

MULTIVARIABLE CALCULUS
EXAM 2
FALL 2025

Name:

Honor Code Statement:

Directions: You may **OMIT** one problem – do so by putting a slash through it. Justify all answers/solutions. Each problem is worth 10 points. Calculators/notes/texts/mobile phones are not permitted – the only permitted item is a writing utensil. Page 288 of the text is photocopied at the end of the exam. The exam is proctored by permission of the Dean of the Faculty. Best of luck.

- (1) Find the arc length function for the curve $\mathbf{x}(t) = (t, t^2 - \frac{1}{8} \ln(t))$ with initial starting point $(1, 1)$. (Hint: there will be a perfect square underneath the radical sign.)

(2) A moving particle starts at an initial position $\mathbf{x}(0) = (1, 0, 0)$ with initial velocity $\mathbf{v}(0) = \mathbf{i} - \mathbf{j} + \mathbf{k}$. Its acceleration is $\mathbf{a}(t) = 4t\mathbf{i} + 6t\mathbf{j} + \mathbf{k}$. **Find** its velocity $\mathbf{v}(t)$ at time t . **Find** its position $\mathbf{x}(t)$ at time t . **Write one sentence** that describes the position of the particle as t approaches infinity.

(3) Calculate the flow line $\mathbf{x}(t)$ of the vector field $\mathbf{F}(x, y, z) = 2\mathbf{i} - 3y\mathbf{j} + z^3\mathbf{k}$ at the point $\mathbf{x}(0) = (3, 5, 7)$.

(4) For the same vector field as in the previous problem: calculate the divergence of \mathbf{F} at this point, and calculate the curl of \mathbf{F} at this point.

(5) Find the first- and second-order Taylor polynomials for the function

$$f(x, y) = ye^{3x}$$

at the point $\mathbf{a} = (0, 0)$. Use this second order Taylor polynomial to estimate $f(0.1, 0.1)$.

(6) Find the one critical point of the following function. Then use the second derivative test for functions of two variables to determine the nature of this critical point.

$$f(x, y, z) = x^2 - xy + z^2 - 2xz + 6z$$

(7) Find the points on the sphere $x^2+y^2+z^2 = 4$ that are closest to and farthest from the point $(1, 1, 1)$. Do so using the method of Lagrange multipliers. (Hint: the function you wish to optimize is the distance between a given point (x, y, z) and the point $(1, 1, 1)$. However, optimizing the square of this distance is preferable. Why?) Avoid using a technical argument for determining which is closest and which is farthest and use some geometric reasoning/intuition instead.

(additional space to show work)