MULTIVARIABLE CALCULUS EXAM 1 FALL 2025

Name:

Honor Code Statement:

Directions: Each question or one of its subparts is worth 5 points – you may omit any one of these by putting a slash through it. Justify all answers/solutions. No outside materials are permitted. A formula sheet is on the last page. The exam is proctored by permission of the Dean of the Faculty. Best of luck!

(1) [5 points] Evaluate this limit by making a change of variables to polar coordinates.

$$\lim_{(x,y)\to(0,0)}\frac{x^2+xy+y^2}{x^2+y^2}$$

 $Date \hbox{: October 8, 2025.}$

(2) [5 points] Calculate the directional derivative of the function $f(x,y) = \frac{1}{x^2+y^2}$ at $\mathbf{a} = (3,-2)$ in the direction parallel to the vector $\mathbf{u} = \mathbf{i} - \mathbf{j}$.

(3) [5 points] Find the matrix of partial derivatives of the function $\mathbf{f}(x,y) = (x^2, xy, \sin(x))$. Use Theorem 3.10 to justify that the function is differentiable at the point (1,1).

- (4) [25 points]
 - (a) Find the equation of the plane that contains the following three points: (1,2,3),(4,0,1) and (1,3,0).

(b) Give a vector that is normal to the plane.

(c) Find the equation for a plane parallel to the one you found that contains the point (0,0,0).

(d) Find the distance between the plane found in the first part and the point (0,0,0).

(e) Find the parametric equations for the plane found in the first part of this question.

- (5) [35 points] Consider the following function with codomain \mathbb{R} : $f(x,y) = 4x^2 + 9y^2$.
 - (a) State the domain and range of the function. Is the function onto? Why or why not?

(b) Provide a counterexample to the statement, "f is one-to-one."

(c) Determine/draw several level curves of the given function. Do so for the values c=0, c=4, c=9 and one other value of c.

(d) Use this information to sketch or describe the graph of f.

(e) Find the gradient vector at the point (1,1).

(f) Use this information to find the normal line to the level curve C associated with the point (1,1) at this point. That is, find the line perpendicular to C.

(g) Find the equation of the tangent plane at the point (1,1,13).

Change of coordinates

Cylindrical to Cartesian:

$$x = r\cos\theta, \ y = r\sin\theta, z = z$$

Cartesian to cylindrical:

$$r^2 = x^2 + y^2$$
, $\tan(\theta) = \frac{y}{x}$, $z = z$

Spherical to Cartesian:

$$x=\rho\sin\varphi\cos\theta,\ y=\rho\sin\varphi\sin\theta,\ z=\rho\cos\varphi$$
 Cartesian to spherical:

$$\rho^2 = x^2 + y^2 + z^2$$
, $\tan(\varphi) = \sqrt{x^2 + y^2}/z$, $\tan(\theta) = \frac{y}{x}$

Spherical to cylindrical:

$$r = \rho \sin(\varphi), \ \theta = \theta, \ z = \rho \cos(\varphi)$$

Cylindrical to spherical:

$$\rho^{2} = r^{2} + z^{2}$$
, $\tan(\varphi) = r/z$, $\theta = \theta$