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Data from a recent field experiment suggests that differences in participation rates are responsible for much
of the variations in charity auction revenues across formats. We provide a theoretical framework for the
analysis of this and other related results. The model illustrates the limits of previous results that assume full
participation and introduces some new considerations to the choice of auction mechanism. It also implies,
however, that the data cannot be explained in terms of participation costs alone: there must exist
mechanism-specific obstacles to participation.
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1. Introduction

From the small town silent auction that raises a few hundred
dollars to the $70 million Robin Hood annual benefit in New York City
(Anderson, 2007), charities and non-profits often use auctions to
transform donations in kind into cash. The choice of format
constitutes a difficult decision problem, however, even under
idealized circumstances: if all bidders, win or lose, derive some
benefit from monies raised, revenue equivalence does not hold, even
if valuations of the object itself are private and independent. 1 It is only
in the last few years, however, that a small but vibrant literature on
the economics of charity auctions has developed.2

The best known theoretical finding is perhaps Goeree et al.'s
(2005) result that when the standard (SIPV, or single object,
independent private values) auction with risk neutral bidders is
extended so that all bidders also receive some revenue proportional
benefit, all-pay auctions produce more revenue than any winner-pay
auction. The intuition, as they characterize it, is that winner-pay
mechanisms suppress bids because when one bidder tops the others,
she wins the object but loses the chance to free ride on the benefits
associated with the best of the other bids. While there are few, if any,
examples of all-pay auctions, the result seems to rationalize the

widespread use of raffles and lotteries, both of which could be viewed
as practical variations on the all-pay theme. Engers and McManus
(2007) have since shown that if bidders who contribute experience an
additional “warm glow” (Andreoni, 1995), the superiority of the all-
pay over both first-price and second-price winner pay mechanisms
survives in the limit, as the number of bidders increases.

Two recent lab experiments would seem to support these results.
Davis et al. (2006) find that lotteries raise more revenue than English
auctions, while Schram and Onderstal (2009) conclude that lotteries
do worse than all-pay auctions but better than first price auctions. On
the other hand, Carpenter et al. (2008), who conduct one of the few
field experiments on charity auctions, reach a quite different
conclusion, namely, that the all-pay mechanism generates no more
revenue, in a statistical sense, than the second price sealed bid, and
that both generate less revenue than the familiar first price sealed bid.
The difference is the result of endogenous participation: the model in
Goeree et al. (2005) and the experimental designs in Schram and
Onderstal (2009) and Davis et al. (2006) all assume a fixed number of
bidders but Carpenter et al. (2008) found that in the field, the ratio of
active to potential bidders, or participation rate, was much lower
under all-pay rules.

These experimental results prompt an important question: what is
the theoretical relationship between participation costs, understood
here in the broadest sense of the word, and revenue in auctions with
proportional benefits? Our purpose in this paper is to describe and
then characterize a model of endogenous participation that allows for
mechanism-specific entry costs.

The next section reports, in the form of a pair of propositions
(the proofs of which are available in the appendix), the optimal
symmetric bid functions and expected revenue functions for the first
price, second price and all-pay sealed bid SIPV auctions in which all
bidders, active or otherwise, earn a benefit that is proportional to

Journal of Public Economics 94 (2010) 921–935

⁎ Corresponding author.
E-mail addresses: jpc@middlebury.edu (J. Carpenter), jholmes@middlebury.edu

(J. Holmes), pmatthew@middlebury.edu (P.H. Matthews).
1 This characteristic is not unique to charity auctions: Engelbrecht-Wiggans (1994)

counts Amish estate sales and buyer ring knockouts as examples of auctions with what
he calls “price proportional benefits”.

2 In addition to the contributions of Goeree et al (2005), Engers and McManus
(2007), Davis et al. (2006) and Schram and Onderstal (2009), which we discuss in more
detail, other recent examples include Elfenbein and McManus (2007), Leszczync and
Rothkopf (2007) and Isaac et al. (2007).

0047-2727/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpubeco.2010.05.008

Contents lists available at ScienceDirect

Journal of Public Economics

j ourna l homepage: www.e lsev ie r.com/ locate / jpube



Author's personal copy

revenue, and those who contribute to the charity (the winner in first
and second price auctions, but all active bidders in all-pay auctions)
experience a warm glow proportional to their bids, under the
assumption that the submission of a bid imposes some cost on
bidders. This representation of the participation problem owes much
to the recent work of Menezes and Monteiro (2000) and, much
earlier, Samuelson (1985).

In the third section, we explore the properties of these bid and
revenue functions, both within and across mechanisms, a more
complicated task than first seems. We know from the work of Menezes
and Monteiro (2000), for example, that in the absence of revenue
proportional benefits, revenue equivalence is preserved under the
introduction of participation costs, but that this (common) revenue
function can exhibit someunusual properties. It need not be the case, for
example, that expected revenue rises with the number of potential
bidders, or that in the limit, it is independent of the distribution of
private values. On the other hand, we learn from Engers and McManus
(2007) that even without participation costs, there is no fixed order of
revenues in small (low N) auctions with revenue proportional benefits
and warm glow. To cultivate a sense of what properties do, and do not,
prevail in practice, we calculate and plot numerical bid and revenue
functions for several members of the Kumaraswamy (1980) family of
boundedvalue distributions. In the process,we considerwhat costs, and
cost differentials, would be consistent with the experimental literature.

The fourth section considers the relationship of this model to
previous empirical work, and we conclude with a brief discussion of
possible future research.

2. Optimal bids and expected revenues

Our model starts with N≥2 potential risk neutral bidders whose
private values for some indivisible object can be modeled as
independent draws from some continuously differentiable distribu-
tion function F over the unit interval [0,1]. These values are known to
bidders before the decision to participate (or not) must be made.
Auction revenues are used to provide a service fromwhich all bidders,
active or inactive, benefit. As in Goeree et al. (2005), the value to each
bidder is a constant fraction 0≤αb1 of these revenues. Some active
bidders will also experience a “warm glow” (Andreoni, 1995; Engers
and McManus, 2007) equal to a fraction 0≤γb1−α of their own
contribution to auction revenue. The limit on γ is needed to ensure
that each bidder's optimization problem is well-defined, implies that
β=α+γ, the sum of the common return and warm glow, is also less
than one.

Following Samuelson (1985) and Menezes and Monteiro (2000),
potential bidders face some cost of participation 0≤c j b1, j= f(irst
price), s(econd price),a(ll pay), the value of which could be mecha-
nism-specific. As a result, the number of active bidders is not
predetermined. Samuelson (1985) defines the cost in terms of the
resources committed to “bid preparation” but, on the basis of the
previous discussion, our interpretation is somewhat broader and
includes, for example, the disutility of participation in an unfair
mechanism. While the cost is allowed to vary across mechanisms – a
feature we exploit to explore both the effects of participation costs per
se and cost differentials on the “traditional” revenue ordering – it is
assumed to be the same for all bidders. As we also note in the
conclusion, however, this form of bidder asymmetry is an important
direction for future research.

Within this framework, the derivation of optimal bid functions
draws heavily on both Menezes and Monteiro (2000) and Engers and
McManus (2007):

Proposition 1. The Bayes-Nash symmetric bid functions are:
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where θ=(1−γ)(N−1) / (1−β), with participation thresholds
implicitly defined by:
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It is then not difficult to derive the expected revenue functions:

Proposition 2. Given the bid functions (1), (2) and (3), expected
revenues are equal to:

Rf = N∫1

Pv
f ðc f ;NÞ FðvÞ

N−1f ðvÞσ f ðvÞdv ð6Þ

Rs = NðN−1Þ∫1

Pv
sðN;cs ;α;βÞ FðxÞ

N−2ð1−FðxÞÞf ðxÞσsðxÞdx ð7Þ

and:

Ra = N∫1

Pv
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The proofs of both propositions and other technical material are
available in the appendix.

3. Comparison of mechanisms

3.1. Numerical analysis and the Kumaraswamy distribution

We observed, in the introduction, that there is no fixed order for
the three mechanisms under endogenous participation. This does not
mean, however, that the mechanisms are without “common proper-
ties” that should inform both research and practice. To determine
whether such properties exist, we shall compare participation, bid
and revenue functions when the distribution of private values over
the unit interval is a member of the Kumaraswamy (1980) family:

F v ja; bð Þ = 1− 1−xa
� �b a; b N 0 ð9Þ

with mean bΓ 1 + 1
a

� �
ΓðbÞ= Γ 1 + 1

a
+ b

� �
.3 Much of the discussion

that follows will focus on the four particular examples with the implied
density functions depicted in Fig. 1: F(v|1,1), the standard uniform
distribution with mean 0.50, and a benchmark in the literature; F(v|
2,2), which has almost the same mean as the uniform distribution
(0.53) but is hump-shaped, the equivalent of an auction in which few
“extreme bidders” should be expected; F(v|3,1), withmean 0.25, which
produces auctions with an expected preponderance of “low value
bidders”; and F(v|1,5), with mean 0.83, which instead leads to auctions
with a disproportionate number of “high value bidders”.

3.2. Threshold values and participation rates

It is an immediate consequence of Proposition 1 that if participa-
tion costs in first price and all-pay auctions are the same, the
threshold values and rates of participation should be, too. To
understand this, we first note that if the “threshold bidder” – that is,

3 The Kumaraswamy distribution is one of the simplest and most tractable families
of “double bounded” distributions.
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the bidder with private value Pv
j – does indeed decide to bid, she

should bid zero. With likelihood FðPvjÞN−1, she will, as the lone
participant, win the auction and receive benefits equal to her private
value Pv

j.4

With likelihood 1−FðPvjÞN−1, she will lose the auction, however,
and receive benefits Bj that depend (only) on the actions of other
bidders. It follows, then, that the net benefits of participation are

F Pv
j

� �N−1

Pv
j + 1−F Pv

j
� �N−1

� �
Bj−c j. Because the benefits Bj are not

limited to participants, however, she receives a benefit equal to

1−F Pv
j

� �N−1
� �

Bj when she does not submit a bid. The two are equal

when FðPvjÞN−1
Pv

j = cj, the result in Eq. (4). Furthermore, under both
mechanisms, the threshold depends just on the costs of participation
cj, the number of potential bidders N and the nature of the distribution
function F(v).

Table 1 reports the values of this common threshold and the
implied non-participation rates as the auction size or number of
potential bidders N and the costs of participation c vary for each of the
four distributions of private values. One of the first properties of the
data to catch our attention was the responsiveness of the threshold to
variations in cost. When the distribution of private values is bell-
shaped, for example, the difference between c=0 or costless parti-
cipation and c=0.01, a cost equal to one fiftieth of the representative
potential bidder's private value, is the difference between no thresh-
old and one equal, in the case N=5, to 0.46. In other terms, there is
now an almost 1 percent (0.0079=F(0.46)5=(0.38)5) chance that no
one will want to submit a bid, despite the fact that there are few low
value bidders. Whether c=0.01 constitutes a small obstacle or not is
to some extent amatter of context – if the costs of participation are for
the most part psychic, then for a familiar mechanism, costs could well
be much lower than this – we were nevertheless struck by how
quickly bidders are driven from the auction.5

Furthermore, in small auctions, even a small increase in the
number of potential bidders induces a substantial increase in the
threshold. In the uniform case when c=0.01, for example, the
threshold rises from 0.10 to 0.40 as N increases from 2 to 5, andwhen

N=20, which, for most practical purposes, is still a small auction, the
threshold rises to 0.79. To provide a more intuitive characterization
of the same phenomenon, increases in the number of potential bidders
produce small, and ever smaller, increases in the expected number of
active bidders, from 3=5(0.6) when N=5 to 3.7=10(0.37) when
N=10, and then to 4.2=20(0.21) when N=20. In this particular
case, in otherwords, the addition of 15more potential bidders caused
the expected number of active bidders to increase by little more than
one.

There are at least two senses in which the pattern is a robust one.
First, while it is possible to construct examples in which, over some
interval, the expected number of active bidders falls as the number of
potential bidders rises, this occurs in none of the cases represented in
Table 1.6 Second, and to our initial surprise, for a fixed participation
cost c, the relationship between auction size and the number of active
bidders doesn't vary much with the distribution of private values.
Consider, for example, the situation in which c=0.05 and N=10.
While the threshold value varies from 0.70 in the auction with few
extreme bidders to, on the one hand, 0.41 in the auction with low
value bidders or, on the other hand, 0.94 in the auction with high
value bidders, the likelihoods of non-participation are, respectively,
0.75, 0.79 and 0.72, consistent with 2.55, 2.08 and 2.78 active bidders.
If the auction is then doubled in size, so that N=20, the expected
numbers of active bidders become 2.71, 2.31 and 2.89.

Table 1 also hints, however, that both the threshold and expected
number of active bidders will be sensitive to the costs of participation.
When there are 10 potential bidders whose private values are drawn
from the uniform distribution, for example, an increase in costs from
0.01 to 0.05 causes the threshold to rise, from 0.63 to 0.74, and the
expected number of active bidders to fall, from 3.69 to 2.59. Curiously,
perhaps, almost the same number (1.10) of active bidders are “lost”
under other distributions: 1.14=3.69−2.55 when the distribution is

Fig. 1. Kumuraswamy density functions.

Legend: Solid: a=1, b=1. Dotted: a=2, b=2. Dashed: a=1, b=3
Dotted/Dashed: a=5, b=1

4 She pays nothing to acquire the object but, as a result, enjoys no warm glow and,
since auction revenues are zero, no common return.

5 We are grateful to an anonymous reviewer for the reminder that the “size” of these
costs cannot be classified a priori.

Table 1
Threshold values and non-participation rates under The FP and AP mechanisms.

Participation
cost=0.01

Participation
cost=0.05

Participation
cost=0.10

Threshold
value

Share of
inactive
bidders

Threshold
value

Share of
inactive
bidders

Threshold
value

Share of
inactive
bidders

(1,1) N=2 0.10 0.10 0.22 0.22 0.32 0.32
N=5 0.40 0.40 0.55 0.55 0.63 0.63
N=10 0.63 0.63 0.74 0.74 0.79 0.79
N=20 0.79 0.79 0.86 0.86 0.89 0.89

(2,2) N=2 0.17 0.06 0.30 0.17 0.38 0.26
N=5 0.46 0.38 0.57 0.54 0.63 0.63
N=10 0.63 0.63 0.70 0.75 0.74 0.80
N=20 0.74 0.80 0.79 0.86 0.82 0.90

(1,3) N=2 0.06 0.17 0.14 0.36 0.20 0.49
N=5 0.19 0.48 0.29 0.64 0.35 0.73
N=10 0.32 0.68 0.41 0.79 0.46 0.84
N=20 0.44 0.82 0.51 0.88 0.56 0.91

(5,1) N=2 0.46 0.02 0.61 0.08 0.68 0.15
N=5 0.80 0.33 0.87 0.49 0.90 0.58
N=10 0.90 0.61 0.94 0.72 0.95 0.78
N=20 0.95 0.79 0.97 0.86 0.98 0.89

This table reports the threshold value and share of bidders who are inactive under
either the FP or AP mechanism for various numbers of potential bidders and
participation costs under uniform (1,1), hump-shaped (2,2), right-skewed (1,3) and
left-skewed (5,1) distributions of private values.

6 At least one reader has wondered whether this is ever possible. If the addition of one
more potential bidder causes anactivebidder towithdraw, thenwouldn't that bidderhave
been better off as a non-participant beforehand, too? A simple example, adapted from
Menezes andMonteiro (2000), suggests otherwise, however: if F(v |3, 1 )=v3and c=0.3,
for example, therewill be 1.21291 active bidders, in expectation,whenN=5, but 1.21262
when N=4 and 1.21247 when N=6.
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bell-shaped, 1.11=3.19−2.08 when it is skewed to the right, and
1.16=3.94−2.78 when it is skewed to the left.

A comparison between Eqs. (4) and (5) shows that the participation
threshold should be higher, ceteris paribus, in second price auctions, and
this is reflected in Table 2, which reports second price thresholds for
various numbers of potential bidders N and costs c. In superficial terms,
the difference between thedefinitions in Eqs. (4) and (5) is the presence
of an additional term, αðN−1ÞFðPvsÞN−2 ð1−FðPvsÞÞσsðPvsÞ, in the latter.
In behavioral terms, this is the return to themarginal bidderwhen there
is just one other active bidder, and her (now non-zero) threshold bid
determines what the winner pays and, therefore, the common return.
This has at least two important implications for empiricalwork. First and
foremost, if costs are the same, the participation rate in second price
auctions should exceed that in either first price or all-pay auctions.
Second, in second price auctions, the decision to participate is sensitive
to the rate of common return α.

The results in Table 2 provide some sense of how different
the thresholds will be in practice. In the extreme case of N=2
potential bidders with low participation costs, there is no
threshold at all. That is, both bidders will participate, no matter
what their private values. In fact, in auctions with few(er) low
value bidders, in particular when the distribution of private values
is either F(v|2,2) or F(v|5,1), the threshold is zero even when costs
are 0.10. To understand this, recall that in the case N=2 – or, with
NN2 potential bidders, the sub-case in which there are two active
bidders – the representative bidder knows that she will either win
the auction or determine what the winner pays and therefore the
public benefits that accrue to both bidders. This is sometimes
sufficient to induce low value bidders to participate, despite the
costs.

While full participation is a special feature of (some) “minimal”
or N=2 second price auctions, the difference remains substantial
as auction size increases. In the uniform case, the increase in the
threshold under either the first price or all-pay mechanisms, from
0.10 to 0.79, for example, as the number of potential bidders
increases from 2 to 20 when costs are 0.01, stands in marked
contrast to the increase from 0 to 0.62 under the analogous second
price mechanism. In an auction with 20 potential bidders, this is
the equivalent of an almost 85% increase in the number of active
bidders, from 4.11 to 7.58. The size of this effect is not an artifact

of the choice of distribution function: for the same auction size
and participation costs, the numbers of expected bidders are 4.06
and 7.56 when the distribution is F(v|2,2), 3.60 and 7.18 when it is
F(v|1,3), and 4.27 and 7.74 when it is F(v|5,1). In short, in the
absence of cost differentials, it seems that second price auctions
will be more “active,” and to the extent that this is a secondary
objective for the charity, an important point in their favor.

Otherwise, the samebroadpatterns characterizeparticipation across
mechanisms. The expected number of active bidders, for example, is not
all that sensitive to thedistributionof private values, but is responsive to
variations in cost. Under the bell-shaped distribution, for example, the
expected number of active bidders when N=20 (7.56) and costs are
0.01 is almost identical to that under the uniform (7.58), and not far
from those in the right (7.18) and left-skewed (7.74) distributions, but
as costs rise to 0.05, the expected number of active bidders falls to 6.66.

3.3. Bid functions

Consider, for comparison purposes, the familiar result that in a first
price auction without spillovers or participation costs, bidders whose
values are drawn from a uniform distribution will “shade” their bids

by an amount equal to 1
N

� �th
of their value, and bid N−1

N
v. This is

depicted, for N=15, as the solid line in the upper left panel in Fig. 2, in
which various first price bid functions have been plotted. Relative to
this benchmark, the introduction of revenue proportional benefits
(α=0.25) and warm glow (γ=0.10), represented in the same panel
by the dotted line, seems to function like an ad valorem subsidy to
bidders, an observation easily substantiated on the basis of (1): when

v=0 and F(v)=v, the bid function is N−1
ð1−γÞN−α

v, which is α + γN
ð1−γÞN−α

percent more than would be bid in their combined absence.
Under some conditions, the subsidy is sufficient to reverse bid

shading. In the diagram, a bidder whose private value is 1, for
example, will bid 1.057; in general, σ f(v) will exceed v under the
uniform distribution when α+γNN1, an inequality that seems likely
to be satisfied in most large auctions. Furthermore, the subsidy is
increasing in both the common return α and warm glow γ, as
expected, and decreasing in the number of potential bidders N.

The further addition of participation costs equal to 0.05 exerts a
dramatic effect on the bid function, as the dashed line in the same
panel reveals. The behavior of bidders is now sharply nonlinear, both
because bids are undefined below the threshold but also because the
bid function is now concave above the threshold. Close to the
threshold, bids increase very rapidly and then level off. As a result, the
effect of participation costs on the value of the average bid, as opposed
to the number of bidders, is quite limited: a bidder who decides to
participate knows that if others follow suit, their valuesmust (also) be
quite high, and therefore bids aggressively. A bidder whose value is
close to the maximum (1), for example, bids almost as much as she
would in the absence of participation costs.

The fourth and final function plotted as a series of dots and dashes in
the same panel is the equilibrium bid function when the common
return, warm glow and participation cost remain in place, but the
number of potential bidders is reduced to N=5. It underscores the fact
that one standard result onauction size andfirst pricebids– thatbidders
withmore competitors are more aggressive because they cannot afford
to shade their bids as much – doesn't hold in this environment, at least
not for all values. In visual terms, the reason is that the smaller auction
also has a lower threshold, so that a bidder who is indifferent about
participationwhenN=15, andwhowould therefore submit a zero bid if
she did participate, would find it in her interest to submit a positive bid
when N=5. For high value bidders, the “shading effect” appears to
dominate; for low(er), but still above the second threshold, value
bidders, the “participation effect” dominates, another important con-
sideration in the estimation of bid functions.

Table 2
Threshold values and non-participation rates under the SP mechanism.

Participation
cost=0.01

Participation
cost=0.05

Participation
cost=0.10

Threshold
value

Share of
inactive
bidders

Threshold
value

Share of
inactive
bidders

Threshold
value

Share of
inactive
bidders

(1,1) N=2 0.00 0.00 0.00 0.00 0.04 0.04
N=5 0.21 0.21 0.30 0.30 0.35 0.35
N=10 0.44 0.44 0.51 0.51 0.54 0.54
N=20 0.62 0.62 0.67 0.67 0.69 0.69

(2,2) N=2 0.00 0.00 0.00 0.00 0.01 0.00
N=5 0.32 0.20 0.40 0.29 0.44 0.34
N=10 0.50 0.43 0.55 0.51 0.57 0.54
N=20 0.62 0.62 0.65 0.67 0.66 0.69

(1,3) N=2 0.00 0.00 0.03 0.08 0.06 0.18
N=5 0.10 0.26 0.14 0.37 0.17 0.42
N=10 0.19 0.47 0.23 0.54 0.25 0.57
N=20 0.29 0.64 0.32 0.69 0.33 0.70

(5,1) N=2 0.00 0.00 0.00 0.00 0.00 0.00
N=5 0.70 0.16 0.76 0.25 0.79 0.30
N=10 0.84 0.41 0.87 0.49 0.88 0.52
N=20 0.91 0.61 0.92 0.66 0.93 0.68

This table reports the threshold value and share of bidders who are inactive under
either the SP mechanism (a=0.25,b=0.35) for various numbers of potential bidders
and participation costs under uniform (1,1), hump-shaped (2,2), right-skewed (1,3)
and left-skewed (5,1) distributions of private values.

924 J. Carpenter et al. / Journal of Public Economics 94 (2010) 921–935
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The other panels in Fig. 2 show the same four bid functions for
the three alternative value distributions, and suggest that these
results are robust. Consider what is perhaps the least similar case, the
situation depicted in the lower left panel in which there is a
preponderance of low value bidders. It should come as no surprise
that even in the standard case – that is, no common return, no warm
glow, and no costs of participation – bids are no longer proportional
to values: because (small) variations in private value do not have
much effect on the likelihood that a high value bidder will win in this
environment, bids are not adjusted much either. Furthermore, unlike
the uniform case, bidders never bid more than their values, at least
for the parameter values considered here.

This said, the two panels share at least three important features.
First, it still appears that in the absence of participation costs, the
introduction of a common return and warm glow have much the
same effect on bids as an ad valorem subsidy. Second, those with
values close to the maximum aren't much affected by participation
costs or, in broader terms, the effects of these costs on bid behavior

diminish with value. Third, with both shading and participation
effects at work, high and low value bidders respond quite differently
to an increase in auction size.

The characterization of second price bid functions is much less
complicated. First and foremost, the four panels in Fig. 3 provide
visual confirmation that with the common return and warm glow
present, variations in the number of potential bidders N or partici-
pation costs c influence the participation decision but not, condi-
tional on participation, the bid itself. In effect, there exists a “one
size fits all” second price bid function that is “activated” for some
combinations of N and c but not others. In the uniform case
depicted in the upper left panel, for example, a bidder with private
value v=0.30 will bid 0.502 when α=0.25 and γ=0.10 when
costs c are zero, but not bid (as opposed to a bid of zero) when
costs are 0.05, but another bidder with a value just 0.01 higher
will bid 0.511 in both situations.

Furthermore, consistent with intuition, this one size fits all bid
function differs across distributions but in all cases reflects some

Fig. 2. Optimal bids in FP auctions as a function of private value under uniform (1,1), hump-shaped (2,2), right-skewed (1,3) and left-skewed (5,1) distributions.

Legend: Solid: α=0, β=0, c=0, N=15
Dotted: α=0.25, β=0.35, c=0, N=15
Dashed: α=0.25, β=0.35, c=0.05, N=15
Dotted/Dashed: α=0.25, β=0.35, c=0.05, N=5
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inflation of bids relative to the standard auction, in which it is
dominant to bid one's value, no matter what the distribution of
values. This inflation no longer resembles an ad valorem subsidy,
however, as it did in first price auctions. Under a uniform distribu-
tion, for example, the difference declines not just in proportional,
but absolute, terms as value increases, from 0.242(=0.242−0.00)
when v=0 to 0.11(=1.11−1.00) when v= 1. The same is true
when the distribution of values is either hump shaped or skewed
to the left, but not when it is skewed right, when the difference
increases from 0.094 when v=0 to 0.111 when v=1. Since the
difference between standard and charity-inflated second price bids
does not vary much across distributions for high value bidders –

indeed, is the same for bidders with v=1 – the explanation is
found in the differences for low value bidders.

Consider, for example, second price auctions with a preponder-
ance of high value bidders which, as illustrated in the lower right
panel of Fig. 3, produces the largest difference in the behavior of low
value bidders: a bidder whose value is close to zero will bid almost

nothing, for example, in the absence of common return and warm
glow, but more than 0.75 in their presence. The intuition is that in
the (expected) presence of many high value bidders, the benefits to
low value bidders of an inflated bid – in particular, the possible
increase in the “second price” and therefore auction revenues and
common return – exceed the costs of an improbable “win.”

The effects of participation costs on all-pay bids are illustrated
in Fig. 4. Consider, for example, the behavior of the median bidder
in the case where the distribution of private values is uniform.
Since the thresholds under the first price and all-pay mechanisms
are the same, we know, for example, that this bidder will not
participate when there are N=15 potential bidders and costs are
equal to 0.05, or one tenth of her private value. It is important to
note, however, that even if participation was costless, the optimal
bid would be less than one hundredth of one percent of this value
or, to be more precise, 4.38×10−5, a bid that is itself a substantial
(in proportional terms, at least) increase over the optimal bid in
the equivalent non-charity auction, which is 2.85×10− 5.

Fig. 3. Optimal bids in SP auctions as a function of private value under uniform (1,1), hump-shaped (2,2), right-skewed (1,3) and left-skewed (5,1) distributions.

Legend: Solid: α=0, β=0, c=0, N=15
Dotted: α=0.25, β=0.35, c=0, N=15
Dashed: α=0.25, β=0.35, c=0.05, N=15
Dotted/Dashed: α=0.25, β=0.35, c=0.05, N=5
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The uniform case also exhibits the predictable bid inflation
associated with charity auctions, one that, in this case, increases in
absolute, but decreases in relative, terms. It also demonstrates that
the common view that increased competition restrains bidders
when bids are forfeited does not hold in the presence of partici-
pation costs.7 In this case, the upper left panel of Fig. 4 reveals that
high value bidders, at least, are more aggressive when N=15 than
N=5. In broader terms, the difference in thresholds causes the bid
functions to cross once, a pattern reminiscent of first price auctions:
for low(er) values in their common domain, bids are smaller with
N=15 than N=5, while the opposite is true for high(er) values.

Unlike the first price auction, however, even the behavior of very
high value bidders is sensitive to the existence of participation costs.

The so-called “maximal bidder”will bid 1.36 in a charity auction with
participation costs of 0.05, and 1.44 in the same auction without such
costs.

All of these features are robust with respect to the distribution of
private values, or at least the four distributions considered here.

Finally, Fig. 5 allows for the comparison of bid functions across
mechanisms and distributions in the special, if now familiar, case of
N=15 potential bidders, participation costs c=0.05, common return
α=0.25 and warm glow γ=0.10. The surprise, perhaps, is how little
can be said about the relative sizes of bids across mechanisms. One
obvious exception is that for all values in their common domain,
second price bidders bid strictly more than their first price counter-
parts, a result that carries over from standard auctions. It is not even
the case that both are always more aggressive than those who must
forfeit their bids under the all-pay format; in fact, for three of the four
distributions pictured here, those with very high values will bid more
in all-pay than either first or second price auctions. The intuition

7 In fact, it doesn't hold in their absence, either: from Eq. (3), the optimal bid
function when c, and therefore v, are zero, is N−1

N
1

1−β
vN , the value of which must only

eventually decline in N.

Fig. 4. Optimal bids in AP auctions as a function of private value under uniform (1,1), hump-shaped (2,2), right-skewed (1,3) and left-skewed (5,1) distributions.

Legend: Solid: α=0, β=0, c=0, N=15
Dotted: α=0.25, β=0.35, c=0, N=15
Dashed: α=0.25, β=0.35, c=0.05, N=15
Dotted/Dashed: α=0.25, β=0.35, c=0.05, N=5
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for this is that with revenue proportional benefits, such bidders are,
in effect, subsidized by their rivals. This is consistent with the
observation that the exception is the distribution associated with a
preponderance of low value bidders, depicted in the lower left panel:
under these conditions, the common return is never sufficient to
rationalize bids well in excess of private values.

This said, under all four distributions, all-pay bids are smallest for
low(er) value bidders, and remain so over much of the common
domain before surpassing (at least) first price bids, a consequence of
the fact that all-pay bidders forfeit their bids, no matter what the
outcome of the auction.

3.4. Revenue functions

Our principal interests here are not the bid functions themselves,
but their revenue implications. To this end, consider Fig. 6, which plots
the variation in expected revenue as a function of auction size (N)
across both distributions and mechanisms. Its most obvious feature is

that in every case, revenue rises, at a diminishing rate, with the
number of potential bidders.8

Furthermore, with the limited exception of the F(v|1,3) distribu-
tion, expected revenue more or less levels off after the first dozen or
so potential bidders. A similar pattern characterizes the standard
auction, but the explanation is a little different. In the standard case,
the first order statistic for private values is a concave function of
the number of bidders with an upper limit of 1, the upper bound of
the distribution of values, but in charity auctions with endogenous
participation, this is amplified by the fact that as auction size
increases, the number of active bidders also increases at an ever
diminishing rate. The map from potential to active bidders also helps
to explain the fact that revenues in the low value F(v|1,3) auction do
not level off as soon: as a review of Tables 1 and 2 reveals, there are
fewer active bidders, ceteris paribus, in this environment.

8 It remains to be seen, therefore, whether the example in Menezes and Monteiro
(2000) of a revenue function that, after some point, declines in N , is a practical one.

Fig. 5. Optimal bids in FP, SP and AP auctions under uniform (1,1), hump-shaped (2,2), right-skewed (1,3) and left-skewed (5,1) distributions.

Legend: Solid: FP, α=0.25, β=0.35, c=0.05, N=15
Dotted: SP, α=0.25, β=0.35, c=0.05, N=15
Dashed: AP, α=0.25, β=0.35, c=0.05, N=15
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Somewill be surprised that evenwithN=40 potential bidders, the
first and second price mechanisms produce such different revenue.
The problem is that here, too, intuition is based on the case of compact
distributions and costless participation. From Eqs. (1) and (2), it
follows that in both cases, thewinner's payment, and therefore auction
revenue, are equal to σ f(1)= σ s(1)=(1−γ)−1, no matter what the
distribution of values.

This leads us to broader conclusions about the relative perfor-
mance of mechanisms. Fig. 6 suggests that at least two inequalities are
robust with respect to the distribution of private values. For any
number of potential bidders N, both the second price and all pay
formats “revenue dominate” their first price equivalent. Both inequal-
ities are consistent with previous results for auctions with a fixed
number of active bidders (that is, costless participation) and have the
same intuition.

The response of the second price/all pay revenue differential to
variations in the number of potential bidders is more complicated, but
not much so. Under all four distributions, the all pay mechanism
eventually produces more revenue, in expectation, than its second
price equivalent. For auctions with either a uniform or bell-shaped
distribution of values, it happens almost at once – that is, when there
are 3 or more potential bidders – and for the auction with a
preponderance of high value bidders, it holds even in the limiting
case N=2. It is only when there is a preponderance of low value
bidders that the second price mechanism does better in auctions
of intermediate size (under the assumed parameter values,N less than
30). To understand this, recall that with so many low value bidders,
high value bidders aren't subsidized enough to bid very aggressively.

Fig. 7, which depicts the relationship(s) between expected
revenue and participation costs for auctions with N=10 potential
bidders, leads to some important, if unexpected, conclusions.
Consistent with intuition, revenues decline as participation costs
rise, across both distributions and auction formats. In the case of
second price auctions, however, the decline is almost impercep-
tible: if private values are uniformly distributed, for example,
expected revenue declines from 0.953 when c=0 to 0.937 when
c=0.15, or 30 percent of the median value. From an operational
perspective, charities that do not know what it costs to participate
in their auctions will sometimes find that the second price mecha-
nism serves them best, despite the results in Fig. 6. To understand
this, recall that in second price auctions, cost influences the deci-
sion to participate but not, conditional on participation, the bid
itself.

The fact that the all pay mechanism is (much) more cost sensitive
than the second price leads to an important reversal: consistent with
intuition, the all pay format is more lucrative for charities when there
are no, or even few, obstacles to participation, but as participation
becomes more difficult, the premium shrinks and is eventually
reversed. Both, however, do better than the first price mechanism
no matter what the costs of participation.

4. Relationship to previous empirical work

Our immediate purpose here is to provide a theoretical frame-
work for the analysis of endogenous participation in charity auctions,
but it is helpful to consider the possible implications of the model

Fig. 6. Expected revenue as a function of the number of potential bidders, with α=0.25, β=0.35 and c=0.05. Legend: FP — solid line, SP — dashed line, AP — dotted line.
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for previous empirical work. It should be emphasized, however, that
the exercise is a speculative one: it assumes, for example, that bidders
submit their equilibrium bids, a matter of considerable debate itself.
This said, the lab experiments of Davis et al. (2006) and Schram and
Onderstal (2009), for example, which find that raffles and all-pay
auctions do well, are consistent with the interpretation of “fixed
N designs” as environments with zero participation cost. Our model
also predicts that notwithstanding the dramatic effects of even small
costs on participation thresholds and therefore individual bid func-
tions, this result should be robust with respect to the introduction of a
small common cost.

Under the same assumptions, the model also tells us that on its
own, endogenous participation cannot explain the underperformance
of the all-pay mechanism in the Carpenter et al. (2008) field experi-
ment. They found that there were more active bidders under the first
price format than either the second price or all-pay which implies that
the order participation thresholds satisfies Pv

f bPv
sb Pv

a. In the absence
of cost differentials across mechanisms, however, the model implies,
and Fig. 7 illustrates, that more bidders will participate in second price
auctions than either first price or all-pay auctions, that is,Pv

s bPv
f = Pv

a.
To be consistent with the equilibrium predictions of our model
requires, at a minimum, that participation costs in first price auctions
be smaller than either alternative.

The further observation that the second price and all-pay mech-
anisms in Carpenter et al. (2008) produced about the same revenue,
and that both produced less than the first price, implies that parti-

cipation costs in first price auctions cf are smaller than in the other
mechanisms. The implications of their revenue data for cs and ca are
harder to pin down, but Fig. 7 also hints that unless the costs of
participation are implausibly large, the two mechanisms would not
produce the same equilibrium revenue under a diverse set of con-
ditions unless it cost bidders more to participate in the all-pay. In
short, then, a reconciliation of the field data with the model requires
that caNcsNc f.

5. Conclusion

The framework described here calls to mind a number of oppor-
tunities, both theoretical and empirical, for further research. The recent
lab experiments outlined in Carpenter et al. (2010), for example, offer
a first look at the effects of controlled variation in participation costs.
It is clear, however, that there remainsmuchwork to do onmechanism-
specific differences in costs. For example, are there substantial differ-
ences in the costs of bid preparation or cognitive costs? Are some
mechanisms perceived to be fairer than others?

The model itself does not allow for variation in participation costs
across bidders, one of several possible asymmetries that merit atten-
tion. Some preliminarywork by Bos (2008), for example, suggests that
if the distributions from which bidders' private values are drawn are
sufficiently different, all-pay auctionswill not dowell. In a similar vein,
while the bidders in our model are risk neutral, it seems reasonable
to expect that risk aversion, and differences in risk aversion across

Fig. 7. Expected revenue as a function of participation cost, with α=0.25, β=0.35 and N=10. Legend: FP — solid line, SP — dashed line, AP — dotted line.
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bidders, will affect the relative performance of charity auction mech-
anisms. Last but not least, we do not know much about the effects of
behavioral biases and “bidder heuristics” on charity auctions.
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Appendix A. Bid and revenue functions for “Endogenous
participation in charity auctions”

This section derives the equilibrium bid and revenue functions for
the first price sealed bid, second price sealed bid and all-pay charity
auctions, the basis for Propositions 1 and 2 in the paper.

1. First price sealed bid

The representative bidder must decide whether or not to partici-
pate and, if she does, what type v̂ to announce or, equivalently, what
bid σ f ðv̂Þ to submit. To this end, consider first the conditions under
which someone with the private value v≥Pv will find it optimal to
reveal her true type when the participation threshold v is assumed
fixed.With likelihood CN−1

M FðPvÞðN−1Þ−Mð1−FðPvÞÞM , where Cp
q = p!

ðp−qÞ!q!,

she will compete withM other bidders for the object and, conditional
on M≥1, the first order statistic of their values (that is, the maxi-
mum) has the distribution function Gðx;MÞ = ðFðxÞ−FðPvÞÞM =

ð1−FðPvÞÞM If M=0, there will of course be no rivals and, therefore,
no first order statistic. The conditional return on the bid σ f ð v̂Þ for
fixed M≥1 is then:

EU v̂; v;Mð Þ = ∫ v̂

Pv
v− 1−βð Þσ f v̂ð Þ

� �
gðx;MÞdx + α∫

Pv

v̂
σ f ðxÞgðx;MÞdx ð1Þ

where gðx;MÞ = dGðx;MÞ= dx = MðFðxÞ−FðPvÞÞM−1f ðxÞ= ð1−FðPvÞÞM
is the conditional density function of the first order statistic. The
first term in (1) represents the bidder's expected return when she
wins the auction – because she earns both the common returnασ f ð v̂Þ
on her bid and experiences the warm glow γσ f ð v̂Þ in this case,
her “net bid” is ð1−ðα + γÞÞσ f ðv̂Þ = ð1−βÞσ f ðv̂Þ – while the second
term is the expected benefit that still accrues to her when she loses.

It follows that the unconditional expected return, EUð v̂; vÞ, will
be:

EUð v̂; vÞ = FðPvÞN−1ðv−ð1−βÞσ f ð v̂ÞÞ

+ ∑N−1
M=1C

N−1
M FðPvÞN−1−Mð1−FðPvÞÞMEUð v̂; v;MÞ

= FðPvÞN−1ðv−ð1−βÞσ f ð v̂ÞÞ

+ ðv−ð1−βÞσ f ð v̂ÞÞ∑N−1
M=1C

N−1
M FðPvÞN−1−Mð1−FðPvÞÞM∫v̂

Pv
gðx;MÞdx

+ α∑N−1
M=1C

N−1
M FðPvÞN−1−Mð1−FðPvÞÞM∫

Pv

v̂
BF ðxÞgðx;MÞdx

= FðPvÞN−1ðv−ð1−βÞσ f ð v̂ÞÞ + ðFð v̂ÞN−1−FðPvÞN−1Þðv−ð1−βÞσ f ð v̂ÞÞ

+ α∑N−1
M=1C

N−1
M FðPvÞN−1−MM∫1

v̂
ðFðxÞ−FðPvÞÞM−1f ðxÞσ f ðxÞdx

ð2Þ

after substitution for G(x,M) and g(x,M), where the first term on the
right hand side of each equality is the expected return in the casewhere
there are no other bidders, and the last equality follows from the fact
that ∫v̂

Pv
gðx;MÞ = ðFð v̂Þ−FðPvÞÞM = ð1−FðPvÞÞM and that, as a conse-

quence of the binomial theorem, ∑N−1
M=1C

N−1
M FðPvÞN−1−MðFð v̂Þ−

FðPvÞÞM = Fð v̂ÞN−1−FðPvÞN−1.

The derivative of EUð v̂; vÞ with respect to the bidder's choice
variable v̂ is therefore:

∂EUð v̂; vÞ
∂ v̂ = −ð1−βÞFð v̂ÞN−1 dσ

f ð v̂Þ
d v̂

+ ðN−1ÞFð v̂ÞN−2f ð v̂Þðv−ð1−βÞσ f ð v̂ÞÞ

−αf ð v̂Þσ f ð v̂Þ∑N−1
M=1C

N−1
M MFðPvÞN−1−MðFð v̂Þ−FðPvÞÞM−1

= −ð1−βÞFð v̂ÞN−1 dσ
f ð v̂Þ
d v̂

+ ðN−1ÞFð v̂ÞN−2f ð v̂Þðv−ð1−βÞσ f ð v̂ÞÞ

−αðN−1ÞFð v̂ÞN−2f ð v̂Þσ f ð v̂Þ

ð3Þ

where the second line follows from a corollary of the binomial theorem,
∑N−1

M=1C
N−1
M MFðPvÞN−1−MðFð v̂Þ−FðPvÞÞM−1 = ðN−1ÞFðPvÞN−2. The first

order condition for a SBNE is that ∂EUð v̂; vÞ
∂ v̂ =0 at v̂ = v, which leads,

after some simplification, to the first order differential equation:

dσ f ðvÞ
dv

+
ðN−1Þð1−γÞ

ð1−βÞ
f ðvÞ
FðvÞσ

f ðvÞ = ðN−1Þ
ð1−βÞ

f ðvÞ
FðvÞ v ð4Þ

While Eq. (4) is not exact, there exists an integrating factor, F(v)θ,

where θ = ðN−1Þð1−γÞ
ð1−βÞ , so that:

dðσ f ðvÞFðvÞθÞ
dv

=
N−1
1−β

FðvÞθ−1f ðvÞv ð5Þ

or:

σ f ðvÞFðvÞθ = N−1
1−β

∫FðxÞθ−1f ðxÞxdx + k ð6Þ

where k is a constant of integration. Because the optimal threshold bid,
σ f ðPvÞ, and therefore the product σ f ðPvÞFðPvÞθ, are both zero, it follows
that9 :

σ f ðvÞ = N−1
ð1−βÞ

1
FðvÞθ ∫

v

Pv
FðxÞθ−1f ðxÞxdx ð7Þ

or, after integration by parts and further simplification:

σ f ðvÞ = 1
1−γ

v− FðPvÞθ
FðvÞθ Pv−

1
FðvÞθ ∫

v

P
v FðxÞθdx

" #
ð8Þ

Inasmuch as the participation threshold is not predetermined,
however, the optimal bid function (8) is not a reduced form. To this
end, recall that the revenue proportional benefits of the auction are
not conditional on participation, and observe that a potential bidder
with private value v should be indifferent between participation (and
the submission of a zero bid) and non-participation. If such a bidder
does participate, the likelihood that she will win the auction is
FðPvÞN−1, in which case she receives a benefit equal to her private value

Pv. (Since σ f ðPvÞ = 0; there is neither a common return nor a warm
glow.) With likelihood CN−1

M FðPvÞðN−1Þ−Mð1−FðPvÞÞM , on the other
hand, she will lose the auction to one of M≥1 other bidders, but
receive a benefit that is equal to a fraction α of the expectedmaximum
bid, or α∫1

Pv
gðx;MÞσ f ðxÞdx. The net benefit of participation is

therefore:

FðPvÞN−1v + α∑N−1
M = 1 C

N−1
M FðPvÞðN−1Þ−Mð1−FðPvÞÞM∫1

Pv
gðx;MÞσ f ðxÞdx−c f ð9Þ

9 In Engers andMcManus (2007), the optimal bid at the “threshold” – in their case, the
lower limit on the compact support of F – is indeterminate. The difference is that, in their
case, the likelihood that a bidder with the threshold value wins the auction is zero.
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where c f is the cost of participation in a (f)irst price auction. The net
benefit of non-participation is equal to:

α∑N−1
M = 1 C

N−1
M FðPvÞðN−1Þ−Mð1−FðPvÞÞM∫1

P
v gðx;MÞσ f ðxÞdx ð10Þ

since the externalities that other bidders produce are not limited
to participants. The “threshold bidder” is therefore someone for
whom:

FðPvÞN−1
Pv = c f ð11Þ

This condition defines an implicit function in which the partici-
pation threshold v depends on the costs of participation cf, the num-
ber of potential bidders N and, implicitly, the shape of the distribution
function F(v). If the effects of the first are more or less predictable – if
potential bidders have better outside options, fewer of them will
participate – the implications of the second are more subtle and call
for some comment. As the number of potential bidders increases,
so, too, does the likelihood that a particular active bidder will lose
whatever she has “invested” in the auction which, in turn, causes the
threshold to rise. It is then not obvious that an increase in the number
of potential bidders or, if one prefers, auction size, will always lead to
an increase in the expected number of active bidders and, so, expected
revenue.

It is important to note, however, that this participation effect is not
the result of some increased desire to free ride on the contributions of
other bidders. The threshold Pv in (11) does not depend on either the
common return α or warm glow γ: it is the same condition, in fact,
that Menezes and Monteiro (2000) derive for their “no spillover”
model. The reason is that non-participants benefit from these spill-
overs, too.

Charities will be less interested in bid functions and their proper-
ties than expected revenue Rf and, to this end, we note that since
the density function of the first order statistic for all N private values
is NF(v)N−1f(v), Rf will be equal to:

Rf = N∫1

Pv
f ðc f ;NÞ FðvÞN−1f ðvÞσ f ðvÞdv ð12Þ

where the threshold value is written Pv
f ðcf ;NÞ as a reminder that the

lower limit is not fixed in the usual sense.

2. Second price sealed bid auction

Thederivationof the SBNEbid and expected revenue functions in the
second price auction calls for the introduction of another distribution
function, J(x,M), the conditional distribution of the second order
statistic for private values when there are M≥2 other active bidders:

Jðx;MÞ = M
FðxÞ−FðPvÞ
1−FðPvÞ

� �M−1
−ðM−1Þ FðxÞ−FðPvÞ

1−FðPvÞ
� �M

ð13Þ

It will also be useful to note that the likelihood that a bidder who
announces type v̂ is the runner-up is:

M
Fð v̂Þ−FðPvÞ
1−FðPvÞ

� �M−1

1−Fðv̂Þ−FðPvÞ
1−FðPvÞ

� �
=

MðFð v̂Þ−FðPvÞÞM−1ð1−Fð v̂ÞÞ
ð1−FðPvÞÞM

ð14Þ

since it is her bid, σsð v̂Þ, that determines the winner's payment.
With this in mind, with likelihood FðPvÞN−1, where Pv once more

denotes the relevant participation threshold, the representative
bidder will have no active competitors. If it is assumed that in an
auction with one bidder, the “second price” is zero, then such a

bidder would earn a benefit of v, no matter what bid σsð v̂Þ she
submits.

With likelihood ðN−1ÞFðPvÞN−2ð1−FðPvÞÞ, on the other hand, she
will compete with just one other bidder (M=1), with expected
benefits equal to:

EUð v̂; v;1Þ = ∫ v̂

Pv
ðv−ð1−βÞσ sðxÞÞgðx;1Þdx +

ð1−Fð v̂ÞÞ
ð1−FðPvÞÞ

ασ sð v̂Þ

=
1

ð1−FðPvÞÞ
∫ v̂

Pv
ðv−ð1−βÞσ sðxÞÞf ðxÞdx +

ð1−Fð v̂ÞÞ
ð1−FðPvÞÞ

ασ sð v̂Þ

ð15Þ

The first term is the (conditional onM=1) expected benefit when
she wins – the difference between this term and its equivalent under
the first price mechanism is that the relevant bid is now σ s(x) rather
than σ sð v̂Þ – and the second captures the fact that when she loses, the
value of her bid, σ sð v̂Þ, determines the winner's payment and there-
fore the value of the common benefit.

Finally, she will face M≥2 competitors with likelihood
CN−1
M FðPvÞN−1−Mð1−FðPvÞÞ M, with expected benefits:

EUð v̂; v;MÞ = ∫ v̂

Pv
ðv−ð1−βÞσ sðxÞÞgðx;MÞdx

+
MðFð v̂Þ−FðPvÞÞM−1ð1−Fð v̂ÞÞ

ð1−FðPvÞÞM
ασ sð v̂Þ

+ α∫1
v̂
σ sðxÞjðx;MÞdx

ð16Þ

where:

jðx;MÞ = dJðx;MÞ
dx

=
MðM−1ÞðFðxÞ−FðPvÞÞM−2ð1−FðxÞÞf ðxÞ

ð1−FðPvÞÞM
ð17Þ

is the density function of the second order statistic. As before, the first
and second terms represent, respectively, the expected benefits when
she wins, and when she loses but submits the second highest bid. The
additional third term measures the direct spillover when she is
neither the first nor second price bidder.

With some simplification, the unconditional return EUðv; v̂Þ can
then be written:

EUðv; v̂Þ = FðPv ÞN−1v + ðN−1ÞFðPvÞN−2∫ v̂

Pv
ðv−ð1−βÞσsðxÞÞf ðxÞdx

+ αðN−1ÞFðPvÞN−2ð1−Fð v̂ÞÞσsð v̂Þ

+ ∑N−1
M=2 C

N−1
M FðPvÞN−1−MM ∫ v̂

Pv
ðv−ð1−βÞσsðxÞÞðFðxÞ−FðPvÞM−1f ðxÞdx

� �

+ αð1−Fð v̂ÞÞσsð v̂Þ∑N−1
M=2 C

N−1
M MFðPvÞN−1−MðFðv̂Þ−FðPvÞÞM−1

+ α∑N−1
M=2 C

N−1
M MðM−1ÞFðPvÞN−1−M

� ∫1
v̂
σsðxÞðFðxÞ−FðPvÞÞM−2ð1−FðxÞÞf ðxÞdx

� �

ð18Þ

The effects of variation in v̂ on EUðv; v̂Þ are a little easier to
calculate than first seem because the derivatives of the fifth and sixth
terms each contain, with opposite signs, the term αð1−Fð v̂ÞÞσsð v̂Þ
∑N−1

M = 2 C
N−1
M MðM−1ÞFðPvÞN−1−MðFð v̂Þ−FðPvÞÞM−2f ð v̂Þ. It follows that:

∂EUðv; v̂Þ
∂ v̂ = ðN−1ÞFðPv Þ

N−2ðv−ð1−βÞσ sð v̂ÞÞf ð v̂Þ

+ αðN−1ÞFðPvÞN−2½ð1−Fð v̂ÞÞdσ
sð v̂Þ
d v̂

−σ sð v̂Þf ð v̂Þ�

+ ðv−ð1−βÞσ sð v̂ÞÞf ð v̂Þ∑N−1
M=2MFðPvÞN−1−MðFð v̂Þ−FðPvÞÞM−1

+ α½ð1−Fð v̂ÞÞdσ
sð v̂Þ
d v̂

−f ð v̂Þσsð v̂Þ�∑N−1
M=2MFðPvÞN−1−MðFð v̂Þ−FðPvÞÞM−1

ð19Þ
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The observation that, as a further consequence of the binomial
theorem, ∑N−1

M=2MFðPvÞN−1−MðFð v̂Þ−FðPvÞÞM−1 = ðN−1ÞðFð v̂ÞN−2−
FðPvÞN−2), and the requirement that ∂EUðv; v̂Þ= ∂ v̂ = 0 at v = v̂ in
equilibrium allows the first order condition to be rewritten as:

0 = ðN−1ÞFðPv ÞN−2ðv−ð1−βÞσ sðvÞÞf ðvÞ

+ αðN−1ÞFðPvÞN−2½ð1−FðvÞÞ dσ
sðvÞ
dv

−σ sðvÞf ðvÞ�

+ ðN−1Þðv−ð1−βÞσ sðvÞÞf ðvÞðFðvÞN−2−FðPvÞN−2Þ

+ αðN−1Þ½ð1−FðvÞÞdσ
sðvÞ
dv

−f ðvÞσsðvÞ�ðFðvÞN−2−FðPvÞN−2Þ

or, after dividing both sides by (N−1) and collecting terms:

0 = ðv−ð1−βÞσ sðvÞÞFðvÞN−2f ðvÞ

+ αð1−FðvÞÞFðvÞN−2 dσ
sðvÞ
dv

−ασ sðvÞFðvÞN−2f ðvÞ

which, if v≠0, so that F(v)N−2≠0, produces:

ðv−ð1−βÞσ sðvÞÞf ðvÞ + α½ð1−FðvÞÞ dσ
sðvÞ
dv

−f ðvÞσ sðvÞ� = 0 ð20Þ

or, if v≠1 and α≠0, the first order differential equation10:

dσ sðvÞ
dv

− ð1−γÞ
α

f ðvÞ
ð1−FðvÞÞσ

sðvÞ = − 1
α

f ðvÞ
ð1−FðvÞÞ v ð21Þ

Multiplication of both sides of Eq. (21) by the integrating factor

ð1−FðvÞÞ1−γ
α then produces:

dðð1−FðvÞÞ1−γ
α σsðvÞÞ

dv
= − 1

α
vf ðvÞð1−FðvÞÞ1−β

α ð22Þ

or:

ð1−FðvÞÞ1−γ
α σsðvÞ = − 1

α
∫vf ðvÞð1−FðvÞÞ1−β

α + k ð23Þ

where k is the constant of integration.
The choice of boundary condition, and therefore the calculation of

k, is complicated for two reasons. The optimal threshold bid σsðv Þ is,
for reasons noted earlier, indeterminate, but the derivation of Eq. (23)
assumed that v≠1. The second problem can be circumvented if the

domain of ð1−FðvÞÞ1−γ
α σsðvÞ is (re)extended such that ð1− Fð1ÞÞ1−γ

α

σsð1Þ assumes its limit value of 0. It then follows that:

ð1−FðvÞÞ1−γ
α σsðvÞ = 1

α
∫1

v
xf ðxÞð1−FðxÞÞ1−β

α dx: ð24Þ

Integration by parts then implies:

ð1−FðvÞÞ1−γ
α σsðvÞ = 1

1−γ
ð1−FðvÞÞ

1−γ
α

v +
1

1−γ
∫1

v
ð1−FðxÞÞ

1−γ
α

dx ð25Þ

or, if one assumes, once more, that v≠1, so that both sides can be
divided by ð1−FðvÞÞ1−γ

α :

σsðvÞ = 1
1−γ

v +
1

ð1−γÞð1−FðvÞÞ1−γ
α

∫1
v ð1−FðxÞÞ1−γ

α dx: ð26Þ

The limit bids σsðPvÞ and σs(1) are then chosen so that σs(v) is
continuous over the entire interval ½Pv;1�.

It isn't difficult to infer from Eq. (26) that, conditional on
participation, neither the introduction of spillover effects nor
participation costs causes bidders to become “N sensitive.” This
should not come as much of a surprise, however, because Menezes
andMonteiro (2000) show that it is (still) dominant to bid one's value
in the absence of the former, while Engers and McManus (2007)
determine that in a second price charity auction with a fixed number
of bidders, the optimal bid is independent of N.

Menezes and Monteiro (2000) also found, however, that the
participation thresholds for first and second price auctions were
equal, a result that is not robust with respect to the presence of a
common return. To understand the difference, consider, once
more, the situation faced by the “threshold bidder.” If she
participates, then with likelihood FðPvÞN−1 she alone will submit a bid,
and thereforewin theobjectworth v toher at a cost of 0, since there is no
second price. With likelihood ðN−1ÞFðPvÞN−2ð1−FðPvÞÞ, on the other
hand, there will be a second bidder, someone who will (almost
certainly) win at a cost of σsðPvÞ, which produces a benefit of ασsðPvÞ
to the threshold bidder. Last, with likelihood CN−1

M FðPvÞN−M−1

ð1−FðPvÞÞM , therewill beM≥2 other active bidders, andwith no chance
that the threshold bidder will determine the second price, the expected
benefits that will accrue to her are α∑N−1

M = 2 C
N−1
M FðPvÞN−M−1

ð1−FðPvÞÞM ∫1
Pv
jðx;MÞσsðxÞdx, where, as defined earlier, j(x,M) is the

conditional density of the second order statistic. The net benefits of
participation are therefore:

FðPvÞN−1
Pv + αðN−1ÞFðPvÞN−2ð1−FðPv ÞÞσ

sðPvÞ

+ α∑N−1
M = 2 C

N−1
M FðPvÞN−M−1ð1−FðPvÞÞM∫1

P
v
jðx;MÞσsðxÞdx−cs

ð27Þ

If, on the other hand, the threshold bidder does not participate, she
receives 0 with likelihood FðPvÞN−1 + ðN−1ÞFðPvÞN−2ð1−FðPvÞÞ, the
likelihood that one or fewer bids are submitted, since there are no
revenue proportional benefits in this case, andα∫1

Pv
jðx;MÞσsðxÞdxwith

likelihood CN−1
M FðPvÞN−M−1ð1−FðPvÞÞM for M≥2. The net benefits of

non-participation are therefore:

α∑N−1
M = 2 C

N−1
M FðPvÞN−M−1ð1−FðPvÞÞM∫1

Pv
jðx;MÞσsðxÞdx

The condition that defines the threshold Pv is therefore:

FðPvÞN−1
Pv + αðN−1ÞFðPvÞN−2ð1−FðPvÞÞσsðPvÞ = cs ð28Þ

the solution of which will be denotedPv
s = Pv

sðN; cs;αÞ. Relative to the
first price threshold in Eq. (11), two related properties of Pv

sðN; cs;αÞ
call for attention. First, the threshold is now sensitive to the common
return α and warm glow γ=β−α associated with the charity.
Second, when participation costs are the same, c f=cs, the threshold is
lower or, if one prefers, participation rates are higher, in the second
price auction. A comparison of the two conditions in Eqs. (11) and
(28) reveals that the difference is the term αðN−1ÞFðPvÞN−2

ð1−FðPvÞÞσsðPvÞ, the benefit that accrues to a threshold bidder in
second price auction when there is just one other bidder, and she
determines the winner's payment.

10 If there is no common return – that is, if α=0 – then Eq. (20) collapses to σs(v)=
(1−γ)−1v, a variation on the standard proposition that in a second price auction with
independent private values, individuals will bid these values. In this case, individuals
bid γ(1−γ)−1 percent more than their values because it is possible, at least in
principle, that there remains a warm glow γ.
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Expected revenues in the second price auction Rs are therefore:

Rs = NðN−1Þ∫1
Pv
sðN;cs ;α;βÞ FðxÞN−2 1−FðxÞð Þf ðxÞσ sðxÞdx

=
NðN−1Þ
1−γ

�
∫1

Pv
sðN;cs ;α;βÞ FðxÞN−2 1−FðxÞð Þf ðxÞxdx

+ ∫1

Pv
sðN;cs ;α;βÞ FðxÞN−2 1−FðxÞð Þ∫1

x
1−FðzÞð Þ

1−γ
α dzdxÞ

� ð29Þ

where N(N−1)F(v)N−2(1−F(v))f(v) is the unconditional density
function of the second order statistic and the second line follows from
substitution for σs(x).

3. All-pay sealed bid auction

The derivation of the SBNE bid functions under the all-pay
mechanism follows now familiar lines. With likelihood FðPvÞN−1, the
representative bidder will have no active rivals, and can expect
ðv−ð1−βÞσað v̂ÞÞ. With likelihood CN−1

M FðPvÞN−1−Mð1−FðPvÞÞM , she will
have M≥1 rivals, and expect:

EU v̂; v;Mð Þ = ∫v̂
Pv
vgðx;MÞdx +

αM
1−FðPvÞ
� �∫1

Pv
f ðxÞσaðxÞdx−ð1−βÞσa v̂ð Þ

=
Fð v̂Þ−FðPvÞ
� �M

1−FðPvÞ
� �M v +

αM
1−FðPvÞ
� �∫1

Pv
f ðxÞσaðxÞdx−ð1−βÞσa v̂ð Þ:

ð30Þ

The first term reflects the fact that she will win the auction, and
receive her private value v, with likelihood Gð v̂;MÞ. The second and
third follow from the observation that, win or lose, she will forfeit the
net cost of her bid, ð1−βÞσað v̂Þ, but obtain benefits equal to a fraction
α of the sum of all other bids, expressed here as the product of the

number of active bidders M and the mean bid ∫1

Pv
f ðxÞ

ð1−FðPvÞÞ
σaðxÞdx.

Substitution for g(x,M) in the first term and integration then leads to
the second line.

After some simplification, the unconditional payoff EUðv; v̂Þ for a
bidder who assumes type v̂ is therefore:

EUðv; v̂Þ = Fð�vÞ
N−1ðv−ð1−βÞσ að v̂ÞÞ

+ v∑N−1
M=1 C

N−1
M FðPvÞN−1−MðFð v̂Þ−FðPvÞÞM

+
α

ð1−FðPvÞÞ
∫1

Pv
σaðxÞf ðxÞdx∑N−1

M=1 C
N−1
M MFðPvÞN−1−Mð1−FðPvÞÞM

−ð1−βÞσað v̂Þ∑N−1
M=1 C

N−1
M FðPvÞN−1−Mð1−FðPvÞÞM

ð31Þ

or recalling that∑N−1
M=1 C

N−1
M FðPvÞN−1−Mð1−FðPvÞÞM = 1−FðPvÞN−1 and

∑N−1
M=1 C

N−1
M MFðPvÞN−1−Mð1−FðPvÞÞM = ðN−1Þð1−FðPvÞÞ; and thennot-

ing that∑N−1
M=1 C

N−1
M FðPvÞN−1−MðFðv̂Þ−FðPvÞÞM = Fðv̂ÞN−1− FðPvÞN−1:

EUðv; v̂Þ = FðPvÞN−1ðv−ð1−βÞσað v̂ÞÞ + vðFð v̂ÞN−1−FðPvÞN−1Þ

+ αðN−1Þ∫1
Pv
σaðxÞf ðxÞdx−ð1−βÞð1−FðPvÞN−1Þσ að v̂Þ

= Fð v̂ÞN−1v + αðN−1Þ∫1
Pv
σ aðxÞf ðxÞdx−ð1−βÞσað v̂Þ

ð32Þ

The derivative of EUðv; v̂Þ with respect to v̂ is therefore just

vðN−1ÞFð v̂ÞN−2f ð v̂Þ−ð1−βÞdσ að v̂Þ
d v̂

, which equals zero at v̂ = v if:

dσaðvÞ
dv

=
N−1
1−β

FðvÞN−2f ðvÞv ð33Þ

The solution to this differential equation:

σaðvÞ = N−1
1−β

∫FðvÞN−2f ðvÞv + k ð34Þ

where k is a constant of integration. Since it is optimal for bidders with
threshold values to bid zero, σaðPvÞ = 0, this becomes:

σaðvÞ = N−1
1−β

∫v

Pv
FðxÞN−2f ðxÞxdx ð35Þ

or, after integration by parts:

σaðvÞ = 1
1−β

vFðvÞN−1−PvFðPvÞN−1
� �

− 1
1−β

∫v

Pv
FðxÞN−1dx: ð36Þ

If the costs of participation in first price and all-pay auctions are
the same, then so, too, are the participation thresholds.11 To show this,
recall that with likelihood FðPvÞN−1, the threshold bidder will be the
lone participant, and win a prize worth Pv to her for a bid of 0. With
likelihood CN−1

M FðPvÞN−1−Mð1−FðPvÞÞM , there will be M≥1 other
bidders, each of whom will submit, in expectation, a bid equal to
∫1
Pv
σaðxÞf ðxÞdx, which produces a benefit equal to αM∫1

Pv
σaðxÞf ðxÞdx

for the threshold bidder. The net benefits of participation are
therefore:

FðPvÞN−1
Pv + α∑N−1

M=1 C
N−1
M FðPvÞN−1−Mð1−FðPvÞÞMM∫1

Pv
σaðxÞf ðxÞdx−ca

ð37Þ

The net benefits of non-participation, on the other hand, are:

α∑N−1
M=1 C

N−1
M FðPvÞN−1−Mð1−FðPvÞÞMM∫1

Pv
σaðxÞf ðxÞdx ð38Þ

since, with likelihood CN−1
M FðPvÞN−1−Mð1−FðPvÞÞM , there will be M≥1

other bidders who produce the same non-exclusive benefit of
αM∫1

Pv
σaðxÞf ðxÞdx. The threshold is therefore defined by:

FðPvÞN−1
Pv = ca ð39Þ

the solution of which is denoted Pv
a = Pv

aðN; caÞ
The same demonstration also shows that expected revenues under

the all-pay mechanism are equal to:

Ra = N∫1

Pv
aðN;caÞσ

aðvÞf ðvÞdv: ð40Þ
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