X ∪ Y, E) be a realization of S, with |X | = m

and |Y | = n, that contains a P2t. By Lemma 1.1 we may assume that the copy of
P2t occurs on vertex sets Xt := {x1, . . . , xt} and Yt := {y1, . . . , yt}. We must now
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show that some realization G′ of S contains a P2t+1. We proceed by contradiction
and assume that no realization of S, including G, contains a P2t+1.

The following claim allows us to further assume that there is no C2t on Xt ∪ Yt.

Claim 3.5. If the subgraph induced by Xt ∪ Yt contains a cycle C2t, then S is

potentially P2t+1-bigraphic.

Proof. Assume that the subgraph induced by Xt ∪ Yt contains a copy of C2t. If
there exists an edge with one endpoint in Xt ∪ Yt and one endpoint outside of
this set then we are done. Thus we may assume there exists no such edge. Since
m, n > t, there exists a pair of vertices x, y in V (G)− (Xt∪Yt), and by assumption,
each has degree at least 1. We may assume that xy is an edge for x ∈ X − Xt

and y ∈ Y − Yt and so for any edge x′y′ in the C2t, x′
≁ y ∼ x ≁ y′ ∼ x′ is an

alternating cycle in G. Removing the edges of this alternating cycle from G and
putting the non-edges into G, we arrive at another realization of the same degree
sequence, which contains a P2t+1. �

Let the P2t on Xt ∪ Yt be

v1, v2, . . . , v2t−1, v2t

where vertices with odd index are in Xt and those with even index are in Yt.
Clearly, neither of v1 and v2t can have neighbors outside of Xt ∪ Yt. Moreover,
where dX = deg(v1) and dY = deg(v2t), the following is also true.

dX + dY ≤ t (2)

Indeed if G contained both of the edges v1v2i and v2tv2i−1, for any i = 1, . . . , t,
then it would contain the 2t-cycle

v1, v2, . . . , v2i−1, v2t, v2t−1, . . . , v2i, v1.

This would contradict Claim 3.5.
Now the number of edges in G is the number of edges incident to (Y −Yt)∪{v2t}

or (X − Xt) ∪ {v1}, plus the number between Xt − {v1} and Yt − {v2t}. This is at
most

(m − (t − 1))dX + (n − (t − 1))dY + (t − 1)2.

Since n ≥ m, and dX ≥ 1, this is at most

n(dX + dY − 1) + m − (t − 1)(dX + dY ) + (t − 1)2.

Since n > t and dX + dY ≤ t, this is maximized when dX + dY = t, so is at most

n(t − 1) + m − (t − 1).

This, however, is one less than σ(S), which is a contradiction.
�

Proof. (of Lemma 3.4)
Let S be a bigraphic pair with σ(S) ≥ n(t − 1) + m − (t − 1) + 1, and let G be

a realization of S that contains a P2t+1.
We first consider the case in which the endpoints of the P2t+1 occur in X . By

Lemma 1.1 we may assume that the copy of P2t+1 occurs on vertex sets Xt+1 :=
{x1, . . . , xt+1} and Yt := {y1, . . . , yt}. We show that G contains a P2t+2. The proof
is, again, by contradiction.
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Let eX denote the number of vertices of Xt+1 that are the endpoint of some
P2t+1 on Xt+1 ∪ Yt. Let x be any such endpoint, and observe that

eX ≥ deg(x) + 1. (3)

Indeed, let x = v1, . . . , v2t+1 be a P2t+1 with x = v1 as an endpoint. For every
edge v1vi, the following is a P2t+1 having v2t+1 as an endpoint:

vi−1, vi−2, . . . , v1, vi, vi+1, vi+2, · · · , v2t+1.

As v2t+1 is also counted by eX , the inequality holds.
Since each vertex of Xt+1 which is counted by eX has degree at most eX − 1, we

can bound the number of edges in G by

n(t + 1 − eX) + (eX − 1)[m − (t + 1 − eX)]

= n(t − (eX − 1)) + m(eX − 1) − (eX − 1)(t − (eX − 1))

Because n ≥ m and 1 ≤ eX − 1 ≤ t, this is maximized when eX − 1 = 1, so is at
most

n(t − 1) + m − (t − 1).

This is one less than σ(S), so completes the proof in the case that the endpoints of
the P2t+1 are in X .

When the endpoints of the P2t+1 are in Y , then analogous arguments allow us
to bound the number of edges in G by

m(t − (eY − 1)) + n(eY − 1) − (eY − 1)(t − (eY − 1)), (4)

where eY denotes the number of vertices in Yt+1 that are endpoints of a P2t+1 on
Xt ∪ Yt+1.

Claim 3.6. We have the following inequality,

1 ≤ eY − 1 < t.

Proof. It is trivial from the definition that 1 ≤ eY − 1 ≤ t. Assume now that
eY −1 = t, so all vertices in Yt+1 are endpoints of a P2t+1. Then there are no edges
from Yt+1 to X −Xt, or else we have a P2t+2. So every vertex of Yt+1 has degree at
most t. Since by the degree sum, some vertex of Yt+1 must have degree at least t,
there is some vertex y of Yt+1 that is adjacent to every vertex in Xt. In particular,
when

y = v1, v2, . . . , v2t+1

is the P2t+1 with y as endpoint, y is adjacent to v2t.
Now since m > t + 1, there is a vertex x0 ∈ X −Xt which must have some edge.

Let y0 in Y −Yt+1 be the other endpoint of this edge. If y0 ∼ v2t then we have the
P2t+2

v1, . . . , v2t, y0, x0.

If y0 ≁ v2t, then we have the alternating path

v1 ∼ v2t ≁ y0 ∼ x0 ≁ v1.

Removing the edges of this path from G and replacing them with the non-edges,
we get a new realization of the same degree sequence which has the P2t+2

x0, v1, v2, . . . , v2t, y0.

This completes the proof of the claim. �
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With this claim we have that the (eY − 1)(t − (eY − 1)) of equation (4) is
minimized when eY − 1 = 1 and because m ≤ n, the positive terms are maximized
when eY − 1 = t − 1, thus it is bounded above by

m(t − (t − 1)) + n(t − 1) − (1)(t − (1)) = n(t − 1) + m − (t − 1).

Again, this is one less than σ(S), so is a contradiction.
This completes the proof of the Lemma 3.4 and therefore completes the proof of

Theorem 3.1.
�

4. Even Cycles

The minimum degree sum necessary to assure a graphic sequence has a realiza-
tion containing a copy of Ct was determined in [5], and [10]. Here, we look at the
similar problem of determining the minimum sum needed to assure that a bigraphic
pair has a realization containing a copy of C2t.

Theorem 4.1. Given t ≥ 2, and n ≥ m ≥ 2(t + 1),

σ(C2t, m, n) = n(t − 1) + m − (t − 1) + 1.

Proof. The case t = 2 follows from Theorem 2.1, so we assume that t > 2. The fact
that the given value is a lower bound for σ(C2t, m, n) is established by the same
bigraphic sequence given in Theorem 3.1. We now show that it is also an upper
bound.

Let S be a bigraphic pair with σ(S) ≥ n(t−1)+m− (t−1)+1. By Theorem 3.1
we get a realization G of S with a copy of P2t+2. By Lemma 1.1 we may assume
that this P2t+2 occurs on Xt+1 = {x1, . . . , xt+1} and Yt+1 = {y1, . . . , yt+1}. The
following claim allows us to assume that G contains a C2t+2

Claim 4.2. Let P be a copy of P2t+2 in G. If the endpoints of P are not adjacent,

then S is potentially C2t-bigraphic.

Proof. Let x and y be the endpoints of P and y′ and x′ be their respective neighbors
in P . If x′ is adjacent to y′ then we have a C2t and are done. Thus we assume
x′

≁ y′. Now if x ≁ y then x ≁ y ∼ x′
≁ y′ ∼ x is an alternating cycle whose

reversal yields a C2t in G. Thus we may assume that x and y are adjacent. �

We therefore make the assumption that G contains a C2t+2 on the vertices
v1, v2, . . . , v2t+2, where the vertices with even index are in X and those with odd
index are in Y . The following claim allows us to assume that the C2t+2 is induced.

Claim 4.3. If G contains a cycle C of length 2t + 2 that is not induced, then S is

potentially C2t-bigraphic.

Proof. Assume that C contains a chord, wlog v1 ∼ v2j for some j, 2 ≤ j ≤ t. Then
we have the P2t+2

v2, v3, . . . , v2j , v1, v2t+2, v2t+1, . . . , v2j+1

with endpoints v2 and v2j+1. By Claim 4.2, we may assume that these endpoints
are adjacent. The same argument applied to the chord v2v2j+1 shows that v3

and v2j+2 are adjacent as well. However, this implies that G contains the C2t

v3, v4, . . . , v2j , v1, v2t+2, v2t+1, . . . , v2j+2, v3. This proves the claim.
�
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Now let C refer to the induced copy of C2t+2 in G and consider its vertices v1

and v6.

Claim 4.4. We may assume that v1 and v6 each have degree at least 3.

Proof. We show that there is some pair {vi, vi+5} with each vertex having degree
at least 3. This will suffice. By the degree sum of S, there are at least t−1 vertices
in each of X and Y with degree at least 3. Thus by Lemma 1.1 we may infer that
at least t − 1 vertices of each of V (C) ∩ X and V (C) ∩ Y have degree at least 3.
We consider now two cases.

When t = 3 there are at least two vertices in V (C)∩X that have degree at least
3. Every vertex in V (C) ∩ Y is distance 5 from one of these vertices, so since at
least one of the vertices on V (C) ∩ Y has degree at least 3, we are done.

When t ≥ 4 there are at least three vertices in V (C) ∩ X that have degree at
least three. So there are at least three vertices in V (C) ∩ Y that distance 5 from
one of these vertices. Since at most 2 vertices of V (C) ∩ Y have degree less than 3
at least one of these 3 vertices has degree at least 3. �

Now v1 has neighbor y in Y − V (C) and v6 has neighbor x in X − V (C). If
x ∼ y, then we have the C2t

v6, v7, . . . , v2t+2, v1, y, x, v6.

On the other hand, if x ≁ y then we have the alternating path v1 ∼ y ≁ x ∼ v6 ≁ v1.
Reversing this in G we arrive at a realization of the same degree sequence that
contains a non-induced C2t+2. By Claim 4.3, this suffices to complete the proof.

�

5. Conclusion

This paper serves only as an initial investigation into the subject of potentially
H-bigraphic sequence pairs. Looking forward, it may be interesting to consider
other broad classes of bipartite graphs, particularly those graphs H for which the
standard potential number is known.
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