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Abstract. We present a restricted variable generalization of Warning’s Sec-
ond Theorem (a result giving a lower bound on the number of solutions of

a low degree polynomial system over a finite field, assuming one solution ex-
ists). This is analogous to Schauz-Brink’s restricted variable generalization of
Chevalley’s Theorem (a result giving conditions for a low degree polynomial

system not to have exactly one solution). Just as Warning’s Second Theo-
rem implies Chevalley’s Theorem, our result implies Schauz-Brink’s Theorem.
We include several combinatorial applications, enough to show that we have a
general tool for obtaining quantitative refinements of combinatorial existence

theorems.

Let q = pℓ be a power of a prime number p, and let Fq be “the” finite field of order q.

For a1, . . . , an, N ∈ Z+, we denote by m(a1, . . . , an;N) ∈ Z+ a certain combi-
natorial quantity defined and computed in §2.1.

1. Introduction

A C1-field is a field F such that for all positive integers d < n and every ho-
mogeneous polynomial f(t1, . . . , tn) ∈ F [t1, . . . , tn] of degree d, there is x ∈ Fn \
{(0, . . . , 0)} such that f(x) = 0. This notion is due to E. Artin. However, already
in 1909 L.E. Dickson had conjectured that (in Artin’s language) every finite field
is a C1-field [Di09]. Tsen showed that function fields in one variable over an al-
gebraically closed field are C1-fields [Ts33], but this left the finite field case open.
Artin assigned the problem of proving Dickson’s conjecture to his student Ewald
Warning. In 1934 C. Chevalley visited Artin, asked about his student’s work, and
quickly proved a result which implies that finite fields are C1-fields. In danger of
losing his thesis problem, Warning responded by establishing a further improve-
ment. The papers of Chevalley and Warning were published consecutively [Ch35],
[Wa35], and the following result is now a classic of elementary number theory.

Theorem 1.1. (Chevalley-Warning Theorem) Let n, r, d1, . . . , dr ∈ Z+ with

(1) d := d1 + . . .+ dr < n.

For 1 ≤ i ≤ r, let Pi(t1, . . . , tn) ∈ Fq[t1, . . . , tn] be a polynomial of degree di. Let

Z = Z(P1, . . . , Pr) = {x ∈ Fn
q | P1(x) = . . . = Pr(x) = 0}

be the common zero set in Fn
q of the Pi’s, and let z = #Z. Then:

a) (Chevalley’s Theorem [Ch35]) We have z = 0 or z ≥ 2.
b) (Warning’s Theorem [Wa35]) We have z ≡ 0 (mod p).

In fact very easy modifications of Chevalley’s argument prove Warning’s Theorem.
The more substantial contribution of [Wa35] is the following result.
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Theorem 1.2. (Warning’s Second Theorem) With hypotheses as in Theorem 1.1,

(2) z = 0 or z ≥ qn−d.

There is a rich body of work on extensions and refinements of Theorem 1.1 – too
much to recall here! – but let us mention work of Ax and Katz which computes the
minimal p-adic valuation of z as P1, . . . , Pr range over all polynomials of degrees
d1, . . . , dr and work of Esnault showing that various geometric classes of varieties
– including all Fano varieties – over finite fields must have rational points [Ax64],
[Ka71], [Es03]. In contrast we know of only one refinement of Theorem 1.2: [HB11].

The above generalizations of the Chevalley-Warning Theorem point in the direction
of arithmetic geometry. Here we are more interested in interfaces with combina-
torics. Here is the first result in this direction.

Theorem 1.3. (Schanuel’s Theorem [Sc74]) Let n, r, v1, . . . , vr ∈ Z+. For 1 ≤ j ≤
r, let Pj(t1, . . . , tn) ∈ Z/pvjZ[t1, . . . , tn] be a polynomial without constant term. Let

Z◦ = {x ∈ Zn \ (pZ)n | Pj(x) ≡ 0 (mod pvj ) for all 1 ≤ j ≤ r}.

a) If
∑r

j=1 deg(Pj)
(

pvj−1
p−1

)
< n, then Z◦ ̸= ∅.

b) If
∑r

j=1(p
vj − 1) deg(Pj) < n, then Z◦ ∩ {0, 1}n ̸= ∅.

c) Let b1, . . . , bn be non-negative integers. If
∑r

j=1(p
vj−1) deg(Pj) <

∑n
i=1 bi, then

Z◦ ∩
∏n

i=1[0, bi] ̸= ∅.

These results have been revisited in light of the Polynomial Method, initiated
by N. Alon [Al99] and continued by many others. The first application in [Al99] is
to Chevalley’s Theorem. Recently U. Schauz [Sc08] and then D. Brink [Br11] used
Alon’s ideas to prove a restricted variable generalization.

Theorem 1.4. (Restricted Variable Chevalley Theorem) Let P1, . . . , Pr ∈ Fq[t] =
Fq[t1, . . . , tn]. For 1 ≤ i ≤ n, let ∅ ̸= Ai ⊆ Fq and put A =

∏n
i=1 Ai. Put

ZA = {a = (a1, . . . , an) ∈ A | P1(a) = . . . = Pr(a) = 0}, zA = #ZA.

If
∑r

i=1(q − 1) degPi <
∑n

i=1(#Ai − 1), then zA ̸= 1.

Schauz and Brink (independently) gave a common generalization of Theorem 1.3
and of Theorem 1.4 for q = p.

Theorem 1.5. (Schauz-Brink Theorem [Sc08] [Br11])
Let P1(t1, . . . , tn), . . . , Pr(t1, . . . , tn) ∈ Z[t1, . . . , tn] be polynomials, let p be a prime,
let v1, . . . , vr ∈ Z+, and let A1, . . . , An be nonempty subsets of Z such that for each
i, the elements of Ai are pairwise incongruent modulo p, and put A =

∏n
i=1 Ai. Let

ZA = {x ∈ A | Pj(x) ≡ 0 (mod pvj ) ∀1 ≤ j ≤ r}, zA = #ZA.

a) If
∑r

j=1(p
vj − 1) deg(Pj) <

∑n
i=1 (#Ai − 1), then zA ̸= 1.

b) (Boolean Case) If A = {0, 1}n and
∑r

j=1(p
vj − 1) deg(Pj) < n, then zA ̸= 1.

Following a remark of Brink, we state in §3.1 a generalization to number fields,
Theorem 3.1, which fully recovers Theorem 1.4.

The main result of this paper simultaneously generalizes Theorems 1.2 and 3.1.
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Theorem 1.6. (Restricted Variable Warning’s Second Theorem) Let K be a num-
ber field with ring of integers R, let p be a nonzero prime ideal of R, and let q = pℓ

be the prime power such that R/p ∼= Fq. Let A1, . . . , An be nonempty subsets of R
such that for each i, the elements of Ai are pairwise incongruent modulo p, and put
A =

∏n
i=1 Ai. Let r, v1, . . . , vr ∈ Z+. Let P1, . . . , Pr ∈ R[t1, . . . , tn]. Let

ZA = {x ∈ A | Pj(x) ≡ 0 (mod pvj ) ∀1 ≤ j ≤ r}, zA = #ZA.

a) zA = 0 or zA ≥ m
(
#A1, . . . ,#An;#A1 + . . .+#An −

∑r
j=1(q

vj − 1) deg(Pj)
)
.

b) We recover Theorem 1.2 and Theorem 3.1 as special cases.

c) (Boolean Case) We have z{0,1}n = 0 or z{0,1}n ≥ 2n−
∑r

j=1(q
vj−1) deg(Pj).

Theorem 1.6 includes all of the results stated so far except Theorem 1.1b). In this
regard we should first mention that J. Ax gave a ten line proof of Theorem 1.1b)
[Ax64]. Chevalley’s original proof is longer but seems more penetrating: it adapts
easily to give a restricted variable generalization of Theorem 1.1b): see [Cl14, Thm.
16]. Adapting Chevalley’s method for finitely restricted variables over an arbitrary
field leads to a Coefficient Formula which has appeared in the recent literature
[Sc08, Thm. 3.2], [La10, Thm. 3], [KP12, Thm. 4], [Cl14, §3.3] as a natural sharp-
ening of Alon’s Combinatorial Nullstellensatz II [Al99, Thm. 1.2].

Whereas the Combinatorial Nullstellensatz and its refinements are key to the
proof of the results of Schanuel, Schauz and Brink, the key to the proof of the
Restricted Variable Warning’s Second Theorem is a different Polynomial Method:
the Alon-Füredi Theorem. §2 of this paper recalls the statement of this theorem
and gives some other needed preliminaries. The proof of Theorem 1.6 occurs in §3.

Chevalley’s Theorem has some combinatorial applications, notably the Theorem
of Erdős, Ginzburg and Ziv (henceforth EGZ). Schanuel’s refinement has a very
striking application in additive combinatorics: it yields a theorem of Olson com-
puting the Davenport constant of a finite commutative p-group. Further, it is the
main technical input of a result of Alon, Kleitman, Lipton, Meshulam, Rabin and
Spencer (henceforth AKLMRS) on selecting from set systems to get a union of
cardinality divisible by a prime power q. As Brink shows, his Theorem 1.5 can
be applied in additive combinatorics to convert theorems asserting the existence of
subsequences into theorems asserting the existence of “generalized subsequences”
formed by taking linear combinations with coefficients in a restricted variable set.
This is a natural generalization, going back at least as far as the Shannon capacity:
c.f. [MN82]. Analogues of the EGZ Theorem in the context of generalized subse-
quences (or “weighted subsequences”) in p-groups are pursued in the recent work
[DAGS12] of Das Adhikari, Grynkiewicz and Sun (henceforth DAGS).

In §4 we apply Theorem 1.6 to each of the above situations, getting in each case
a quantitative refinement which also includes the inhomogeneous case: thus
whereas Brink gave an upper bound on the length of a sequence in a p-group G
with no generalized 0-sum subsequence, we give a lower bound on the number of
g-sum generalized subsequences (for any g ∈ G) which recovers Brink’s result when
we specialize to g = 0 and ask only for one nontrivial subsequence. Specializing
to the case of “classical” g-sum subsequences we recover a recent result of Chang,
Chen, Qu, Wang and Zhang (henceforth CCQWZ) [CCQWZ11]. We give similar
refinements of the results of AKLMRS and DAGS.
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We hope these combinatorial results will be of interest. But more than any single
application, our main goal is to demonstrate that Theorem 1.6 is a tool that can
be broadly applied to refine combinatorial existence theorems into theorems which
give explicit (and sometimes sharp) lower bounds on the number of combinatorial
objects asserted to exist and to treat inhomogeneous cases with results in which
the lower bounds are conditional on the existence of any objects of a given type
(a plainly necessary restriction in many natural situations). We tried to find ap-
plications which are substantial enough to serve as a true “proof of concept,” and
we hope to convince the reader that this tool can be a useful one for researchers in
branches of mathematics where polynomial methods are currently being applied.

2. Preliminaries

2.1. Balls in Bins.

Let n ∈ Z+, and let a1 ≥ . . . ≥ an ≥ 1 be integers. Consider bins A1, . . . , An

such that Ai can hold at most ai balls. For N ∈ Z+, a distribution of N balls
in the bins A1, . . . , An is an n-tuple y = (y1, . . . , yn) with y1 + . . .+ yn = N and
1 ≤ yi ≤ ai for all i. Such distributions exist if and only if n ≤ N ≤ a1 + . . .+ an.

For a distribution y of N balls into bins A1, . . . , An, let P (y) = y1 · · · yn. If
n ≤ N ≤ a1+. . .+an, letm(a1, . . . , an;N) be the minimum value of P (y) as y ranges
over all distributions of N balls into bins A1, . . . , An. We have m(a1, . . . , an;n) = 1.
If N ∈ Z is such that N < n, put m(a1, . . . , an;N) = 1. Similarly, we have
m(a1, . . . , an; a1 + . . . + an) = a1 · · · an. If N ∈ Z is such that N > a1 + . . . + an,
put m(a1, . . . , an;N) = a1 · · · an. Note that if N1 ≤ N2 then m(a1, . . . , an;N1) ≤
m(a1, . . . , an;N2).

Lemma 2.1. Let n, a1, . . . , an ∈ Z+ with max{a1, . . . , an} ≥ 2. Let N > n be an
integer. Then m(a1, . . . , an;N) ≥ 2.

Proof. This is, literally, the pigeonhole principle. �

The following simple result describes the minimal distribution in all cases and thus
essentially computes m(a1, . . . , an;N). A formula in the general case would be
unwieldy, but we give exact formulas in some special cases that we will need later.

Lemma 2.2. Let n ∈ Z+, and let a1 ≥ . . . ≥ an ≥ 1 be integers. Let N be an
integer with n ≤ N ≤ a1 + . . .+ an.
a) We define the greedy configuration yG = (y1, . . . , yn): after placing one ball
in each bin, place the remaining balls into bins from left to right, filling each bin
completely before moving on to the next bin, until we run out of balls. Then

m(a1, . . . , an;N) = P (yG) = y1 · · · yn.

b) Suppose a1 = . . . = an = a ≥ 2. If n ≤ N ≤ an, then

m(a, . . . , a;N) = (R+ 1)a⌊
N−n
a−1 ⌋,

where R ≡ N − n (mod a− 1) and 0 ≤ R < a− 1.
c) For all non-negative integers k, we have

m(2, . . . , 2; 2n− k) = 2n−k.
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Proof. a) Consider the following two kinds of “elementary moves” which transform
one distribution y of N balls in bins of size a1 ≥ . . . ≥ an ≥ 1 into another y′:
(i) (Bin Swap): If for i < j we have yi < yj , then let y′ be obtained from y by
interchanging the ith and jth coordinates. Then P (y′) = P (y).
(ii) (Unbalancing Move): Suppose that for 1 ≤ i ̸= j ≤ n we have 1 < yi ≤ yj < aj .
Then we may remove a ball form the ith bin and place it in the jth bin to get a
new distribution y′ = (y′1, . . . , y

′
n) and

P (y′) =
y′iy

′
j

yiyj
P (y) =

yiyj + yi − yj − 1

yiyj
P (y) < P (y).

Starting with any distribution y, we may perform a sequence of bin swaps to get a
distribution y′ with and y′1 ≥ . . . ≥ y′n and then a sequence of unbalancing moves,
each of which has i maximal such that 1 < yi and j minimal such that yj < aj , to
arrive at the greedy configuration yG. Thus P (y) = P (y′) ≥ P (yG).
b) Put k = ⌊N−n

a−1 ⌋, so via division with remainder we have

N − n = k(a− 1) +R.

The greedy configuration is then

yG = (

k︷ ︸︸ ︷
a, . . . , a, R+ 1,

n−k−1︷ ︸︸ ︷
1, . . . , 1).

c) This is the special case a = 2 of part b). �

2.2. The Alon-Füredi Theorem.

Theorem 2.3. (Alon-Füredi Theorem) Let F be a field, let A1, . . . , An be nonempty
finite subsets of F . Put A =

∏n
i=1 Ai and ai = #Ai for all 1 ≤ i ≤ n. Let

P ∈ F [t] = F [t1, . . . , tn] be a polynomial. Let

UA = {x ∈ A | P (x) ̸= 0}, uA = #UA.
Then uA = 0 or uA ≥ m(a1, . . . , an; a1 + . . .+ an − degP ).

Proof. See [AF93, Thm. 5]. �

2.3. The Schanuel-Brink Operator.

Let p be a prime number. For 1 ≤ i ≤ n, let Ai be a set of coset representa-
tives of pZ in Z; put A =

∏n
i=1 Ai. In [Sc74], Schanuel proves the following result.

Lemma 2.4. Let v ∈ Z+, and let f ∈ Z/pvZ[t] = Z/pvZ[t1, . . . , tn] be a polynomial
of degree d. There are polynomials f1, . . . , fv ∈ Z/pZ[t] of degrees d, pd, . . . , pv−1d
such that for all x ∈ A, f(x) ≡ 0 (mod pv) iff fi(x) ≡ 0 (mod p) for all 1 ≤ i ≤ v.

Since the sum of the degrees of the fi’s in Lemma 2.4 is d+pd+. . .+pv−1d = (p
v−1
p−1 )d,

Lemma 2.4 reduces Theorem 1.3a) to the q = p case of Chevalley’s Theorem.

Although the statement concerns only finite rings, all known proofs use char-
acteristic 0 constructions. Schanuel’s proof works in the ring of p-adic integers
Zp = lim←−Z/pnZ: as he mentions, it is really motivated by the theory of Witt

vectors but can be – and was – presented in a self-contained way. In [Br11], Brink
generalized and simplified Schanuel’s construction (actually some of Brink’s simpli-
fications have already been incorporated in our statement of Lemma 2.4; Schanuel
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spoke of solutions with coordinates in the set of Teichmüller representatives for Fp

in Zp) by working in the localization of Z at the prime ideal (p), namely

Z(p) =
{a
b
∈ Q such that p - b

}
.

Following Schanuel, Brink introduces an operator (which depends on the choice of
A, though we suppress it from the notation)

∆ : Z(p)[t]→ Z(p)[t]

such that deg∆(f) ≤ pdeg f and for all x ∈ A we have f(x) ≡ 0 (mod pv) iff
(∆if)(x) ≡ 0 (mod p) for 0 ≤ i ≤ v − 1. This is all we need to prove Theorem
1.6 in the q = p case. Since this is the only case which gets applied in §4, readers
who are more interested in combinatorics than algebraic number theory may wish
to move on to the next section. However, we wish to state Theorem 1.6 so that it
includes Warning’s Second Theorem over Fq and to deduce a suitable strengthening
of Schauz-Brink’s Theorem from it, and this necessitates the following setup.

Let K be a number field with ring of integers R. Let p be a prime ideal of R,
so R/p ∼= Fq for a prime power q = pℓ. Let Rp be the localization of R at the prime
ideal p, which is a discrete valuation ring with discrete valuation vp. Let π in R be
such that vp(π) = 1, so pRp = πRp.

For 1 ≤ i ≤ n, let ∅ ̸= Ai ⊂ R be such that distinct elements of Ai are in-
congruent modulo p. (So #Ai ≤ q for all i.) Put A =

∏n
i=1 Ai. For 1 ≤ i ≤ n,

there is τi(x) ∈ K[x] of degree less than q such that τi(ai) =
ai−aq

i

π for all ai ∈ Ai:

τi(x) =
∑

ai∈Ai

ai − aqi
π

∏
bi∈Ai\{ai}

x− bi
ai − bi

.

This formula makes clear that τi(x) ∈ Rp[x]. For 1 ≤ i ≤ n, put

σi(x) = xq + πτi(x).

It follows that:
• σi(x) ∈ Rp[x];
• deg σi = q;
• for all ai ∈ Ai, σi(ai) = ai; and
• σi(x) ≡ xq (mod pRp[x]).

We define the Schanuel-Brink operator ∆ : K[t1, . . . , tn]→ K[t1, . . . , tn] by

∆ : f(t1, . . . , tn) 7→
f(t1, . . . , tn)

q − f(σ1(t1), . . . , σn(tn))

π
.

Lemma 2.5. (Properties of the Schanuel-Brink Operator)
a) For all f ∈ K[t], deg∆(f) ≤ q deg f .

b) If c ∈ K, then ∆(c) = cq−c
π .

c) For all f ∈ Rp[t], we have ∆(f) ∈ Rp[t].
d) For all f ∈ Rp[t], a = (a1, . . . , an) ∈ A, i ∈ Z+, we have (∆if)(a) = ∆i(f(a)).
e) For all c ∈ Rp and v ∈ Z+, the following are equivalent:
(i) c ≡ 0 (mod pv).
(ii) We have c,∆c, . . . ,∆v−1(c) ≡ 0 (mod p).
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Proof. Parts a) and b) are immediate.
c) It is enough to show that the image in Fq[t] of f(t)

q − f(σ1(t1), . . . , σn(tn)) is
zero. In characteristic p we have (x+y)p = xp+yp, and applying this ℓ times gives
(x+ y)q = xq + yq. Since also aq = a for all a ∈ Fq it follows that for any

f(t) =
∑
I

cIt
a1
1 · · · tan

n

we have that as elements of Fq[t],

f(t)q =
∑
I

cIt
qa1

1 · · · tqan
n = f(σ1(t1), . . . , σn(tn)).

d) Since σi(ai) = ai for all ai ∈ Ai,

(∆f)(a) =
f(a1, . . . , an)

q − f(a1, . . . , an)

π
= ∆(f(a)),

establishing the i = 1 case. The general case follows by induction.
e) If c = 0 then (i) and (ii) hold. Each of (i) and (ii) implies c ≡ 0 (mod p), so we
may assume c ̸= 0 and c ≡ 0 (mod p). Since c ≡ 0 (mod p), vp(c) ≥ 1 and thus

vp(c
q) = qvp(c) > vp(c).

It follows that vp(c
q − c) = vp(c) (if p

vp(c)+1 divided cq − c, then it would divide cq

and hence it would divide c, contradiction) and thus

vp(∆(c)) = vp

(
cq − c

π

)
= vp(c

q − c)− 1 = vp(c)− 1.

The equivalence (i) ⇐⇒ (ii) follows. �
The following immediate consequence is the main result of this section.

Corollary 2.6. For all f ∈ Rp[t], a ∈ A and v ∈ Z+, we have f(a) ≡ 0 (mod pv)
iff (∆if)(a) ≡ 0 (mod p) for all 0 ≤ i ≤ v − 1.

3. The Restricted Variable Warning’s Second Theorem

3.1. The Schauz-Brink Theorem in a Number Field.

Theorem 3.1. Let K be a number field with ring of integers R, let p be a nonzero
prime ideal of R, and let q = pℓ be the prime power such that R/p ∼= Fq. Let
P1(t1, . . . , tn), . . . , Pr(t1, . . . , tn) ∈ R[t1, . . . , tn], let v1, . . . , vr ∈ Z+, and let A1, . . . , An

be nonempty subsets of R such that for each i, the elements of Ai are pairwise in-
congruent modulo p, and put A =

∏n
i=1 Ai. Let

ZA = {x ∈ A | Pj(x) ≡ 0 (mod pvj ) ∀1 ≤ j ≤ r}, zA = #ZA.

a) If
∑r

j=1(q
vj − 1) deg(Pj) <

∑n
i=1 (#Ai − 1), then zA ̸= 1.

b) (Boolean Case) If A = {0, 1}n and
r∑

j=1

(qvj − 1) deg(Pj) < n,

then zA ̸= 1.

Brink states (but does not prove) Theorem 3.1 [Br11, p. 130]. Having carried
over the Schanuel-Brink operator to number fields, we could apply Brink’s proof
verbatim. Rather than replicate this argument, we will deduce Theorem 3.1 as a
consequence of Theorem 1.6.
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3.2. Proof of The Restricted Variable Warning’s Second Theorem.

Proof. a) Step 1: Suppose each vi = 1. Put d =
∑r

i=1 deg(Pi) and

P (t) =
r∏

i=1

(1− Pi(t)
q−1).

Then degP = (q − 1)d, and

UA = {x ∈ A | P (x) ̸= 0} = ZA,

so

zA = #ZA = #UA = uA.

Applying the Alon-Füredi Theorem we get zA = 0 or

zA ≥ m(#A1 + . . .+#An;#A1 + . . .+#An − (q − 1)d).

Step 2: Let a ∈ A and f ∈ Rp[t1, . . . , tn]. By Corollary 2.6,

f(a) ≡ 0 (mod pvi) ⇐⇒ (∆if)(a) ≡ 0 (mod p)∀ i ≤ vi − 1.

Moreover, by Lemma 2.5a), deg∆if ≤ qi deg f . Thus for each 1 ≤ j ≤ r, we have
exchanged the congruence Pj ≡ 0 (mod pvj ) for the system of congruences

Pj ≡ 0 (mod p), ∆Pj ≡ 0 (mod p), . . . ,∆vj−1Pj ≡ 0 (mod p)

of degrees at most degPj , q degPj , . . . , q
vj−1 degPj . Hence the sum of the degrees

of all the polynomial congruences is at most

r∑
j=1

(1 + q + . . .+ qvj−1) degPj =
r∑

j=1

qvj − 1

q − 1
deg(Pj).

Apply Step 1.
b) To recover Theorem 1.2: for all i, take Ai to be a set of coset representatives for
pR in R, so #Ai = q for all i. Let k = n− (d1 + . . .+ dr) = n− d, so

#A1 + . . .+#An − degP = nq − (q − 1)d = kq + n− k.

Lemma 2.2b) gives

m(#A1, . . . ,#An;#A1+ . . .+#An−degP ) = m(q, . . . , q; kq+n−k) = qk = qn−d.

To recover Theorem 3.1: apply Lemma 2.1 and part a).
c) For all i take Ai = {0, 1}. Lemma 2.2c) gives

m(#A1, . . . ,#An;#A1+. . .+#An−degP ) = m(2, . . . , 2; 2n−
r∑

j=1

(qvj−1) deg(Pj))

= 2n−
∑r

j=1(q
vj−1) deg(Pj). �
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3.3. Deductions From the Unrestricted Cases.

Schanuel proved part b) of Theorem 1.3 by applying part a) to the polynomials

Pj(t
p−1
1 , · · · , tp−1

n ): this works since for all x ∈ Fp, x
p−1 ∈ {0, 1}. He proved part c)

by applying part a) to the polynomials Pj(t
p−1
1,1 + . . .+ tp−1

1,b1
, . . . , tp−1

n,1 + . . .+ tp−1
n,bn

)
in the b1+ . . .+ bn variables t1,1, . . . , t1,b1 , . . . , tn,1, . . . , tn,bn . In particular, the case
of Theorem 1.3b) in which all congruences are modulo p is reduced to Chevalley’s
Theorem. This substitution underlies many of the combinatorial applications of
the Chevalley-Warning Theorem, e.g. [BR89]: see §4.4.

Question 1. For which A =
∏n

i=1 Ai ⊂ Fn
q can one deduce the Restricted Variable

Chevalley Theorem (Theorem 1.4) from its unrestricted version (Theorem 1.1a))?

We turn to Warning’s Second Theorem. Since the bound obtained in Theorem 1.6
is in terms of the combinatorially defined quantity m(a1, . . . , an;N), it is natural to
wonder to what extent Theorem 1.6 could be deduced from Theorem 1.2 by purely
combinatorial arguments. Consider again A = {0, 1}n. It turns out that some work
has been done on this problem: in Theorem 1.6c), take r = v1 = 1 and q = p, write
P for P1, and put d = degP , so

(3) z{0,1}n = 0 or z{0,1}n ≥ 2n−(p−1)d.

Using Warning’s Second Theorem and purely combinatorial arguments, Chattopad-
hyay, Goyal, Pudlák and Thérien showed [CGPT06, Thm. 11] that

(4) z{0,1}n = 0 or z{0,1}n ≥ 2n−(log2 p)(p−1)d.

For p = 2, (3) and (4) coincide with (2). For p > 2, (3) is an improvement of (4).

4. Combinatorial Applications

4.1. The Davenport Constant and g-Sum Subsequences.

Let (G,+) be a nontrivial finite commutative group. For n ∈ Z+, let x = (x1, . . . , xn) ∈
Gn. We view x as a length n sequence x1, . . . , xn of elements in G and a subset
J ⊂ {1, . . . , n} as giving a subsequence xJ of x. For g ∈ G, we say xJ is a g-sum
subsequence if

∑
i∈J xi = g. When g = 0 we speak of zero-sum subsequences.

The Davenport constant D(G) is the least d ∈ Z+ such that every x ∈ Gd

has a nonempty zero-sum subsequence. The pigeonhole principle gives

(5) D(G) ≤ #G.

The Davenport constant arises naturally in the theory of factorization in integral
domains. We mention one result to show the flavor.

Theorem 4.1. Let K be a number field, let R be its ring of integers, and let ClR
be the ideal class group of R. For x ∈ R nonzero and not a unit, let L(x) (resp.
l(x)) be the maximum (resp. the minimum) of all lengths of factorizations of x into
irreducible elements, let

ρ(x) =
L(x)

l(x)
,
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and let ρ(R) be the supremum of ρ(x) as x ranges over nonzero nonunits.
a) (Carlitz [Ca60]) We have ρ(R) = 1 ⇐⇒ #ClR ≤ 2.

b) (Valenza [Va90]) We have ρ(R) = max
(

D(ClR)
2 , 1

)
.

For any finite commutative group G, there are unique positive integers r, n1, . . . , nr

with 1 < nr | nr−1 | . . . | n1 such that G ∼=
⊕r

i=1 Z/niZ. Put

d(G) = 1 +
r∑

i=1

(ni − 1).

Let ei ∈
⊕r

i=1 Z/niZ be the element with ith coordinate 1 and all other coordinates
zero. Then the sequence

n1−1︷ ︸︸ ︷
e1, . . . , e1,

n2−1︷ ︸︸ ︷
e2, . . . , e2, . . . ,

nr−1︷ ︸︸ ︷
er, . . . , er

shows that

(6) d(G) ≤ D(G).

Comparing (5) and (6) shows D(G) = #G = d(G) when G is cyclic. In 1969, J.E.
Olson conjectured that D(G) = d(G) for all G and proved it in the following cases.

Theorem 4.2. (Olson) For a finite commutative group G, d(G) = D(G) holds if:
(i) G is a direct product of two cyclic groups; or
(ii) G is a p-group (i.e., #G = pa for some a ∈ Z+).

Proof. Part (i) is [Ol69b, Cor. 1.1]. Part (ii) is [Ol69a, (1)]. �

However, at almost the same time Olson’s conjecture was disproved.

Theorem 4.3. (van Emde Boas-Kruyswijk [EBK69]) For G = Z/6Z × Z/3Z ×
Z/3Z× Z/3Z, we have d(G) < D(G).

In the intervening years there has been an explosion of work on the Davenport
constant and related quantities. Nevertheless, for most finite commutative groups
G, the exact value of D(G) remains unknown.

Let us turn to g-sum subsequences with g ̸= 0. There is no analogue of the Dav-
enport constant here, because for for all n ∈ Z+, (0, . . . , 0) ∈ Gn has length n and
no g-sum subsequence. On the other hand, for g ∈ G and x ∈ Gn, let

Ng(x) = #

{
J ⊂ {1, . . . , n}

∣∣∣∑
i∈J

xi = g

}
.

Theorem 4.4. Let (G,+) be a finite commutative group, let n ∈ Z+, and let g ∈ G.
a) ([Ol69b, Thm. 2]) We have minx∈Gn N0(x) = max{1, 2n+1−D(G)}.
b) ([CCQWZ11, Thm. 2]) For all x ∈ Gn, if Ng(x) > 0 then Ng(x) ≥ 2n+1−D(G).

Now let G =
⊕r

i=1 Z/pviZ be a p-group.

As Schanuel observed, in this case Theorem 4.2 is a quick consequence of The-
orem 1.3. Indeed, suppose n > d(G) =

∑r
i=1 (p

vi − 1), and represent elements of
G by r-tuples of integers (a1, . . . , ar). For 1 ≤ i ≤ n and 1 ≤ j ≤ r, let

gj = (a
(j)
1 , . . . , a(j)r )
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and

Pi(t1, . . . , tn) =
n∑

j=1

a
(j)
i tj .

Theorem 1.3b) applies to give x ∈ {0, 1}n \ {(0, . . . , 0)} such that

n∑
j=1

a
(j)
i xj ≡ 0 (mod pvi) ∀1 ≤ i ≤ r.

Then we get a zero-sum subsequence from J = {j | xj = 1}.

Moreover, in this case the Restricted Variable Warning’s Second Theorem implies
a combination of Theorem 4.2 and Theorem 4.4: namely Theorem 4.4 with D(G)
replaced by the explicit value d(G) =

∑r
i=1 (p

vi − 1). By part a), Theorem 1.6 and
Lemma 2.2, we get Ng(x) = 0 or

Ng(x) ≥ m

(
2, . . . , 2;n+ (n−

r∑
i=1

(pvi − 1)

)
= 2n−

∑r
i=1(p

vi−1).

4.2. Generalized Subsequences.

The following results are the analogues of those of the previous section for gen-
eralized g-sum subsequences. The proofs are the same.

Theorem 4.5. (Troi-Zannier [TZ97], Brink [Br11]) Let G ∼=
⊕r

j=1 Z/pviZ be a
finite commutative p-group. Let A1, . . . , An ⊂ Z be nonempty subsets such that each
Ai has pairwise incongruent elements modulo p. Put A =

∏n
i=1 Ai. Suppose that

n∑
i=1

(#Ai − 1) >
r∑

j=1

(pvj − 1) .

Let x = (x1, . . . , xn) ∈ Gn be a sequence of elements in G.
a) Then #{(a1, . . . , an) ∈ A | a1x1 + . . .+ anxn = 0} ≠ 1.
b) If 0 ∈ A, then there is 0 ̸= a = (a1, . . . , an) ∈ A such that a1x1+ . . .+anxn = 0.

Remark 4.6. Theorem 4.5 was first proven by Troi and Zannier [TZ97, Thm. 1].
The original argument of Troi and Zannier uses group ring methods. They remark
on their inability to carry out a Chevalley-Warning style proof. It seems to us that
Brink’s proof using the Schauz-Brink Theorem is precisely the type of the argument
that Troi and Zannier were looking for.

Theorem 4.7. Let p be a prime, let r, v1, . . . , vr ∈ Z+; put G =
⊕r

i=1 Z/pviZ. For
n ∈ Z+, let x = (x1, . . . , xn) ∈ Gn be a sequence of elements in G. Let A1, . . . , An

be nonempty subsets of Z such that for each i the elements of Ai are pairwise
incongruent modulo p, and put A =

∏n
i=1 Ai. For g = (g1, . . . , gr) ∈ G, let

Ng,A(x) = #{a = (a1, . . . , an) ∈ A | a1x1 + . . .+ anxn = g}.

Then Ng,A(x) = 0 or

Ng,A(x) ≥ m

(
#A1, . . . ,#An;#A1 + . . .+#An −

r∑
i=1

(pvi − 1)

)
.
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4.3. Counting Sub-(Set Systems) With Union Cardinality 0 Modulo q.

In [AKLMRS91], AKLMRS applied Schanuel’s Theorem to deduce a result on set
systems. This is an interesting case for these methods because (i) unlike the ap-
plications of the previous section the polynomials are not linear (or even obtained
from linear polynomials by applying the Schanuel-Brink operator); (ii) there is no
known purely combinatorial proof; and (iii) the bound obtained is sharp in all cases.
By applying Theorem 1.6 instead of Schanuel’s Theorem, we immediately derive a
quantitative refinement of this result and also treat the “inhomogeneous case.”

A set system is a finite sequence F = (F1, . . . ,Fn) of finite subsets of some
fixed set X. We say that n is the length of F . The maximal degree of F is
maxx∈X #{1 ≤ i ≤ n | x ∈ Fi}. For m a positive integer and g ∈ Z/mZ, let

NF (m, g) = #{J ⊂ {1, . . . , n} | #(
∪
i∈J

Fi) ≡ g (mod m)},

and for n, d ∈ Z+, let

Nn,d(m) = minNF (m, 0),

the minimum ranging over set systems of length n and maximal degree at most d.
Let fd(m) be the least n ∈ Z+ such that for any degree d set system F of length
n, there is a nonempty subset J ⊂ {1, . . . , n} such that m | #(

∪
i∈J Fi). Thus

(7) fd(m) = min{n ∈ Z+ | Nn,d(m) ≥ 2}.

Lemma 4.8. (AKLMRS) We have fd(m) ≥ d(m− 1) + 1.

Proof. Let Aij be a family of pairwise disjoint sets each of cardinality m, as 1 ≤ i ≤
m−1, 1 ≤ j ≤ d. Let {v1, . . . , vm−1} be a set of cardinality m−1, disjoint from all
the Aij ’s. Then F = {Aij ∪ {vi} | 1 ≤ i ≤ m− 1, 1 ≤ j ≤ d} has length d(m− 1)
and for no nonempty subset J ⊂ {1, . . . , d(m−1)} do we have m | #(

∪
i∈J Fi). �

Theorem 4.9. Let q = pv be a prime power, g ∈ Z/pvZ, d, n ∈ Z+, and F =
(F1, . . . ,Fn) a set system of maximal degree d. Then:
a) NF (p

v, g) is either 0 or at least 2n−d(pv−1). We deduce:
b) Nn,d(p

v) ≥ 2n−d(pv−1); and thus
c) (AKLMRS) fd(q) = d(pv − 1) + 1.

Proof. a) For F a set system of length n and maximal degree at most d, put

h(t1, . . . , tn) =
∑

∅ ̸=J⊂{1,...,n}

(−1)#J+1#(
∩
j∈J

Fi)
∏
j∈J

tj .

Then deg h ≤ d and h(0) = 0. For any x ∈ {0, 1}n, let Jx = {1 ≤ j ≤ n | xj = 1}.
The Inclusion-Exclusion Principle implies

h(x) = #
∪
j∈Jx

Fj ,

soNF (p
v, g) counts the number of solutions x ∈ {0, 1}n to the congruence h(t)−g ≡

0 (mod pv). Applying Theorem 1.6 establishes part a).
b) Taking J = ∅ shows NF (p

v, 0) ≥ 1. Apply part a).
c) By part a) and (7), we see that fd(q) ≤ d(q − 1) + 1. Apply Lemma 4.8. �
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4.4. An EGZ-Type Theorem.

As we saw in §4.1, computing the Davenport constant of a finite cyclic group is
an easy exercise. A more interesting variant is to ask how large n needs to be in
order to ensure that any sequence of length n in the group Z/mZ has a zero-sum
subsequence of length m. The sequence

(

m−1︷ ︸︸ ︷
0, . . . , 0,

m−1︷ ︸︸ ︷
1, . . . , 1)

shows that we need to take n ≥ 2m − 1. The following converse is one of the
founding results in this branch of additive combinatorics.

Theorem 4.10. (Erdős-Ginzburg-Ziv [EGZ61]) Every sequence of length 2m − 1
in Z/mZ has a zero-sum subsequence of length m.

It is not hard to see that if Theorem 4.10 holds for positive integers m1 and m2 then
it holds for their product, and thus one reduces to the case in which m is prime.
The original work [EGZ61] showed this via a combinatorial argument. Later it was
realized that one can get a quick proof using Chevalley’s Theorem [BR89].

A recent paper of DAGS [DAGS12] treats the analogous problem in any finite
commutative p-group, with zero-sum subsequences replaced by generalized zero-
sum subsequences in the sense of §4.2. As before, using Theorem 1.6 we get a
quantitative refinement which also includes the inhomogeneous case.

For a finite commutative group G, let expG denote the exponent of G, i.e., the
least common multiple of all orders of elements in G.

Lemma 4.11. Let {0} ⊂ A ⊂ Z be a finite subset, no two of whose elements are
congruent modulo p. There is CA ∈ Z(p)[t] of degree #A− 1 such that for a ∈ A,

CA(a) =

{
0 a = 0

1 a ̸= 0
.

Proof. We may take CA(t) = 1−
∏

a∈A\{0}
a−t
a . �

Theorem 4.12. Let k, r, v1 ≤ . . . ≤ vr be positive integers, and let G =
⊕r

i=1 Z/pviZ.
Let A1, . . . , An be nonempty subsets of Z, each containing 0, such that for each i
the elements of Ai are pairwise incongruent modulo p. Put

A =
n∏

i=1

Ai, aM = max#Ai.

For x ∈ G, let EGZA,k(x) be the number of (a1, . . . , an) ∈ A such that a1x1 + . . .+
anxn = x and pk | #{1 ≤ i ≤ n | ai ̸= 0}. Then either EGZA,k(x) = 0 or
(8)

EGZA,k(x) ≥ m(#A1, . . . ,#An;#A1+ . . .+#An−
r∑

i=1

(pvi−1)−(aM −1)(pk−1)).

Proof. We apply Theorem 1.6 as in the proof of Theorem 4.7. The extra condition
that the number of nonzero terms in the zero-sum generalized subsequence is a
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multiple of pk is enforced via the polynomial congruence

CA1(t1) + . . .+ CAn(tn) ≡ 0 (mod pk),

which has degree aM − 1. �

Corollary 4.13. In Theorem 4.12, let 0 ∈ A1 = . . . = An, k = vr. Put a = #A1.
a) Suppose

n ≥ expG− 1 +
D(G)

a− 1
.

Let R be such that R ≡ −
∑r

i=1(p
vi − 1) (mod a− 1) and 0 ≤ R < a− 1. Then

(9) EGZA,vr (0) ≥ (R+ 1)an+1−expG+⌊ 1−D(G)
a−1 ⌋.

b) ([DAGS12, Thm. 1.1]) Every sequence of length n in G has a nonempty zero-sum
generalized subsequence of length divisible by expG when

(10) n ≥ expG− 1 +
D(G)

a− 1
.

Proof. a) The empty subsequence ensures EGZA,vr (0) ≥ 1, so Theorem 4.12 gives

EGZA,vr (0) ≥ m

(
a, . . . , a;na−

r∑
i=1

(pvi − 1)− (a− 1)(pvr − 1)

)
.

We have

n ≥ expG− 1 +
D(G)

a− 1
> expG− 1 +

D(G)− 1

a− 1
,

hence

na− (D(G)− 1)− (a− 1)(expG− 1) = na−
r∑

i=1

(pvi − 1)− (a− 1)(pvr − 1) > n.

By Lemma 2.2b), we have

m

(
a, . . . , a;na−

r∑
i=1

(pvi − 1)− (a− 1)(pvr − 1)

)
= (R+ 1)an+1−expG+⌊ 1−D(G)

a−1 ⌋.

b) Since n ≥ expG− 1 + D(G)
a−1 > expG− 1 + D(G)−1

a−1 , we have

na−
r∑

i=1

(pvi − 1)− (a− 1)(pvr − 1) > n.

It follows from part a) and Lemma 2.1 that EGZA,vr (0) ≥ 2. �

In the proof of Corollary 4.13b), rather than using part a) we could have applied
Theorem 1.5. It is interesting to compare this approach with the proof of Corollary
4.13b) given in [DAGS12]. Their argument proves the needed case of Theorem
1.5 by exploiting properties of binomial coefficients

(
t
d

)
viewed as integer-valued

polynomials and reduced modulo powers of p. In 2006 IPM lecture notes, R. Wilson
proves Theorem 1.3 in this manner. His method works to prove Theorem 1.5.
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