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Abstract

We prove the existence of nontrivial multiparameter isospectral deformations of met-

rics on the classical compact simple Lie groups SO(n) (n = 9, n ≥ 11), Spin(n)

(n = 9, n ≥ 11), SU(n) (n ≥ 7), and Sp(n) (n ≥ 5). The proof breaks into three

main steps. First we outline a method devised by Schueth for constructing metrics

on these groups from linear maps. Isospectrality and equivalence of linear maps are

defined and we invoke a theorem by Schueth which states that isospectral linear maps

give rise to isospectral metrics. Next we prove the existence of multidimensional fam-

ilies of linear maps such that within each family the maps are pairwise isospectral and

pairwise not equivalent. Finally, we prove that generically, if F is a family of metrics

arising from a collection of pairwise nonequivalent linear maps, then for any metric g

contained in F there are at most finitely many metrics in F which are isometric to g.

Thus we conclude the existence of nontrivial multiparameter isospectral deformations

of metrics on the classical compact simple Lie groups of large enough dimension.
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Chapter 1

Introduction

Spectral geometry has its roots in spectroscopy and the problem of determining the

chemical composition of stars. By examining the natural vibrational frequencies, or

the spectrum, of a star, astronomers are able to deduce the chemical composition of

the star. More specifically, spectral geometry is the branch of differential geometry

concerned with examining the interplay of the spectrum of a compact Riemannian

manifold M with the geometry and topology of M . For example, if one knows the

entire spectrum of M , then one also knows the volume, dimension, and total scalar

curvature of M . Observations of this nature indicate that the spectrum of a Rie-

mannian manifold is intimately tied to its geometry and topology. However, in 1964,

Milnor proved that the spectrum of M does not necessarily encode all geometric infor-

mation about M by exhibiting a pair of 16-dimensional tori which are isospectral but

not isometric. In this paper, we prove a result similar in nature. We combine ideas

from Gordon and Wilson and from Schueth to produce multidimensional families of

isospectral metrics on each of SO(n), Spin(n), SU(n), and Sp(n). Note that these are

all of the classical compact simple Lie groups. The appropriate choices of n depend

on the group, but in all cases the result holds except for a few small values of n.
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These are the first examples of multidimensional families of isospectral left-invariant

metrics on a compact simple Lie group and the first examples of isospectral metrics

of any form on Sp(n).

The paper is organized as follows. In Chapter 2, we review the basic definitions and

properties of Lie groups and Lie algebras. In particular, we discuss the correspondence

between Lie groups and Lie algebras which allows us to translate questions about Lie

groups into simpler questions about Lie algebras.

In the first half of Chapter 3, we state the fundamental definitions and results

of spectral geometry. We then place our result into context by surveying several

examples of isospectral manifolds, with a focus on manifolds having different local

geometry.

We begin the examination of our particular problem in the second half of Chapter

3. Here we describe a method for constructing metrics on SO(n + 4), Spin(n + 4),

SU(n + 3), and Sp(n + 2) from linear maps j : h → gn where h denotes the Lie

algebra of the two-dimensional torus and gn is one of so(n), su(n), or sp(n). Our

goal becomes to reformulate our geometric question about metrics into an algebraic

question about linear maps. More specifically, we define two relationships between

linear maps: isospectrality and equivalence. A theorem by Schueth tells us that

isospectral maps give rise to isospectral metrics.

Chapter 4 is devoted entirely to the proof of

Theorem 4.1.1 Let gn be one of so(n) (n = 5, n ≥ 7) , su(n) (n ≥ 4), or sp(n) (n ≥

3). Let L be the space of all linear maps j : h → gn. There exists a Zariski open set

O ⊂ L such that each j0 ∈ O is contained in a d-parameter family of j-maps which

are isospectral but not equivalent. Here d depends on gn as follows:
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gn d
so(n) d ≥ n(n− 1)/2− [n

2
]([n

2
] + 2)

su(n) d ≥ n2 − 1− n2+3n
2

sp(n) d ≥ n2 − n

Theorem 4.1.1 was originally proven for so(n) by Gordon and Wilson. We extend the

proof to include su(n) and sp(n).

In Chapter 5, we complete our examination by proving a general nonisometry prin-

ciple for families of metrics arising from the construction in Chapter 3. In particular

we prove

Theorem 5.1.12 Suppose j0 : h → gn is contained in a family of generic linear maps

which are pairwise nonequivalent. For so(n) (n = 5, 7 and n ≥ 9), su(n) (n ≥ 2),

and sp(n) (n ≥ 3), there is at most one other linear map j in the family such that gj0

and gj are isometric. For so(8) there are at most five other maps.

Thus the families of linear maps guaranteed by Theorem 4.1.1 lead us to continuous

nontrivial d-parameter isospectral deformations of metrics on each of SO(n) (n =

9, n ≥ 11), Spin(n) (n = 9, n ≥ 11), SU(n) (n ≥ 7), and Sp(n), (n ≥ 5). Except for

the case of SU(7), all deformations have dimension greater than 1.
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Chapter 2

Lie Groups and Lie Algebras

The theory of Lie groups and Lie algebras is a richly developed and beautiful area

of mathematics. In this chapter, we give the basic definitions and examples of Lie

groups and Lie algebras. We also indicate the fundamental relationship between Lie

groups and Lie algebras. We then state results and properties which we will need for

later chapters. For a more full treatment of Lie groups and Lie algebras, the reader

is encouraged to see [FH91], [Hel78], or [Kna96].

2.1 Introduction to Lie Groups

We begin with the main definitions.

A Lie group is a smooth manifold G endowed with a group structure such that

the maps µ : G × G → G, µ(x, y) = xy and ι : G → G, ι(x) = x−1 are smooth. A

Lie subgroup H of a Lie group G is a subgroup with the structure of a Lie group

such that the inclusion mapping is an immersion. If the inclusion mapping is an

embedding, we say that H is a closed Lie subgroup of G. Given two Lie groups, G

and G′, a map f : G → G′ is a Lie group homomorphism if it is a smooth group
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homomorphism.

The following examples of Lie groups will figure heavily in this paper.

Example 2.1.1. The n-dimensional torus, T n.

The torus T n is the direct product of n copies of S1. Here we think of S1 as the set

of complex numbers of unit modulus, and multiplication of elements of S1 is given by

complex multiplication. Since multiplication on each component is given by complex

multiplication, we see that T n is an abelian Lie group.

Example 2.1.2. Matrix groups.

The most basic examples of matrix groups are GLR(n) and GLC(n), the groups

of n×n invertible matrices with real and complex entries respectively. We may think

of GLR(n) (resp. GLC(n)) as the group of linear automorphism of Rn (resp. Cn).

We will be particularly concerned with the following subgroups of GLR(n) and

GLC(n). Here we denote the n × n identity matrix by In, the transpose of a matrix

g by gt, the complex conjugate of g by g, and the conjugate transpose of g by g∗.

• O(n) ⊂ GLR(n).

The subgroup of matrices g satisfying gtg = In. O(n) is the set of orthogonal

invertible linears transformations of Rn with the standard inner product.

• SO(n) ⊂ GLR(n).

The subgroup of matrices g satisfying detg = 1 and gtg = In. SO(n) is the set

of orthogonal, orientation-preserving invertible linear transformations of Rn.

• SU(n) ⊂ GLC(n).

The subgroup of matrices g satisfying detg = 1 and g∗g = In. Thinking of

Cn as row vectors of length n, if we define a Hermitian inner product H on
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Cn by H(v, w) = v∗ · w, then SU(n) is the subgroup of orientation-preserving

invertible complex linear transformations of Cn which preserve H.

• Sp(n) ⊂ GLC(2n).

Let

M =

 0 In

−In 0

 . (2.1)

Sp(n) is the subgroup of matrices g satisfying gtMg = M and g∗g = I2n. If

we define a skew-symmetric bilinear form Q on C2n by Q(x, y) = txMy, then

Sp(n) is the subgroup of invertible complex linear transformations of C2n which

preserve both the Hermitian inner product, H, defined above and Q.

All three of SO(n), SU(n), and Sp(n) are compact and connected for n ≥ 1.

For n ≥ 1, both SU(n) and Sp(n) are simply connected manifolds, however the

fundamental group of SO(n) has order 2 for n ≥ 3.

Example 2.1.3. Spin(n).

For n ≥ 3, Spin(n) is the universal cover of SO(n). Since the fundamental group

of SO(n) is Z2, we have that Spin(n) is a two-fold covering of SO(n).

Lie groups are particularly nice objects of study due to the strong relationship

between the group structure and the manifold structure. In particular, we may restrict

our attention to vector fields and metrics which are invariant under the group action.

For g ∈ G, denote left- (resp. right-) multiplication by g by Lg (resp. Rg). A

vector field X on a Lie group G is left-invariant if Lg∗(Xh) = Xgh for all g, h ∈ G.

Similarly, a metric µ on G is called left-invariant if L∗
gµ = µ for all g ∈ G. We say

µ is bi-invariant if L∗
gµ = R∗

gµ = µ for all g ∈ G.
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All metrics which we consider in this paper are left-invariant. If G is a compact

connected Lie group, there exists exactly one (up to scaling) bi-invariant metric on

G.

Finally, we state two useful facts about isometry groups of manifolds. Suppose

that M is any Riemannian manifold and let I(M) be the group of isometries of M .

A classical result of Myers and Steenrod says that I(M) with the compact open

topology is a Lie group [MS39]. Furthermore, if we suppose that M is compact, we

may conclude that under the compact open topology, I(M) is also compact.

2.2 Introduction to Lie Algebras

As we will see in the next section, Lie algebras are the linear counterparts to Lie

groups. However, they may be defined independently of Lie groups.

A Lie algebra g over a field k is a vector space over k together with a skew-

symmetric product [·, ·] : g× g → g satisfying the Jacobi identity [[X, Y ], Z] +

[[Y, Z], X] + [[Z,X], Y ] = 0. A Lie subalgebra h of a Lie algebra g is a subspace

satisfying [h, h] ⊆ h. If h is a Lie subalgebra of g such that [X,Y ] ∈ h for all X ∈ h

and Y ∈ g, we say h is an ideal of g. The center of a Lie algebra g is the subalgebra

of elements X satisfying [X, Y ] = 0 for all Y ∈ g. We say that g is abelian if

[X,Y ] = 0 for all X, Y ∈ g.

Example 2.2.1. Matrix algebras

The set glR(n) (resp. glC(n)) of n × n matrices over R (resp. C) is a Lie algebra

with product given by [X, Y ] = XY − Y X. Here glR(n) is a real Lie algebra and we

may consider glC(n) either a real or a complex Lie algebra. Subalgebras of glR(n) and

glC(n) are known as matrix algebras. Matrix algebras are important examples of Lie
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algebras because in fact, according to Ado’s theorem, any Lie algebra over R or C

can be realized as a matrix algebra.

The following are examples of real matrix algebras which will be of concern to us.

• so(n) ⊂ glR(n). The set of real matrices which are skew symmetric (A+At = 0).

We see that the diagonal entries of any element of so(n) are zero, so each element

of so(n) is traceless. The dimension of so(n) is n(n−1)
2

. Notice that for A ∈ so(n),

any odd power of A will also be an element of so(n). This follows from induction

on the defining identity A = −At.

• su(n) ⊂ glC(n). The set of complex skew Hermitian matrices (A+A∗ = 0) with

trace zero. The real dimension of su(n) is n2 − 1.

• sp(n) ⊂ glC(2n). The set of n × n skew Hermitian matrices satisfying AtM +

MA = 0 where

M =

 0 In

−In 0

 (2.2)

(as in the definition of Sp(n)).

Direct calculation shows that elements of sp(n) are of the form

 Z11 Z12

−Z12 Z11

 (2.3)

where Z11 is an n × n skew Hermitian matrix and Z12 is an n × n symmetric

matrix. The real dimension of sp(n) is 2n2 + n. The eigenvalues of elements of

sp(n) come in plus and minus pairs, so as with so(n), we see that each element

of sp(n) is automatically traceless. We may use the identity AtM + MA = 0

and induction to show that for A ∈ sp(n), all odd powers of A are also elements

8



of sp(n).

It is easy to check that each of so(n), su(n), and sp(n) consists of normal elements,

that is, elements A such that AA∗ = A∗A. Basic linear algebra then implies that each

element of so(n), su(n), or sp(n) is diagonalizable by a unitary (or orthogonal in the

case of so(n)) matrix.

2.3 The Fundamental Relationship

In this section we make precise the relationship between Lie groups and Lie algebras.

We will make heavy use of this relationship in order to answer questions about Lie

groups in the much simpler Lie algebra setting.

Let G be a Lie group and let g be the vector space of left-invariant vector fields

on G. Then g is a Lie algebra where the bracket is given by [X,Y ] = XY − Y X.

The map from g to TeG which sends a left-invariant vector field to its value at the

identity is a vector space isomorphism. Thus we may identify g with TeG.

Thinking of g as TeG, suppose X ∈ g. Then there is a unique smooth homomor-

phism θX : R → G such that θ̇X(0) = X. We define the exponential map exp : g → G

by

expX = θX(1). (2.4)

The exponential map is the tool which allows us to translate between a Lie group

and its Lie algebra. In particular, it gives us a method for relating subalgebras of g

with subgroups of G.

Suppose H is a subgroup of G. The differential of the inclusion mapping from H

into G gives an injective map from the Lie algebra h of H into the Lie algebra g of

G. Thus h is a subalgebra of g. On the other hand, suppose h is any subalgebra of

9



g. Then h is the Lie algebra of exactly one connected subgroup H of G. In fact, H

is the subgroup generated by the set {expX|X ∈ h}.

Example 2.3.1. We have the following correspondences between the Lie groups

defined in Section 2.1 and the Lie algebras defined in Section 2.2:

• so(n) is the Lie algebra of SO(n).

• su(n) is the Lie algebra of SU(n).

• sp(n) is the Lie algebra of Sp(n).

• so(n) is also the Lie algebra of Spin(n).

Under the correspondence between Lie subalgebras and Lie subgroups, certain

properties are preserved. For example, normal subgroups of G correspond to ideals

of g and the center of G corresponds to the center of g. These relationships can be

explained via the Ad and ad maps which we now introduce.

Let Ig : G → G by Ig(h) = ghg−1. The differential of Ig, which we denote by

Ad(g), is an automorphism of g such that the diagram

g
Ad(g)−−−→ g

exp

y yexp

G −−−→
Ig

G

commutes.

We can repeat this process for any element of G. This leads us to define a map

Ad : G → Aut(g). We call this map the adjoint representation of G on g. But

both G and Aut(g) are Lie groups, so we have in turn the differential of Ad, denoted

ad, a map from g to End(g). It can be shown that for X, Y ∈ g, ad(X)Y = [X, Y ]

10



and that the diagram

g
ad−−−→ End(g)

exp

y yexp

G −−−→
Ad

Aut(g)

commutes. We call ad the adjoint representation of g.

Since Ad and ad originated from the conjugation map Ig they capture information

about commutativity in G and g. Thus we see that normal subgroups in G correspond

to ideals in g follows. Suppose that H is a normal subgroup of G so Ig(h) ∈ H for

all g ∈ G. This holds if and only if Ad(g)X ∈ h for all g ∈ G, X ∈ h. But from the

commutativity of the last diagram, we know this is true if and only if adY (X) ∈ h

for all X ∈ h and Y ∈ g, that is, if [Y,X] ∈ h. But this is precisely the condition that

h is an ideal in g.

Using similar proofs it can be shown that G is abelian if and only if g is abelian

and the center of G corresponds to the center of g. Furthermore, if H is a subgroup

of G with associated Lie subalgebra h, then the centralizer of H in G corresponds to

the centralizer of h in g. Finally, if h and k are two subalgebras of g such that h⊕k is

a Lie algebra direct sum (that is, [h, k] = 0), then the associated Lie subgroup H ×K

is a direct product of groups.

It is worth noting that while each Lie group has a unique associated Lie algebra,

the converse is not true. It is possible for two different Lie groups to have isomorphic

Lie algebras. For example, both SO(n) and its universal cover Spin(n) have the

same Lie algebra so(n). However, suppose that G and G′ are two Lie groups with

corresponding Lie algebras. The Fundamental Theorem of Lie states that g and g′

are isomorphic if and only if G and G′ are locally isomorphic. This means that

there exist neighborhoods U of the identity e ∈ G and U ′ of the identity e′ ∈ G′ and

a diffeomorphism φ : U → U ′ such that whenever x, y, xy ∈ U , φ(xy) = φ(x)φ(y). In

11



other words, though a particular Lie algebra may have more than one associated Lie

group, these Lie groups must have the same local structure.

2.4 More Definitions

In the final section of this chapter, we define a few more terms which will be relevant

to later chapters.

For a Lie algebra g, we define the commutator series of g by

g0 = g ⊇ g1 = [g0, g0] ⊇ · · · ⊇ gk = [gk−1, gk−1] ⊇ . . . (2.5)

We say that g is solvable if gk = 0 for some k.

We may also define the lower central series for g as

g0 = g ⊇ g1 = [g, g0] ⊇ · · · ⊇ gk = [g, gk] ⊇ . . . (2.6)

and say that g is nilpotent if gk = 0 for some k.

Notice that if g is solvable, then the last nonzero gj in the commutator series is an

abelian ideal. Similarly, if g is nilpotent, then g has nonzero center. In contrast, we

say that g is simple if g is nonabelian and has no proper nonzero ideals. We say g is

semisimple if it has no nonzero solvable ideals. In particular, if g is semisimple, it

has 0 center and may be written as a Lie algebra direct sum g = g1⊕ · · · ⊕ gn where

each gj is a simple ideal in g.

Example 2.4.1. The Lie algebras so(n), su(n), and sp(n) are all examples of real

simple Lie algebras.

We say that a Lie group is solvable, nilpotent, semisimple, or simple if its

12



associated Lie algebra is solvable, nilpotent, semisimple, or simple respectively.

Example 2.4.2. The Lie groups SO(n), Spin(n), SU(n), and Sp(n) associated to

the Lie algebras in Example 2.4.1 are simple Lie groups. They are known as the

classical compact simple Lie groups.

Finally, we say that a Lie algebra g is reductive if for each ideal a ⊂ g there

exists a corresponding ideal b ⊂ g such that g equals the Lie algebra direct sum a⊕b.

It is not hard to show that any reductive Lie algebra may be written g = [g, g] ⊕ zg

where [g, g] is semisimple and zg is the center of g. If G is a compact Lie group with

Lie algebra g, then g is reductive. This implies that every compact Lie group may be

written (G1 ×G2 × · · · ×Gn × T )/Z where each Gi is simple, T is a torus, and Z is

a discrete central subgroup of G1 ×G2 × · · · ×Gn × T .

13



Chapter 3

Spectral Geometry Background

Spectral geometry is the branch of geometry which examines the relationship be-

tween the spectrum of a Riemannian manifold and the geometry and topology of the

manifold. We begin this chapter by giving the basic definitions and facts of spec-

tral geometry. We then survey some examples of isospectral manifolds, focusing on

examples which have different local geometry. In the third section of the chapter,

we construct the metrics which we will consider in this paper. These metrics arise

from linear maps so in the final section of the chapter, we consider how relationships

among the linear maps encode relationships among the associated metrics.

3.1 Background and Definitions

Let (M, g) be a Riemannian manifold with Levi-Civita connection∇. Given a smooth

function f on M , we define the gradient of f to be the smooth vector field grad(f)

such that

g(grad(f), v) = v(f) (3.1)

for all smooth vector fields v.

14



On the other hand, given a vector field v on M , we define the real-valued function,

div(v), known as the divergence of v, by

div(v)(p) = tr(w 7→ ∇wv), (3.2)

where w ranges over TpM .

With these definitions in hand, we are ready for the main definition of spectral

geometry.

For any Ck, k ≥ 2, function f on M we define the Laplacian of f , denoted ∆f ,

by

∆f = −div(gradf) (3.3)

This leads us to consider the following eigenvalue problems.

Closed eigenvalue problem: Suppose M is a compact, connected manifold without

boundary. Find all real numbers λ such that there exists some nonzero function

f ∈ C2(M) satisfying

∆f = λf. (3.4)

Neumann eigenvalue problem: Suppose M is a compact, connected manifold

with boundary. Let ν be the outward pointing normal vector field on ∂M . Find all

real numbers λ such that there exists some nonzero function f ∈ C2 satisfying the

eigenvalue Equation 3.4 and

νf = 0. (3.5)

Dirichlet eigenvalue problem: Suppose M is a compact, connected manifold with

boundary. Find all real numbers λ such that there exists some nonzero function

15



f ∈ C2 satisfying Equation 3.4 and

f|∂M
= 0 (3.6)

In each of these cases, a solution λ is known as an eigenvalue of the Laplacian,

and a nontrivial function f satisfying ∆f = λf is called an eigenfunction of λ. The

set of all eigenfunctions associated to a given eigenvalue is known as the eigenspace

of λ.

Theorem 3.1.1. For each of the eigenvalue problems listed above, the set of eigen-

values forms a discrete sequence

0 ≤ λ1 < λ2 < λ3 < . . . ↑ ∞, (3.7)

where the eigenspace of each eigenvalue is finite dimensional. Eigenspaces of distinct

eigenvalues are orthogonal in L2(M), and there exists a basis of eigenfunctions for

L2(M). Finally, each eigenfunction is smooth on M .

The sequence given by Theorem 3.1.1 is known as the (Laplace) spectrum of

(M, g). We say that two manifolds (M, g) and (M ′, g′) are isospectral if they share

the same spectrum.

We will ultimately be interested in continuous families of isospectral manifolds. In

particular, suppose M is a smooth manifold with metric g0. A nontrivial isospec-

tral deformation of g0 is a continuous family F of metrics on M such that for any

metric g ∈ F , (M, g0) and (M, g) are isospectral but not isometric. We say that a

deformation is multidimensional if the parameter space of F is of dimension greater

than 1.
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3.2 A Survey of Isospectral Manifolds with Differ-

ent Local Geometry

We now survey some examples of isospectral manifolds, with a focus on examples

having different local geometry. This list is not complete but is meant to give a sense

of history as well as a to point out some specific local geometric invariants which

are not spectrally determined. For manifolds with boundary, the word isospectral

indicates both Neumann and Dirichlet isospectral.

The industry of producing examples of isospectral manifolds began in 1964 when

Milnor exhibited a pair of 16-dimensional flat tori which are isospectral but not iso-

metric. Several years later, in the early 1980’s, new examples began to appear sporad-

ically. These included pairs of Riemann surfaces and pairs of 3-dimensional hyperbolic

manifolds [Vig80], spherical space forms [Ike80], and the first examples of continuous

isospectral deformations [GW84].

In 1985, Sunada gave the first unified approach for constructing isospectral ex-

amples [Sun85]. With the use of representation theoretic techniques, the method

described a program for taking quotients of a given manifold so that the resulting

manifolds were isospectral. Sunada’s original theorem and subsequent generalizations

([Ber92], [Ber93], [DG89], [Pes96], [Sut02]) explained most of the previously known

isospectral examples and led to a wide variety of new examples. See, for example,

[BGG98], [Bus86], and [GWW92]. Until a recent generalization by Sutton [Sut02],

each example produced using the Sunada method had a common Riemannian cover,

which implied that while the manifolds exhibited different global geometry, each pair

or family had the same local geometry.

In 1991, using direct computation, Szabó discovered the first examples of isospec-

tral manifolds with different local geometry (these examples were published later in
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[Sza99]). The manifolds had boundaries and were diffeomorphic to the product of

an eight-dimensional ball and a three-dimensional torus. Inspired in part by Szabó’s

examples, Gordon produced the first examples of closed isospectral manifolds with

different local geometry [Gor93] and then, in a series of papers, generalized the con-

struction to the following principal based on torus actions. Recall that if π : M → N

is a submersion, for p ∈ M , the subspace ker(π∗p) of TpM is called the vertical space

at p and its orthogonal complement is called the horizontal space at p. We say that

π is a Riemannian submersion if π∗ maps the horizontal space at p isometrically

onto Tπ(p)N . We say that the fibers of a submersion are totally geodesic if geodesics

in M which start tangent to a fiber remain in the fiber.

Theorem 3.2.1. (Gordon) Let T be a torus and suppose (M, g) and (M ′, g′) are two

principal T -bundles such that the fibers are totally geodesic flat tori. Suppose that for

any subtorus K ⊂ T of codimension 0 or 1, the quotient manifolds (M/K, g) and

(M ′/K, g′), where g and g′ are the induced submersion metrics, are isospectral. Then

(M, g) and (M ′, g′) are isospectral.

This theorem is the basis for what has become known as the “submersion tech-

nique”. Gordon’s initial application of Theorem 3.2.1 was to give a sufficient condi-

tion for two compact nilmanifolds (discrete quotients of nilpotent Lie groups) to be

isospectral.

In 1997, Gordon and Wilson furthered the development of the submersion tech-

nique when they constructed the first examples of continuous families of isospectral

manifolds with different local geometry [GW97]. The base manifolds were products

of n-dimensional balls with r-dimensional tori (n ≥ 5, r ≥ 2), realized as domains

within nilmanifolds. Here Gordon and Wilson proved a general principle for local

nonisometry. They were also able to exhibit specific examples of isospectral deforma-
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tions of manifolds with boundary for which the eigenvalues of the Ricci tensor (which,

in this setting, were constant functions on each manifold) deformed nontrivially. It

was later proven in [GGS+98] that the boundaries Sn×T r of the manifolds in [GW97]

were also examples of isospectral manifolds. These were closed manifolds which were

not locally homogeneous. A general abstract principle was given for nonisometry

but specific examples were also produced for which the maximum scalar curvature

changed throughout the deformation, thereby proving maximal scalar curvature is

not a spectral invariant.

Expanding on the ideas of [GGS+98], Schueth produced the first examples of sim-

ply connected closed isospectral manifolds. In fact, Schueth even produced continuous

families of such manifolds [Sch99]. Schueth’s basic principal was to embed the torus T 2

into a larger, simply connected Lie group (e.g. SU(2)×SU(2) ' S3×S3) and expand

the metric in order to find isospectral metrics on S4×SU(2)×SU(2) ' S4×S3×S3.

Since the torus was embedded in the group, the torus action on the manifold was the

natural group action. Schueth’s examples were not locally homogeneous. For these

examples, the critical value of the scalar curvature changed throughout the deforma-

tion, proving the manifolds were not locally isometric. Furthermore, by examining

heat invariants related to the Laplacian on one-forms, Schueth was able to prove that

these examples were isospectral on functions but not on one-forms.

It is worth noting that at the time of Schueth’s examples of simply connected,

closed, locally nonisometric manifolds, it was believed that the Sunada method was

incapable of producing such manifolds. This was due to the fact that until then, all

generalizations of the Sunada’s theorem involved quotients by discrete subgroups of

isometries. However, Sutton recently proved a generalization which allowed quotients

by connected subgroups, and used this generalization to produce isospectral pairs of

simply connected, closed manifolds with different local geometry [Sut02].
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Schueth continued to capitalize on the notion of embedding the torus in a larger

group in her habilitation thesis [Sch01a]. In this case, Schueth specialized Gordon’s

Theorem 3.2.1 to compact Lie groups in order to produce one-dimensional isospectral

deformations of each of SO(n) × T 2 (n ≥ 5), Spin(n) × T 2, (n ≥ 5), SU(n) × T 2

(n ≥ 3), SO(n) (n ≥ 8), Spin(n) (n ≥ 8), and SU(n) (n ≥ 6). Here the metrics were

left-invariant so the manifolds were homogeneous. As with many previous examples,

Schueth’s metrics were constructed from linear maps j into the Lie algebra of the

Lie group in question. (We will see a detailed exposition of this construction in

Section 3.3). In order to prove nonisometry, Schueth expressed the norm of the Ricci

tensor in terms of the associated linear j-map. Each of Schueth’s examples arose as

the flow of a vector field on the space of linear j-maps chosen so that the resulting

metrics were isospectral but so that the norm of the Ricci tensor varied through the

deformation. These were the first examples of irreducible simply connected isospectral

manifolds and the metrics in these examples could be taken arbitrarily close to the

bi-invariant metric. (In contrast, Schueth also proved that the bi-invariant metric

itself is spectrally rigid within in the class of left-invariant metrics. In other words,

any isospectral deformation of left-invariant metrics which contains the bi-invariant

metric must be trivial.)

These particular examples of Schueth’s were the inspiration for this paper. We

will use Schueth’s specialization of Theorem 3.2.1 to produce our metrics. However,

in this paper we will produce multidimensional families of metrics and will develop

a general nonisometry principal for families of metrics arising from linear j-maps.

Furthermore, we will expand the class of Lie groups for which such exist to include

all of the classical compact simple Lie groups of large enough dimension.

In [Sch01a], Schueth also produced examples of isospectral metrics on S2 × T 2,

thereby constructing the lowest dimensional examples to date of isospectral mani-
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folds having different local geometry. These metrics were based on similar, higher

dimensional examples constructed in [GGS+98], but were achieved by dropping an

unnecessary requirement on the metric construction.

By weakening the hypothesis in Theorem 3.2.1 that the fibers of the torus action

be totally geodesic, Gordon and Szabó were able to exhibit a variety of new types of

isospectral manifolds [GS02b]. Among the examples were a pair of manifolds with

boundary, one of which was Einstein (constant Ricci curvature) and the other not,

a pair of manifolds with boundary, one of which had parallel curvature tensor and

the other not, and continuous families of isospectral negatively curved manifolds with

boundary. The last example was in contrast with a result of Guillemin and Kahzdan

(for two dimensions) and Croke and Sharafutdinov (for higher dimensions) which

state that nontrivial isospectral deformations of closed negatively curved manifolds

are impossible [GK80], [CS98].

Inspired by the examples in [Sch01a], Gordon produced examples of continuous

families of isospectral metrics on spheres of dimension 8 and higher and balls of

dimension 9 and higher [Gor01]. In the construction of these examples, Gordon

dropped the requirement that the torus action be free. The metrics on Sn were T 2-

invariant metrics such that an open submanifold of Sn was foliated by principal orbits

isometric to manifolds studied in [GW97] and [GGS+98]. Gordon’s metrics on the

sphere (resp. ball) can be chosen arbitrarily close to the round (resp. flat) metric.

Slightly preceding [Gor01], Szabó also devised a method for constructing pairs of

isospectral metrics on spheres [Sza01]. The two methods and examples were distinct

as Szabó’s method relied on an analysis of function spaces. One very interesting

example arising from Szabó’s work was a pair of isospectral manifolds, one of which

was homogeneous and the other not.

Schueth immediately followed up on [Gor01] by reducing the dimensions of the
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spheres and balls. [Sch01b] contains examples of pairs of isospectral metrics on S5

and B6 as well as continuous isospectral deformations of S7 and B8. In each of these

examples, the isospectral metrics can be chosen to be the round metric outside an

open subset of arbitrarily small volume. In this case, Schueth proved nonisometry by

deriving a general sufficient nonisometry condition.

Most recently, Gordon and Schueth have constructed conformally equivalent met-

rics φ1g and φ2g on spheres Sn and balls Bn+1 (n ≥ 7) and on certain compact simple

Lie groups [GS02a]. They also showed that the conformal factors φ1 and φ2 were

isospectral potentials for the Schrödinger operator h2∆+φ for all h. There were pre-

viously known examples of isospectral conformally equivalent metrics (e.g. [BG90],

[BPY89], [Sch01a]) and of isospectral potentials (e.g. [Bro87]), but the examples in

[GS02a] represent the first examples on simply connected closed manifolds.

3.3 A Metric Construction

Here we construct the metrics that we will consider in this paper. In what follows,

let h denote the Lie algebra of the torus T 2, suppose Gn is one of SO(n), Spin(n),

SU(n), or Sp(n), and let gn denote the associated Lie algebra so(n), su(n), or sp(n).

The metrics which we construct are based on linear maps from h into gn. The key

ideas of the construction are to embed Gn × T 2 into a larger group and then use j to

redefine orthogonality on gn⊕ h. This construction is due to Schueth in [Sch01a].

First we embed Gn × T 2 into a larger group Gn+p, where p depends on Gn as we

shall see below. All of the work will be done at the Lie algebra level and we will use

the fundamental correspondence between Lie algebras and Lie groups to achieve the

desired embedding.

• gn = so(n): Consider h a subalgebra of so(n + 4) (i.e. p = 4) with elements of
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the form 

0n

0 α

−α 0

0 β

−β 0


, (3.8)

where α, β ∈ R. We also consider so(n) a subalgebra of so(n + 4) as the set of

elements A

04

 , (3.9)

where A ∈ so(n). In this case, so(n)⊕ h is a Lie algebra direct sum so we may

consider the direct product SO(n)× T 2 (resp. Spin(n)× T 2) a Lie subgroup of

SO(n + 4) (resp. Spin(n + 4)).

• gn = su(n): We have h a subalgebra of su(n + 3) (i.e. p = 3) consisting of

elements 

0n

αi

βi

−(α + β)i


, (3.10)

with α, β ∈ R and su(n) the subalgebra of su(n + 3) consisting of elements

A

03

 , (3.11)

A ∈ su(n). We then have the Lie algebra direct sum su(n)⊕ h corresponds to a

Lie subgroup of SU(n + 3) which is the direct product SU(n)× T 2
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• gn = sp(n): Consider h the subalgebra of elements of sp(n + 2) (i.e. p = 2) of

the form 

0n

αi

βi

0n

−αi

−βi



, (3.12)

with α, β ∈ R. We have sp(n) a subalgebra of sp(n + 2) as the set of elements



A

02

B

02

−B

02

A

02


(3.13)

where A, B are n × n complex matrices, A is skew Hermitian, and B is sym-

metric. Thus the direct product Sp(n)× T 2 is contained in Sp(n + 2) as a Lie

subgroup.

Next we define a family of inner products on gn+p. The inner products will all be

based on linear maps, so we have the following definition.

Definition 3.3.1. A j-map is a linear map j : h → gn. We denote the space of all

j-maps into gn by L.

Let g0 be the inner product on gn+p arising from the bi-invariant metric on Gn+p.

Given a linear map j : h → gn ⊂ gn+p we have jt : gn+p → h defined by

g0(j
t(X), Z) = g0(X, j(Z)) (3.14)
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for all X ∈ gn+p, Z ∈ h. In other words, jt is the adjoint of j with respect to g0 on gn+p

and g0 restricted to h. Let gj be the inner product on gn+p given by gj = (Id+ jt)∗g0.

Finally, we complete the metric construction by taking the left-invariant metric

on Gn+p associated to gj. We will denote this metric by gj as well.

For fixed j, we catalogue some useful attributes of the inner product gj. A key

observation is that if X ∈ gn+p is g0-orthogonal to the image of j, then jt(X) = 0.

This is easy to see since for each Z ∈ h,

g0(j
t(X), Z) = g0(X, j(Z)) = 0. (3.15)

Since the image of j is contained gn, we have that j restricted to the g
⊥g0
n equals 0.

It is useful to decompose gn+p into orthogonal subspaces gn ⊕ h and (gn ⊕ h)⊥g0

and consider gj on each. Notice that (gn ⊕ h)⊥gj = (gn ⊕ h)⊥g0 as follows. Let X ∈

gn ⊕ h and let Y ∈ (gn ⊕ h)⊥g0 . Then since jt(X) ∈ h and jt(Y ) = 0,

gj(X, Y ) = g0(X + jt(X), Y + jt(Y )) (3.16)

= g0(X + jt(X), Y ) (3.17)

= 0. (3.18)

Furthermore, gj restricted to (gn ⊕ h)⊥g0 is equal to g0. Indeed, if X, Y ∈ (gn ⊕ h)⊥g0 ,

gj(X, Y ) = g0(X + jt(X), Y + jt(Y )) (3.19)

= g0(X,Y ) (3.20)

On the other hand, compare g0 with gj on gn ⊕ h. We already know that jt

restricted to g
⊥g0
n equals 0. In particular, jt equals 0 on h so an argument similar to
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the one above shows that gj restricted to h equals g0. We calculate h⊥gj in gn ⊕ h.

Suppose X ∈ gn and consider X − jt(X) ∈ gn ⊕ h. For any Z ∈ h,

gj(X − jt(X), Z) = g0(X − jt(X) + jt(X), Z) (3.21)

= g0(X, Y ) (3.22)

= 0. (3.23)

Thus we see that the space S = {X − jt(X)|X ∈ gn} is gj-orthogonal to h. Further-

more, for any elements X − jt(X), Y − jt(Y ) ∈ S,

gj(X − jt(X), Y − jt(Y )) = g0(X − jt(X) + jt(X), Y − jt(Y ) + jt(Y )) (3.24)

= g0(X, Y ). (3.25)

In summary, we have found that gj differs from g0 only on gn ⊕ h. On gn ⊕ h

we have used the linear map j to redefine orthogonality. In particular, j determines

a subspace S = {X − jt(X)|X ∈ g} which is gj-orthogonal to h and such that gj

restricted to S is linearly isometric to g0 restricted to gn via the map X−jt(X) 7→ X.

3.4 Isospectrality and Equivalence

In the final section of this chapter, we define two important algebraic relationships

between j-maps: isospectrality and equivalence. These relationships will translate

into information about the associated metrics. In particular, we state a theorem by

Schueth which tells us that isospectral j-maps give rise to isospectral metrics. Later,

in Chapter 5, we will prove that for a general j-map j0, a family of pairwise nonequiv-

alent j-maps containing j0 gives rise to a family of metrics which are not isometric to
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gj0 . Thus we are able to rephrase the geometric question of finding nontrivial isospec-

tral deformations in terms of the algebraic question of finding continuous families of

j-maps which are isospectral but not equivalent.

Definition 3.4.1. Two j-maps, j and j ′, into gn are called isospectral if for each

z ∈ h there exists Az ∈ Gn such that

Ad(Az)j(z) = j ′(z).

We denote this by j ∼ j ′.

Definition 3.4.2. Two j-maps, j and j ′, into gn are called equivalent if there exist

C ∈ O(h) and A ∈ Gn such that

Ad(A)j(z) = j ′(C(z)) (3.26)

for all z ∈ h. We denote this by j ' j ′.

Remark 3.4.3. Note that in the case Gn = SO(n), SU(n), or Sp(n), the map Ad(A) :

gn → gn is given by matrix conjugation. Thus we may rewrite the isospectrality

condition as

Azj(z)A−1
z = j ′(z) (3.27)

and the equivalence condition as

Aj(z)A−1 = j ′(C(z)). (3.28)

The following theorem by Schueth is a specialization of Gordon’s submersion the-

orem (Theorem 3.2.1).

27



Theorem 3.4.4. Let G be a compact Lie group with Lie algebra g = TeG, and let g0

be a bi-invariant metric on G. Let H ⊂ G be a torus in G with Lie algebra h ⊂ g.

Denote by u the g0-orthogonal complement of the centralizer z(h) of h in g. Let λ,

λ′ : g → h be two linear maps with λ|h⊕u
= λ′|h⊕u

= 0 which satisfy: For every

z ∈ h there exists Az ∈ G such that Az commutes with H and λ′ = Ad(Az)
∗λz, where

λz := g0(λ(·), z) and λ′z := g0(λ
′(·), z). Denote by gλ and gλ′ the left-invariant metrics

on G which correspond to the scalar products (Id+λ)∗g0 and (Id+λ′)∗g0 on g. Then

(G, gλ) and (G, gλ′) are isospectral.

In particular, this theorem tells us that if j and j ′ are isospectral maps j, j ′ : h →

gn, then letting λ = jt and λ′ = j ′t, we may conclude that the metrics gj and gj ′ on

Gn+p defined in Section 3.3 are isospectral.
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Chapter 4

Multidimensional Families of

j-Maps

In this chapter we will establish the existence of multiparameter families of j-maps

into so(n) (n = 5, n ≥ 7), su(n) (n ≥ 4), and sp(n) (n ≥ 3) which are isospectral

but not equivalent. Based on the comments in Section 3.4, this result will ultimately

lead us to nontrivial isospectral deformations of metrics on SO(n) (n = 9, n ≥ 11),

Spin(n) (n = 9, n ≥ 11), SU(n) (n ≥ 7), and Sp(n), (n ≥ 5).

This chapter is devoted entirely to the statement and proof of Theorem 4.1.1. The

chapter is divided into sections according to the steps of the proof.

4.1 Introduction

Throughout this chapter we will let h denote the Lie algebra of the two-dimensional

torus T 2. Let [n
2
] be the largest integer less than or equal to n

2
.

Theorem 4.1.1. Suppose gn is one of so(n) (n = 5, n ≥ 7) , su(n) (n ≥ 4), or

sp(n) (n ≥ 3). Let L be the space of all linear maps j : h → gn. There exists a
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Zariski open set O ⊂ L such that each j0 ∈ O is contained in a d-parameter family of

linear maps which are isospectral but not equivalent. Here d depends on gn as follows:

gn d
so(n) d ≥ n(n− 1)/2− [n

2
]([n

2
] + 2)

su(n) d ≥ n2 − 1− n2+3n
2

sp(n) d ≥ n2 − n

Note that for so(n), d > 1 when n = 5 or n ≥ 7. For su(n), d = 1 when n = 4

and d > 1 when n ≥ 5. For sp(n), d > 1 when n ≥ 3.

Remark 4.1.2. (i.) Theorem 4.1.1 was originally proven for so(n) with associated

Lie group O(n) in [GW97]. Here we will give the proof for su(n) and sp(n) with

associated Lie groups SU(n) and Sp(n) respectively. The general argument for both

Lie algebras will be given and at points where the argument becomes specific by Lie

algebra, the proof will be itemized by case.

Proof. For j ∈ L, define the following sets:

Ij = {j ′ ∈ L|j ∼ j ′} (4.1)

and

Ej = {j ′ ∈ Ij|j ' j ′}. (4.2)

Remark 4.1.3. Notice that Ej is the set of all linear maps which are equivalent and

isospectral to j.

The main work of the proof is to come up with polynomial equations which allow

us to define the Zariski open set O. In the process, we will show that for any j0 ∈ O,

the set Ij0 ∩ O is an embedded submanifold of L which can be foliated by sets of

the form Ej where j ∈ Ij0 . We will then find a d-dimensional submanifold Nj0 of Ij0

30



which contains j0 and is transverse to the foliation. The submanifold Nj0 will be a

family of j-maps which are isospectral but not equivalent to j0.

4.2 An Embedded Submanifold of Isospectral j-

Maps

We find a Zariski open set O1 ⊂ L such that for j0 ∈ O1, Ij0 ∩ O1 is an embedded

submanifold of L.

Let gn be one of su(n) or sp(n) and let r denote the size of the matrices in gn.

(For su(n), r = n and for sp(n), r = 2n.) Given k ∈ {1, . . . , r}, define a map

Tk : gn → R by Tk(C) = tr(Ck). If two elements C, C ′ ∈ gn are similar then, since

tr(ACA−1) = tr(C) and (ACA−1)m = ACmA−1, we have Tk(C) = Tk(C
′) for all k. In

fact, the opposite is true as well. If C, C ′ ∈ gn and Tk(C) = Tk(C
′) for all k = 1, . . . , r,

then C and C ′ must be similar.

Indeed, suppose Tk(C) = Tk(C
′) for all k ∈ {1, . . . , r} and recall that all elements

of gn are diagonalizable. Since C and C ′ are diagonalizable, we obtain a system of

equations, sk = s′k, k = 1, . . . , r where s
(′)
k =

∑r
i=1 λ

(′)k
i and λ

(′)
i is the ith eigenvalue

of C(′). Letting D denote a diagonal representation of C, we know that for any

real number x, det(xI − C) = det(xI − D). Thus det(xI − C) = (x − λ1)(x −

λ2) . . . (x− λr). If we expand this product we see that det(xI −C) = xr − p1x
(r−1) +

p2x
(r−2)+· · ·+(−1)rpr, where pi equals the ith elementary symmetric polynomial pi =∑

j1<j2<···<ji
λj1λj2 . . . λji

. We have a similar expression for det(xI − C ′). According

to an argument outlined in [Jac85], it is possible to write each pi in terms of the

functions sk, k = 1, . . . , r. Thus, since sk = s′k for all k = 1, . . . , r, we have that

pi = p′i for all i, and therefore det(xI − C) = det(xI − C ′) for all real numbers x. In
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particular, C and C ′ have the same eigenvalues and therefore are similar.

Remark 4.2.1. • The argument for su(n) differs here from the argument for so(n)

found in [GW97]. In particular, for so(n), Gordon and Wilson considered Tk

only for even k since Tk is trivial for odd k. This does not hold for su(n) when

n ≥ 3. Indeed, we know that the trace of any matrix A ∈ su(n) is the sum of

its eigenvalues. If we write A in canonical form we know that tr(Ak) =
∑

ak
i

where ai are the eigenvalues of A. Suppose for example that A has eigenvalues

i, 2i, and −3i. Then clearly, tr(A) = 0 but tr(A3) = −i − 8i + 27i 6= 0. Thus

we must consider the functions Tk for all k = 1, . . . , n.

• The elements of sp(n) are 2n× 2n matrices whose eigenvalues come in plus and

minus complex pairs. Hence the traces of odd powers of elements of sp(n) are

equal to zero and we see that it suffices to consider the functions Tk for all even

k between 1 and 2n.

Next, we define a map Tk : h×L → R by Tk(z, j) = Tk(j(z)) = tr(j(z)k). We then

have that j and j ′ are isospectral if and only if for each z ∈ h, Tk(z, j) = Tk(z, j
′) for

all k = 1, . . . , r.

Suppose that {e1, e2} is an orthonormal basis for h and that we write h = {se1 +

te2 : s, t ∈ R}. Then

Tk(se1 + te2, j) = tr(j(se1 + te2)
k) (4.3)

= tr((sj(e1) + tj(e2))
k) (4.4)

Since any linear map from h → gn is completely determined by j(e1) and j(e2), L

may be identified with gn× gn. But gn is coordinatized by its matrix entries. Thus,

each Tk is a polynomial function on h×L homogeneous of degree k in each variable
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h and L.

For p+q = k, let fsptq(j) denote the trace of the coefficient of sptq in the expansion

of (sj(e1) + tj(e2))
k. We see that each fsptq is a polynomial function on L and that

Tk(se1 + te2, j) = Tk(se1 + te2, j
′) for all se1 + te2 ∈ h if and only if fsptq(j) = fsptq(j

′)

for all p+q = k. Indeed, if fsptq(j) = fsptq(j
′) for all p+q = k, then by the definitions

of fsptq and Tk, it is clear that Tk(se1 + te2, j) = Tk(se1 + te2, j
′) for all se1 + te2 ∈ h.

On the other hand, if Tk(se1 + te2, j) = Tk(se1 + te2, j
′) for all se1 + te2 ∈ h, then

sk(fsk(j)− fsk(j ′)) + sk−1t(fsk−1t(j)− fsk−1t(j
′)) + . . .

+ stk−1(fstk−1(j)− fstk−1(j ′)) + tk(ftk(j)− ftk(j
′)) = 0 (4.5)

for all s, t ∈ R. In other words, fsptq(j) = fsptq(j
′) for all p + q = k.

For any k, there are k + 1 functions fsptq associated to Tk.

• For su(n), we consider Tk for all k = 1, . . . n. Since
∑n

k=1 k + 1 =
∑n

k=1 k +∑n
k=1 1 = n(n+1)

2
+ n = n2+3n

2
we conclude that j is isospectral to j ′ if and only

if all n2+3n
2

polynomial functions agree on j and j ′. This indicates that we can

define a function F : L → Rn2+3n
2 such that j ∼ j ′ if and only if F (j) = F (j ′).

• For sp(n), we consider Tk for all even k between 1 and 2n. Since
∑n

j=1 2j + 1 =

2
∑n

j=1 j + n = 2n(n+1)
2

+ n = n2 + 2n, we know that j is isospectral to j ′ if and

only if all n2 +2n polynomial functions agree on j and j ′. Hence, we can define

a function F : L → Rn2+n such that j ∼ j ′ if and only if F (j) = F (j ′).

Let R be the maximum rank of F . Then for su(n), R ≤ n2+3n
2

and for sp(n),

R ≤ n2 + 2n. Also, F has rank R at a point j if and only if there is some R × R

minor of F∗j which has nonzero determinant. In other words, F has rank R at j if

and only if the sum of the squares of all determinants of R × R minors is nonzero.
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But this sum of squares is a polynomial, denoted φF , so the set of points at which F

has rank R is a Zariski open set in L. (Notice that the set is nonempty by the choice

of R.) We’ll name this Zariski open set O1.

We have F : L → Rn2+3n
2 (resp. Rn2+2n) defined by polynomials, hence C∞. For

j0 ∈ O1, F−1(F (j0)) = Ij0 . Furthermore, by the definition of O1, F restricted to

O1 has constant rank R. Thus the Implicit Function Theorem implies that Ij0 ∩ O1

is a closed, embedded submanifold of O1 of codimension R. Since O1 is open in L,

Ij0 ∩ O1 is an embedded submanifold of L.

4.3 Equivalent j-Maps Within an Isospectral Fam-

ily

In this section, we find a Zariski open subset O2 ⊂ L such that for j0 ∈ O2 and

j ∈ Ij0 , the set Ej ⊂ Ij0 is the orbit of a certain group action.

As usual, let Gn be either SU(n) or Sp(n) and let gn denote the corresponding

Lie algebras su(n) and sp(n). Let r denote the size of the matrices in gn. Notice that

the group Gn ×O(h) acts on L by

((A, C) · j)(z) = Ad(A)j(C−1(z)). (4.6)

From the definition of equivalence, we see that j ′ is equivalent to j if and only if

j ′ = (A, C) · j for some (A, C) ∈ Gn × O(h). Now suppose that j ′ ∈ Ej (again: so j ′

is equivalent and isospectral to j) and that j ′ = (A, C) · j. In this case we will deduce

severe restrictions on what tranformations C could possibly be. In particular, we will

show that there is a Zariski open subset O2 of L such that for j in O2,
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• for su(n), j ′ ∈ Ej if and only if j ′ = (A, Ih) · j where A ∈ SU(n) and Ih denotes

the identity element of O(h). In other words, we show that Ej is the orbit of j

under the action of the subgroup K = SU(n)× {Ih}.

• for sp(n), j ′ ∈ Ej if and only if j ′ = (A,±Ih) · j where A ∈ Sp(n). In other

words, we show that Ej is the orbit of j under the action of the subgroup

K = Sp(n)× {±Ih}.

We will also show that:

• for Gn = SU(n), the stability subgroup of K at j is {(eiαIn, Ih)|(eiα)n = 1} and

• for Gn = Sp(n), the stability subgroup of K at j is {(±I2n, Ih)}.

Again, let j ′ ∈ Ej and choose (A, C) ∈ Gn×O(h) such that j ′ = (A, C) · j. Recall

that Ej ⊂ Ij so that all elements of Ej are isospectral to j. Then we have that

j ∼ (A, C) · j ∼ (A−1, Ih) · (A, C) · j (4.7)

(Recall the definition of isospectral maps. We have (A−1, 1h) · (A, C) · j ∼ (A, C) · j

since we can trivially choose Az to be A−1 for all z ∈ h.) But

(A−1, Ih) · (A, C) · j(z) = (A−1, Ih) · Ad(A)j(C−1z) = j(C−1z) = j ◦ C−1(z). (4.8)

Thus j ◦ C−1 ∼ j. From Section 4.2, we have that Tk(z, j ◦ C−1) = Tk(z, j) for all

z ∈ h and all k ∈ {1, . . . , r}.

Recall that since gn consists of skew-hermitian matrices (i.e. c∗ = −c for all c in

gn) there is a real inner product on gn given by 〈c, d〉 = tr(cd∗) = −tr(cd). Given a

fixed j-map, j, we can relate the inner product on gn back to a semi-inner product,
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denoted 〈·, ·〉j, on h by 〈z1, z2〉j = 〈j(z1), j(z2)〉. In this sense the j-map is translating

information about gn back to information about h in a way that is unique to the

j-map.

Notice that for any z ∈ h 〈z, z〉j = −T2(z, j). Since (A, C) · j ∈ Ej implies

T2(z, j ◦ C−1) = T2(z, j) for all z ∈ h, we have

〈C−1z, C−1z〉j = −T2(C
−1z, j) = −T2(z, j ◦ C−1) = −T2(z, j) = 〈z, z〉j. (4.9)

In other words, if (A, C) · j ∈ Ej, then C is orthogonal with respect to 〈·, ·〉j.

Now suppose {e1, e2} is basis for h which is orthonormal with respect to the

standard inner product, and let

J =

 |j(e1)|2 〈j(e1), j(e2)〉

〈j(e1), j(e2)〉 |j(e2)|2

 (4.10)

denote the matrix of 〈·, ·〉j with respect to this basis. If J is not diagonal, since it is

symmetric with real entries, it is diagonalizable by an orthogonal linear transforma-

tion. Thus we will assume J is diagonal. To say that C is orthogonal with respect to

〈·, ·〉j is to say that CtJC = J . But since C ∈ O(h), this means that CJ = JC.

If j is such that J has distinct eigenvalues, it is clear that J will commute with C

if and only if C itself is diagonal. Since C must be in O(h), we know that the only

eigenvalues it can have are ±1. Thus we conclude that as long as J is not a multiple

of the 2× 2 identity matrix, the only possibilities for C are ±Ih and ±C0, where C0

is the matrix [ 1 0
0 −1 ].

It is clear that J is a multiple of the identity matrix if and only if the polynomial

φT2(j) = (|j(e1)|2 − |j(e2)|2) + (〈j(e1), j(e2)〉)2 (4.11)
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equals zero.

• For su(n), we also know that if (A, C0) · j ∈ Ej, C0 must satisfy T3(z, j ◦C−1
0 ) =

T3(z, j) for all z ∈ h. In other words, it must be that tr(j(C−1
0 (z))3) = tr(j(z)3).

In particular, consider z = e1 + e2. Then, defining

φT3(j) = T3(e1 + e2, j)− T3(e1 + e2, j ◦ C−1
0 ) (4.12)

we see

φT3(j) = T3(e1 + e2, j)− T3(e1 + e2, j ◦ C−1
0 ) (4.13)

= tr(j(e1 + e2)
3 − j(C0(e1 + e2))

3) (4.14)

= tr(j(e1 + e2)
3 − j(e1 − e2)

3) (4.15)

= tr((j(e1) + j(e2))
3)− (j(e1)− j(e2))

3) (4.16)

= tr(6j(e1)
2j(e2) + 2j(e2)

3), (4.17)

which is a polynomial equation in j. If we can find an example of a j-map such

that φT3 does not equal zero then we know that φT3 is not identically zero on

L. This will imply that the complement of the set of zeros of φT3 is a Zariski

open set in L.

For su(n) and n = 3 choose j such that

j(e1) =


−i

−2i

3i

 , j(e2) =


5i 2

−2 −4i

−i

 . (4.18)

For n > 3, augment j(e1) and j(e2) with the appropriate number of zeroes.
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Notice that in this case, J = [ 14 0
0 50 ]. Then we have that φT3(j) 6= 0 as desired.

This tells us that for our specific choice of C0 defined above, tr(j(C−1
0 (e1 +

e2))
3) 6= tr(j(e1 +e2)

3). In other words, j ◦C−1
0 is not isospectral to j so j ◦C−1

0

cannot be an element of Ej.

• For sp(n), and n = 3, consider the map j given by

j(e1) =



−i

−2i

3i

i

2i

−3i



, j(e2) =



5i 2

−2 −4i

−i

−5i 2

−2 4i

i



.

(4.19)

In this case, J = [ 28 0
0 100 ]. Direct calculation shows that the eigenvalues of

j(e1) + j(e2) do not equal the eigenvalues of j(e1)− j(e2). Thus j ◦ C−1
0 and j

are not isospectral so j ◦ C−1
0 cannot be an element of Ej. For n > 3, augment

j(e1) and j(e2) with the appropriate number of zeroes. By the same argument

as above, we conclude that j ◦ C−1
0 cannot be an element of Ej.

Furthermore, we may conclude that for this choice of j at least one of

φT4(j) = T4(e1 + e2, j)− T4(e1 + e2, j ◦ C−1
0 ) (4.20)

= tr((j(e1) + j(e2))
4)− (j(e1)− j(e2))

4) (4.21)
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or

φT6(j) = T6(e1 + e2, j)− T6(e1 + e2, j ◦ C−1
0 ) (4.22)

= tr((j(e1) + j(e2))
6)− (j(e1)− j(e2))

6) (4.23)

does not equal zero. Both φT4 and φT6 are polynomials in j. Let φTi
be φT4 if

φT4(j) 6= 0. Otherwise let φTi
= φT6 . Since φTi

does not vanish on L, the set of

elements where φTi
does not vanish is a Zariski open set in L.

Finally, we have that for A ∈ Gn, (A,−Ih) · j(z) = −Aj(z)A−1. Recall that for

su(n), in order for (A, C) · j to be in Ej, we must have Tk(j, z) = Tk((A, C) · j, z) for

all z ∈ h and all k = 1, . . . , n. Since Tk(j, z) = −Tk((A,−Ih) · j, z) for all odd k, we

have that (A,−Ih) · j /∈ Ej. However, for sp(n) it suffices to consider Tk for even k

between 1 and 2n, so we have that both (A, Ih) · j and (A,−Ih) · j are elements of Ej.

Thus we have that if j ∈ L is neither a zero of φT2 nor of φT4, then

• for su(n), (A, C) · j ∈ Ej if and only if (A, C) ∈ K = SU(n)× {Ih}.

• for sp(n), (A, C) · j ∈ Ej if and only if (A, C) ∈ K = Sp(n)× {±Ih}.

Recall that we would now like to show that

• the stability subgroup of the action of K = SU(n)×{Ih} on L at j is {(eiαIn, Ih)|(eiα)n =

1} and

• the stability subgroup of the action of K = Sp(n) × {±Ih} on L at j is

{(±I2n, Ih)}.
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Remark 4.3.1. For sp(n), since C must equal ±Ih, by Remark 3.4.3 we see that

(A, C) · j = j if and only if either C = Ih and A commutes with j(z) for all z, or

C = −Ih and A anticommutes with j(z) for all z.

Let r = n or 2n for su(n) and sp(n) respectively. Define complex linear maps φj

and φ̃j from Mr(C) to Mr(C)×Mr(C) by

φj(A) := (j(e1)A− Aj(e1), j(e2)A− Aj(e2)) (4.24)

and

φ̃j(A) := (j(e1)A + Aj(e1), j(e2)A + Aj(e2)). (4.25)

Saying that φj has one-dimensional kernel and that φ̃j is injective is the same as

saying that the stability subgroup of K is as above. Indeed, if φj has one-dimensional

kernel, then we know that if A ∈ kerφj, then A must be a constant multiple of the

identity. But if we restrict φj to

• SU(n), A must be of the form eiαIn where (eiα)n = 1, or

• Sp(n), A must be equal to ±I2n.

From Remark 4.3.1, we conclude that the stability subgroup of K is as desired.

Since φj and φ̃j are both complex linear maps, we can express each as a 2r2 × r2

matrix. To say that φj has one-dimensional kernel is to say that the matrix of φj has

rank r2−1, a polynomial condition on j. (The sum of the squares of the determinants

of all (r2 − 1)× (r2 − 1) minors must be nonzero for the matrix to have rank r2 − 1.)

Similarly, to say that φ̃j is injective is to say that the matrix of φ̃j has rank r2, also

a polynomial condition on j. We call these polynomials φ and φ̃ respectively.

We would like to show that both φ and φ̃ determine Zariski open subsets of L.
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• We construct an example of a map j : h → su(n) (n ≥ 3) on which neither

φ nor φ̃ vanishes. (Note that it actually suffices to check only that φ does

not vanish on j.) Let {e1, e2} be an orthonormal basis of h. Every element of

su(n) is a normal linear transformation and therefore is diagonalizable with an

orthonormal set of eigenvectors. (Here, orthonormal refers to the complex inner

product on C3.) Furthermore, since each element of su(n) is traceless, we know

that the sum of its eigenvalues must be zero.

Choose j(e1) so that it has an orthonormal set of eigenvectors {v1, . . . , vn} with

respective eigenvalues {a1, . . . , an}. Choose j(e1) so that a1, . . . , an are distinct,

nonzero, and none is the negative of any of the others. Choose j(e2) similarly

with eigenvectors {w1, . . . , wn} and eigenvalues {b1, . . . , bn} so that b1, . . . , bn

are distinct, nonzero, and none is the negative of any of the others. In addition,

choose j(e2) so that each wi is a nontrivial linear combination of all of the

eigenvectors of j(e1).

Suppose that there is some element S ∈ Mn(C) which commutes with j(e1). In

this case, we can easily see that S must preserve the eigenspaces of j(e1): let v

be an eigenvector of j(e1) with eigenvalue ai. Then

j(e1)Sv = Sj(e1)v = Saiv = aiSv. (4.26)

The fact that we chose distinct eigenvalues for j(e1) implies that at most S

can expand or contract in the directions of the eigenvectors of j(e1) but can’t

rotate the space at all. Suppose for now that S is not a multiple of the identity.

By an argument similar to the one above, if S commutes with j(e2), it must

preserve the eigenspaces of j(e2). However, we chose the eigenvectors of j(e2)
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so that each was a nontrivial linear combination of all n of the eigenvectors of

j(e1). In the case that S is not a multiple of the identity, it won’t preserve the

eigenspaces of j(e2), a contradiction. Therefore, S must be a multiple of the

identity so φj has one-dimensional kernel and hence φ(j) 6= 0.

Now suppose that S anticommutes with j(e1). Then S takes each eigenspace

to the negative eigenspace as follows. Suppose v is an eigenvector of j(e1) with

eigenvalue ai. Then

j(e1)Sv = −Sj(e1)v = −Saiv = −aiSv. (4.27)

By our choice of j(e1) none of the eigenvalues of j(e1) is the negative of either

of the others. Therefore, Sv must equal zero. Since the eigenvectors of j(e1)

form an orthonormal basis, we see that S must be trivial. In other words φ̃j in

injective so φ̃(j) 6= 0.

• For sp(n) we construct two examples of j-maps: one such that φ(j) 6= 0 and one

such that φ̃(j) 6= 0. Recall that the eigenvalues of sp(n) come in plus/minus

pairs.

The example j for which φ(j) 6= 0 is similar to the example for su(n). Choose

j(e1) with eigenvalues {a1, . . . , an,−a1, . . . ,−an} such that a1, . . . , an are dis-

tinct, nonzero, and none is the negative of any of the others. Choose j(e2) such

that it has nonzero, distinct eigenvalues {b1, . . . , bn,−b1, . . . ,−bn} where none

of b1, . . . , bn is the negative of any of the others. Choose j(e2) also so that each

eigenvector of j(e2) is a nontrivial linear combination of all of the eigenvectors of

j(e1). An argument identical to that given for su(n) shows that if S ∈ M2n(C)

commutes with both j(e1) and j(e2), then S must be a multiple of the identity.
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Thus φ(j) 6= 0.

Now we provide an example of a j-map into sp(n) for which φ̃ does not vanish,

i.e. an example for which the only S ∈ M2n(C) which anticommutes with both

j(e1) and j(e2) is S = 0.

Choose j(e1) with orthogonal eigenvectors {v1, . . . , vn, vn+1, . . . , v2n} and match-

ing eigenvalues {a1, . . . , an,−a1, . . . ,−an} which are nonzero and distinct but

for plus/minus pairs. From the argument for su(n) we know that if S anti-

commutes with j(e1), then S carries each eigenspace of j(e1) to its negative

eigenspace. Thus we have

S(v1) = cn+1vn+1 S(v2) = cn+2vn+2 . . . S(vn) = c2nv2n (4.28)

S(vn+1) = c1v1 S(vn+2) = c2v2 . . . S(v2n) = cnvn

for some c1, . . . , c2n ∈ C.

Now choose j(e2) with orthogonal eigenvectors {w1, . . . , wn, wn+1, . . . , w2n} and

matching eigenvalues {b1, . . . , bn,−b1, . . . ,−bn} which are nonzero and distinct

but for plus/minus pairs. In addition, choose the eigenvectors so that

w1 = v1 w2 = v2 . . . wn = vn

wn+1 = vn+2 . . . w2n−1 = v2n w2n = vn+1.
(4.29)

Then by above, for each t = 1, . . . n, S(wt) = S(vt) = cn+tvn+t and also S(wt) =

dn+twn+t = dn+tvn+t+1. (S carries each eigenspace to its negative eigenspace.)

But by the choice of the v′is, cn+tvn+t is orthogonal to dn+tvn+t+1. Thus, for

all t = 1, . . . , n, cn+t and dn+t must equal zero. A similar argument shows that

for all t = 1, . . . , n, S(wn+t) = ct+1vt+1 = dtvt and therefore ct = dt = 0 for all
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t = 1, . . . , n. In other words, we have shown that if S anticommutes with both

j(e1) and j(e2), then S must be 0. Thus φ̃(j) 6= 0.

To conclude, we know that if j is not a root of φT2 and φT3 (resp. φTi
)

then

• for su(n), the set Ej is the orbit of j under the action of the subgroup

K = SU(n)× {Ih} and

• for sp(n), the set Ej is the orbit of j under the action of the subgroup

K = Sp(n)× {±Ih}.

Furthermore, if j is not a root of either φ or φ̃, then the stability subgroup

of j

• for SU(n) is {(eiαI, Ih)|(eiα)n = 1} and

• for Sp(n) is {(±I2n, Ih)}),

which is finite in both case. Let O2 denote the Zariski open subset of

j-maps which are not roots of any of φT2, φT3 (resp. φTi
), φ or φ̃.

4.4 d-Parameter Families of Isospectral, Nonequiv-

alent j-Maps

In the final section of this chapter, we combine the results from the previous sections

to prove the existence of multidimensional families of j-maps which are isospectral

but not equivalent.

As in the previous sections Gn denotes either SU(n) or Sp(n) and gn denotes

the corresponding Lie algebra su(n) or sp(n) respectively. We let r denote n or 2n
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depending on whether we are considering su(n) or sp(n). Let O = O1 ∩ O2. Let

j0 ∈ O and let Pj0 = Ij0 ∩ O. From the work in the first part of the proof, we

know that Pj0 is an embedded submanifold of L of codimension R ≤ n2+3n
2

(resp.

n2 + 2n). We now show that when any one of the polynomials defining O does not

vanish at j, it also does not vanish at k · j for any k ∈ K = SU(n) × {Ih} (resp.

K = Sp(n) × {±Ih}). In other words, O is closed under the action of K. For each

polynomial, the argument for su(n) is the same as the argument for sp(n).

First consider φF . Recall from Section 4.2 that F if a vector-valued function on

L with component functions fsptq . such that p + q ∈ {1, . . . , r}. The functions fsptq

are defined so that fsptq(j) = fsptq(j
′) when j and j ′ are isospectral. Furthermore,

φF (j) 6= 0 if F∗j has maximum rank among all j ∈ L.

To see that φF (k · j) 6= 0 whenever φF (j) 6= 0, first consider k = (A, Ih) ∈ K.

Then for any j ∈ L and z ∈ h, (A, Ih) · j(z) = Ad(A)j(z) so (A, Ih) · j is trivially

isospectral to j. Hence fsptq((A, Ih) · j) = fsptq(j) for all p + q ∈ {1, . . . , r}. Thus

conjugation by A ∈ G gives a smooth invertible map from L to L which preserves the

component functions of F . This implies that the rank of F at j is equal to the rank

of F at (A, Ih) · j so φF ((A, Ih) · j) = φF (j) 6= 0 as desired.

Now consider k = (A,−Ih) ∈ K. By the fact that fsptq is homogeneous of degree

p+ q, fsptq((A,−Ih) · j) = (−1)p+qfsptq(j). If we think of F∗ as a matrix, we have that

some of the rows of F∗(A,−Ih)·j are negatives of the corresponding rows of F∗j. This in

turn implies that some of the determinants of the R×R minors of F∗(A,−Ih)·j may be

the negative of the corresponding R×R minors of F∗j. However, φF calculates the sum

of the squares of the determinants of these minors, so we have that φF ((A,−Ih) · j) =

φF (j) 6= 0.

Next, recall

φT2 = (|j(e1)|2 − |j(e2)|2) + (〈j(e1), j(e2)〉)2. (4.30)
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We first notice that for m, n ∈ {1, 2} we have 〈j(em), j(en)〉 = tr(j(em)j(en)∗) =

tr((Ad(A)j(em))(Ad(A)j(en))∗) = 〈Ad(A)j(em), Ad(A)j(en)〉 since A−1 = A∗. Simi-

larly, 〈j(em), j(en)〉 = 〈Ad(A)j(−em), Ad(A)j(−en)〉. Thus φT2(k · j) = φT2(j) for all

k = (A,±Ih) ∈ K, i.e. φT2 is constant on the orbits of the action of K. Thus we may

conclude that if φT2(j) 6= 0, φT2(k · j) 6= 0 as well.

Since

φT3 = tr(6j(e1)
2j(e2) + 2j(e2)

3), (4.31)

it is easy to see that φT3(k · j) = ±φT3(j) for all k ∈ K. Similarly φTi
(k · j) = φTi

(j)

for all k ∈ K.

Now suppose that φ is nonzero at j. This means that φj, the map which measures

the commutativity of j, has one-dimensional kernel. Consider (A, Ih) ∈ K. We have

φ(A,Ih)·j(B) = (Ad(A)j(e1)B −BAd(A)j(e1), Ad(A)j(e2)B −BAd(A)j(e2)). (4.32)

We can set up a 1-1 correspondence between the elements which commute with

both j(e1) and j(e2) and the elements which commute with both Ad(A)j(e1) and

Ad(A)j(e2). The correspondence is achieved by B 7→ ABA−1. We know from before

that if φ(j) 6= 0, then the only matrices commuting with both j(e1) and j(e2) are the

scalar matrices. But if B is a scalar matrix, then ABA−1 = B. Thus the only ma-

trices commuting with Ad(A)j(e1) and Ad(A)j(e2) are still just the scalar matrices.

Hence if φ(j) 6= 0, then φ((A, Ih) · j) 6= 0. A similar argument shows that if φ(j) 6= 0

then φ((A,−Ih) · j) 6= 0 as well. We can also exploit this argument to show that

φ̃(j) 6= 0 implies φ̃(k · j) 6= 0 for any k ∈ K.

Thus we may conclude that O is closed under the action of K.
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Now, from Section 4.3 we know that for each j ∈ O, the orbit of j under the

action of K is equal to Ej and that the stabilizer subgroup of j is

• Z = {(eiαIn, Ih)|(eiα)n = 1} for su(n) and

• Z = {(±I2n, Ih)} for sp(n)

both of which are finite. Therefore the compact group K/Z acts freely on Pj0 . Ac-

cording to the properties of compact group actions (see [Bre72] p. 82-86), there is a

submanifold Nj0 of Pj0 such that Nj0 ×K/Z is homeomorphic to a neighborhood of

j0 in Pj0 . Since Nj0 lies in Pj0 each of its elements are isospectral to each other. On

the other hand, since Nj0 is transverse to the orbits of K/Z, no two of its elements

are equivalent to each other.

Finally, since Z is finite, dimK/Z = K. Thus

• for su(n),

d = dimNj0 (4.33)

= dimPj0 − dimK (4.34)

= (2dim su(n)−R)− dim su(n) (4.35)

= n2 − 1−R (4.36)

≥ n2 − 1− n2 + 3n

2
. (4.37)
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• For sp(n),

d = dimNj0 (4.38)

= dimPj0 − dimK (4.39)

= (2dim sp(n)−R)− dim sp(n) (4.40)

= dim sp(n)−R (4.41)

≥ (2n2 + n)− (n2 + 2n) (4.42)

= n2 − n. (4.43)

Therefore, for any j0 ∈ O, any parameterization of Nj0 gives us a d-parameter non-

trivial isospectral deformation of j0.
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Chapter 5

Nontrivial Isospectral

Deformations

In the first section of this chapter we prove a general nonisometry principle for fam-

ilies of metrics arising from j-maps via the construction defined in Section 3.3. In

particular, letting gn denote so(n), su(n) or sp(n), we prove that for any element j

contained in a family of generic, pairwise nonequivalent j-maps into gn, there is at

most one other element j ′ of the family such that gj ′ is isometric to gj (except in

the case of so(8) where there are at most five other elements). In the second section,

we complete our program by combining Theorem 3.4.4, Proposition 4.1.1, and the

result of Section 5.1 to produce examples of multidimensional nontrivial isospectral

deformations of metrics on SO(n) (n = 9, n ≥ 11), Spin(n) (n = 9, n ≥ 11), SU(n)

(n ≥ 7), and Sp(n) (n ≥ 5).
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5.1 Isometry and Equivalence

In this chapter, Gn denotes SO(n), Spin(n), SU(n), or Sp(n) and gn denotes the

associated Lie algebra so(n), su(n), or sp(n). Let j : h → gn be a linear map and let

I0(gj) denote the identity component of the isometry group of (Gn+p, gj). Let Ie0(gj)

denote the isotropy subgroup at e of I0(gj). For x ∈ Gn+p, denote left (resp. right)

translation by x by Lx (resp. Rx).

Theorem 5.1.1. [OT76] Let G be a compact, connected simple Lie group and ds2 be

a left-invariant Riemannian metric on G. Then for each isometry f contained in the

identity component of the group of isometries of (G, ds2) there exist x, y ∈ G such

that f = Lx ◦Ry.

In particular, for α ∈ Ie0(gj), we have that there exists some x ∈ Gn+p such that

α is equal to conjugation of Gn+p by x. Since α fixes the identity, at the Lie algebra

level we have that α∗ is equal to Ad(x).

Proposition 5.1.2. Suppose (M, g) and (M ′, g′) are two Riemannian manifolds and

that µ : (M, g) → (M ′, g′) is an isometry. Then the isometry group of (M, g) is

isomorphic to the isometry group of (M ′, g′). Furthermore, for any point p ∈ M , the

subgroup of isometries fixing p is isomorphic to the subgroup of isometries fixing µ(p).

Proof. Define a map from the isometry group of (M, g) to the isometry group of

(M ′, g′) by taking each isometry α of (M, g) to the isometry µαµ−1 of (M ′, g′). It is

easy to see that this is an isomorphism.

Now suppose that α is in the isotropy subgroup of the point p ∈ M . Then

µαµ−1(µ(p)) = µα(p) = µ(p) (5.1)
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Hence µαµ−1 fixes µ(p) so the isomorphism defined above restricts to an isomor-

phism of the isotropy subgroups.

Corollary 5.1.3. Given two j-maps j, j ′ : h → gn, suppose there exists an isom-

etry µ : (Gn+p, gj) → (Gn+p, gj ′). Then I0(gj) is isomorphic to I0(gj′) and Ie0(gj) is

isomorphic to Ie0(gj′).

Proof. First compose µ with Lµ(e)−1 . Then we have an isometry from (Gn+p, gj) to

(Gn+p, gj ′) which carries e to e. The isomorphism defined in Proposition 5.1.2 carries

the identity component of the isometry group of (Gn+p, gj) to the identity component

of the isometry group of (Gn+p, gj ′) so the corollary follows.

Proposition 5.1.2 implies the following.

Proposition 5.1.4. Suppose G is a compact simple group with left-invariant metrics

g and g′ neither of which is bi-invariant. If µ : (G, g) → (G, g′) is an isometry, then

(after possibly composing with Lµ(e)−1), µ is an automorphism of G.

Proof. If µ(e) 6= e, compose µ with Lµ(e)−1 so that the isometry carries e to itself.

Since G is compact, the isometry groups of (G, g) and (G, g′) are also compact. Thus

we may write the isometry group of (G, g) as G1 × G2 × · · · × Gs × T/Z and the

isometry group of (G, g′) as G′
1 × G′

2 × · · · × G′
t × T ′/Z ′ where each G

(′)
i is simple,

T ′ is a torus, and Z(′) is central. Each isometry groups contains a copy of G in the

form of left translations. Furthermore, since neither g nor g′ is bi-invariant, each

isometry group contains exactly one copy of G. By Proposition 5.1.2, we know that

these isometry groups must be isomorphic via conjugation by µ. Any isomorphism

from the isometry group of (G, g) to the isometry group of (G, g′) must carry simple

factors to simple factors. Since G is the only simple factor of its dimension, we have

that any isomorphism carries G to G. In our particular case, this means that for
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every x ∈ G there exists x′ ∈ G such that µLxµ
−1 = Lx′ . Thus for each x, y ∈ G,

µ(xy) = µ(Lxy)(e) = µ(LxLy)(e) = µLxµ
−1µLy(e)

= Lx′µLy(e) = Lx′Ly′µ(e) = Lx′Ly′(e) = x′y′ = µ(x)µ(y). (5.2)

Corollary 5.1.5. Given two nonzero j-maps, j and j ′, suppose there exists an isom-

etry µ : (Gn+p, gj) → (Gn+p, gj ′). Then (after possibly composing µ with Lµ(e)−1) µ is

an automorphism of Gn+p.

Proof. Each of SO(n), Spin(n), SU(n), and Sp(n) is compact and simple. Since

neither j nor j ′ is trivial, we have that neither gj nor gj ′ is bi-invariant. The corollary

then follows directly from Proposition 5.1.4.

Lemma 5.1.6. Let j, j ′ : h → gn be linear maps. Suppose there exists an isometry

µ : (Gn+p, gj) → (Gn+p, gj ′) such that µ(T 2) = T 2. Then there is an element C ∈ O(h)

such that j(z) = µ−1
∗ j ′(Cz) for all z ∈ h.

Proof. Without loss of generality, assume µ(e) = e. If µ maps T 2 to itself, then

it must isometrically map the Lie algebra h to itself. This implies that there is an

element C ∈ O(h) such that µ∗ restricted to h is equal to C.

From Corollary 5.1.5, we know that if µ is an isometry, it is also an automorphism

of Gn+p. Thus, if µ maps T 2 to itself in Gn+p, it must also isomorphically map the

identity component of the centralizer of T 2 in Gn+p to itself. At the Lie algebra level,

direct calculation shows that the centralizer of h in

• so(n + 4) is so(n)⊕ h. Thus the identity component of the centralizer of T 2 in

SO(n + 4) is SO(n) × T 2 and the identity component of the centralizer of T 2

in Spin(n + 4) is Spin(n)× T 2.
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• su(n + 3) is su(n)⊕tu⊕ h where

u =


i/n

...
i/n

−i/3
−i/3

−i/3

 ∈ su(n + 3) . (5.3)

All three of su(n), u, and h commute with each other so this is a Lie algebra

direct sum. Letting U denote the one-parameter subgroup associated to u, we

have the identity component of the centralizer of T 2 in SU(n + 3) is SU(n) ×

U × T 2.

• sp(n + 2) is sp(n)⊕ h. Thus the identity component of the centralizer of T 2 in

Sp(n + 2) is Sp(n)× T 2.

In each case, the identity component of the centralizer of T 2 is the product of

a simple group, Gn, with a torus. Therefore µ(Gn) = Gn and µ∗ is a Lie algebra

automorphism of gn. For any X ∈ gn, we have that X − jt(X) ∈ h⊥gj is mapped to

µ∗X − Cjt(X).

On the other hand, since µ∗X ∈ gn and Cjt(X) ∈ h and since µ∗ : h⊥gj → h
⊥gj ′ ,

it must be the case that Cjt(X) = j ′t(µ∗X) for all X ∈ gn. Otherwise, Cjt(X) =

j ′t(µ∗X) + Z for some nonzero Z ∈ h depending on X. But in this case, µ∗X −

Cjt(X) = µ∗X − j ′t(µ∗X)− Z which is not in h
⊥gj ′ .

Finally, taking transposes, we see that the condition jt(X) = C−1 j ′t(µ∗X) for all

X ∈ gn implies j(z) = µ−1
∗ j ′(Cz) for all z ∈ h.

Remark 5.1.7. From the proof of Lemma 5.1.6, we saw that under the hypothesis

of the lemma, µ is an automorphism of Gn. Suppose µ restricted to Gn is an inner

automorphism. That is, suppose µ restricted to Gn equals conjugation by an element
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A of Gn. In this case µ∗ restricted to gn is equal to Ad(A). But then by the proof,

j(z) = Ad(A−1) j ′(Cz) for all z ∈ h. In other words, j and j ′ are equivalent.

Genericity Condition 5.1.8. We say that j : h → gn is generic if there are only

finitely many A ∈ Gn such that j(z) = Ad(A)j(z) for all z ∈ h.

Let C(Gn) denote the center of Gn. From [GW97] and the proof of Propos-

tion 4.1.1 we know that for Gn = SO(n), SU(n), or Sp(n) and j ∈ O, the group action

of Gn×O(h) on the space L of j-maps given by ((A, C) · j)(z) = Ad(A)j(C−1(z)) has

stability subgroup C(Gn)×{Ih}. But C(Gn) is finite so we conclude that each j ∈ O

is generic. On the other hand, let A ∈ SO(n) and let A be a lift of A in Spin(n). We

know that Ad(A) = Ad(A). But Spin(n) is a two-fold cover of SO(n). Therefore for

any j : h → so(n) arising from Proposition 4.1.1 we have a finite number of elements

A such that j(z) = Ad(A)j(z). In other words, j is generic with respect to Spin(n).

Lemma 5.1.9. Let j : h → gn be generic and let gj be the associated metric on

Gn+p. For Gn+p equal to SO(n + 4), Spin(n + 4), or Sp(n + 2), let D be the group

of isometries of (Gn+p, gj) generated by the set {Lx ◦ Rx−1 |x ∈ T 2}. For Gn+p equal

to SU(n + 3), let D be the group of isometries of (Gn+p, gj) generated by the set

{Lx ◦ Rx−1|x ∈ U × T 2}, where U is as in the proof of Lemma 5.1.6. Then D is a

maximal torus in Ie0(gj).

Proof. First we check that D ⊂ Ie0(gj). Let µ ∈ D. Direct calculation shows that

when µ∗ acts on gn+p it fixes pointwise gn⊕ h and sends (gn ⊕ h)⊥g0 to itself. Thus

for X, Y ∈ gn ⊕ h,

gj(µ∗X, µ∗Y ) = gj(X,Y ). (5.4)

Furthermore, by Section 3.3, gj restricted to (gn ⊕ h)⊥g0 is equal to g0. For X, Y ∈
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(gn ⊕ h)⊥g0 ,

gj(µ∗X, µ∗Y ) = g0(µ∗X, µ∗Y ) (5.5)

= g0(X, Y ) (5.6)

since g0 is by bi-invariant.

Finally, if X ∈ gn ⊕ h and Y ∈ (gn ⊕ h)⊥g0 then since (gn ⊕ h)⊥g0 = (gn ⊕ h)⊥gj

and µ∗Y ∈ (gn ⊕ h)⊥g0 ,

gj(µ∗X, µ∗Y ) = gj(X, µ∗Y ) = 0. (5.7)

Thus µ acts isometrically on gj so D ⊂ Ie0(gj).

Now recall that every element of Ie0(gj) is of the form Lx ◦Rx−1 for some x ∈ Gn+p.

Let C(Gn+p) denote the finite center of Gn+p. We identify Ie0(gj) with a subgroup of

Gn+p /C(Gn+p) via the map which sends Lx◦Rx−1 to the coset of x in Gn+p /C(Gn+p).

Under this correspondence, we consider D a subgroup of Gn+p /C(Gn+p). If Lα ◦

Rα−1 ∈ Ie0(gj) commutes with D, then under the identification of D with a subgroup

of Gn+p /C(Gn+p), for each x ∈ T 2 (resp. U×T 2) αxα−1 = xz for some z ∈ C(Gn+p).

Elements of C(Gn+p) are scalar matrices. Since conjugation preserves eigenvalues it

must be the case that αxα−1 = x. This implies that when α acts by isometry (i.e.

conjugation) on Gn+p, it fixes T 2 pointwise. Thus α is in the centralizer of T 2 in

Gn+p.

From the proof of Lemma 5.1.6 we know that the identity component of the

centralizer of T 2 in

• SO(n + 4) is SO(n) × T 2 and the identity component of the centralizer of T 2

in Spin(n + 4) is Spin(n)× T 2.
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• SU(n + 3) is SU(n)× U × T 2 where U is as in the proof of Lemma 5.1.6.

• Sp(n + 2) is Sp(n)× T 2.

First suppose α is in the identity component of the centralizer of T 2. Then for

SO(n+4), Spin(n+4), and Sp(n+2), α is equal to a product AZ and for SU(n+3),

α equals AUZ for some A ∈ Gn, Z ∈ T 2. In this case, (Lα ◦ Rα−1)∗ restricted to gn

equals Ad(A) and by the proof of Lemma 5.1.6

j(z) = Ad(A)j(z) for all z ∈ h . (5.8)

But by the genericity of j, there are only finitely many A for which Equation 5.8 holds

and thus only finitely many A such that α = AZ (resp. AUZ) for some Z ∈ T 2.

On the other hand, if α is not an element of the identity component of the cen-

tralizer of T 2 then α = AZP (resp. AUZP ) for some element P of a discrete set

contained in the centralizer of T 2. In any case, we have now shown that if α cen-

tralizes T 2, then it must be contained in a subgroup of Gn+p composed of a discrete

number of copies of T 2 (resp. U × T 2). Hence Lα ◦ Rα−1 is contained in a subgroup

of Ie0(gj) which is composed of a discrete number of copies of D. In other words, D is

not contained in a higher dimensional connected torus and hence is a maximal torus

in Ie0(gj).

Theorem 5.1.10. Let j and j ′ be generic linear maps. Suppose that µ : (Gn+p, gj) →

(Gn+p, gj ′) is an isometry. Then there exists an element C ∈ O(h) such that j(z) =

µ−1
∗ j ′(Cz) for all z ∈ h. By Remark 5.1.7, if µ restricted to Gn is an inner automor-

phism, then j and j ′ are equivalent.

Proof. Suppose that µ : (Gn+p, gj) → (Gn+p, gj ′) is an isometry. We may assume that

µ(e) = e. By Lemma 5.1.6, it suffices to show that µ(T 2) = T 2.
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By Corollary 5.1.3, we have that Ie0(gj) is isomorphic to Ie0(gj′) via the map which

carries α ∈ Ie0(gj) to µαµ−1 ∈ Ie0(gj′). According to Lemma 5.1.9, D is a maximal

torus in Ie0(gj) and so the isomorphism carries D to a maximal torus in Ie0(gj′). All

maximal tori in a compact Lie group are conjugate so, after possibly composing µ

with an element of Ie0(gj′), we may assume that conjugation by µ carries D to the

similarly defined set in Ie0(gj′).

• For SO(n + 4), Spin(n + 4), and Sp(n + 2), this implies that for any a ∈ T 2,

µ ◦ La ◦ Ra−1 ◦ µ−1 = Lb ◦ Rb−1 for some b ∈ T 2. On the other hand, by

Corollary 5.1.5, we know µ is an automorphism of Gn+p. Thus, for any x ∈ Gn+p,

µ ◦ La ◦Ra−1 ◦ µ−1(x) = µ(aµ−1(x)a−1) = µ(a)xµ−1(a) = Lµ(a) ◦Rµ(a−1)(x).

In other words, µ(a) = bz for some z ∈ C(Gn+p). For each of SO(n + 4),

Spin(n + 4), and Sp(n + 2), C(Gn+p) is finite. Since µ is continuous and since

µ(e) = e, we have that µ(T 2) = T 2. Thus j(z) = µ−1
∗ j ′(Cz) for all z ∈ h.

• For SU(n+3), we have that for any a ∈ U ×T 2, µ ◦La ◦Ra−1 ◦µ−1 = Lb ◦Rb−1

for some b ∈ U × T 2.

Alternatively, for any x ∈ Gn+p since µ is an automorphism,

µ ◦ La ◦Ra−1 ◦ µ−1(x) = µ(aµ−1(x)a−1) = µ(a)xµ−1(a) = Lµ(a) ◦Rµ(a−1)(x).

In other words, µ(a) = bz for some z ∈ C(SU(n+3)). But C(SU(n+3)) is finite.

Since µ is continuous and since µ(e) = e, we conclude that µ(U×T 2) = U×T 2.

Since µ maps U×T 2 to U×T 2, at the Lie algebra level, µ∗ maps tu⊕h to tu⊕h.

Now consider µ as an automorphism. The automorphism group of SU(n + 3)
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is generated by the inner automorphisms and one outer automorphism, namely

complex conjugation.

At the Lie algebra level, conjugating an element X ∈ su(n + 3) by any element

of SU(n + 3) preserves the eigenvalues of X. In particular, u has eigenvalue i/n

with multiplicity n and eigenvalue −i/3 with multiplicity 3. No other element

of tu ⊕ h has the same eigenvalues. Therefore each inner automorphism of

su(n + 3) maps u to u.

Similarly, at the Lie algebra level, the outer automorphism of SU(n + 3) negates

the eigenvalues of X ∈ su(n + 3). For each t ∈ R, this sends tu to −tu. Thus

the vector space spanned by u is fixed.

Since µ is an isometry, µ∗ maps the gj-orthogonal complement of the space

spanned by u to the gj ′-orthogonal complement of the space spanned by u. But

tu ⊕ h is contained in g
⊥g0
n so both gj and gj ′ restricted to tu ⊕ h are equal to

the bi-invariant metric g0. The inner product g0 is given by g0(c, d) = tr(cd∗).

It is easy to see that h is g0-orthogonal to u and therefore µ(T 2) = T 2. By

Lemma 5.1.6, j(z) = µ−1
∗ j ′(Cz) for all z ∈ h.

Theorem 5.1.11. Suppose j0 : h → gn is contained in a family of generic linear maps

which are pairwise nonequivalent. For so(n) (n odd and n ≥ 5) and sp(n) (n ≥ 3)

there is no other map j contained in the family such that gj0 and gj are isometric.

For so(n) (n even and n ≥ 10) and su(n) (n ≥ 2) there is at most one other linear

map j in the family such that gj0 and gj are isometric. For so(8) there are at most

five other maps.

Proof. First consider the automorphism groups of so(n), su(n), and sp(n).
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• so(n), (n odd, n ≥ 5): All automorphisms are equal to Ad(A) for some A ∈

SO(n).

• so(n), (n = 8): The automorphism group is generated by three types of auto-

morphisms: Ad(A) where A ∈ SO(n), Ad(B) where

B =


0 1

1 0

In−2

 ∈ O(n), (5.9)

and an outer automorphism which is not given by conjugation. The factor

group, Aut(g)/Aut0(g) of automorphisms modulo inner automorphism is iso-

morphic to the symmetric group on three letters.

• so(n), (n even, n ≥ 10): All automorphisms are generated by Ad(A) where

A ∈ SO(n) or Ad(B) where B ∈ O(n) as above.

• su(n) (n ≥ 2): The automorphisms are generated by the inner automorphisms

Ad(A) where A ∈ SU(n), and the outer automorphism which takes an element

to its complex conjugate.

• sp(n) (n ≥ 3): All automorphism are inner.

Suppose j and j ′ are two linear maps such that gj and gj ′ are both isometric to gj0 .

From Theorem 5.1.10 we have Lie algebra automorphisms φ, φ′ of gn and elements

C, C ′ of O(h) such that

j(z) = φj0(Cz) (5.10)

and

j ′(z) = φ′j0(C
′z) (5.11)
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for all z ∈ h.

If φ and φ′ are in the same coset of Aut(g)/Aut0(g), then they differ by an inner

automorphism. But in this case j and j ′ are equivalent. Since our family consists of

pairwise nonequivalent linear maps, j is equal to j ′. The theorem now follows from the

fact that for so(n) (n odd, n ≥ 5), su(n) (n ≥ 2), and sp(n) (n ≥ 3), Aut(g)/Aut0(g)

has one element, for so(n) (n even, n ≥ 10), Aut(g)/Aut0(g) has two elements, and

for so(8), Aut(g)/Aut0(g) has six elements.

5.2 Examples

In the final section of this paper we combine our previous results to conclude the

existence of new nontrivial multiparameter isospectral deformations of metrics on all

of the classical compact simple Lie groups.

Example 5.2.1. Recall that given two linear maps j, j ′ : h → gn, when we con-

struct metrics gj and gj ′ on Gn+p according to the construction given in Section 3.3,

Theorem 3.4.4 says that if j and j ′ are isospectral then the metrics gj and gj ′ are

isospectral. Furthermore, Proposition 4.1.1 gives the existence of a Zariski open set

O contained in the set L of all j-maps into gn such that each j0 ∈ O is contained in

a d-parameter family F of j-maps which are isospectral but not equivalent. Here, d

depends on gn as follows:
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gn d
so(n) d ≥ n(n− 1)/2− [n

2
]([n

2
] + 2)

su(n) d ≥ n2 − 1− n2+3n
2

sp(n) d ≥ n2 − n

By the construction of O, we know that each element of F is generic.

First consider the case of so(n). Recall from Remark 4.1.2 that Theorem 4.1.1

was originally proven for so(n) with associated Lie group O(n). Thus Theorem 4.1.1

tells us that there exists a continuous family of elements azp ∈ O(n) such that if

jp ∈ F , j0(z) = Ad(azp)jp(z). But since we may choose az0 = In and the family is

continuous, we conclude that we may choose azp ∈ SO(n) for all p. Thus the families

are isospectral with respect to SO(n).

Since the automorphism group of so(n) (n = 5, 7, and n ≥ 9) is contained in

{Ad(A)|A ∈ O(n)}, we have from the proof of Theorem 5.1.11 that no two elements of

F give rise to isometric metrics. For so(8), there is one generator of the automorphism

group which is not given by Ad(A) for some A ∈ O(n). Thus for any element of F

there is at most one other element which could give rise to an isometric metric. For

fixed j0 ∈ O, we may choose F small enough that no other element of F produces a

metric isometric to gj0 , thereby obtaining an isospectral deformation of gj0 .

Now, for A ∈ SO(n), let A be a lift of A in Spin(n). Then the map Ad(A) :

so(n) → so(n) is equal to the map Ad(A) : so(n) → so(n). Thus the orbits of

Ad(Spin(n)) in so(n) are equal to the orbits of Ad(SO(n)). Therefore if j and j ′ are

isospectral with respect to SO(n), they are also isospectral with respect to Spin(n).

Fix j0 ∈ O and consider the metric gj0 on Spin(n). By an argument similar to the one

for SO(n), we conclude that for n = 5, 7 or n ≥ 9, there exists a nontrivial isospectral

deformation of gj0 such that no two metrics in the deformation are isometric to each

other. For n = 8 there exists a multiparameter nontrivial isospectral deformation
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of gj0 such that for any metric in the deformation there is at most one other metric

isospectral to it.

Next suppose F is a continuous d-parameter family of isospectral, nonequivalent

j-maps into su(n). Fix j0 ∈ F . For n ≥ 4, Theorem 5.1.11 tells us that we may

pick F small enough so that there is no other element of F which gives a metric

isometric to gj0 . Thus we have a d-parameter isospectral deformations of metrics on

SU(n) for n ≥ 7. Furthermore, for any metric within the deformation, there is at

most one other isometric metric contained in the deformation. For n greater than 7,

d is greater than 1.

Finally, a similar argument shows that for n ≥ 5, we have multiparameter isospec-

tral deformations of metrics on Sp(n) such that no two metrics in a given deformation

are isometric.

Thus we have produced isospectral deformations of metrics on each of SO(n)

(n = 9, n ≥ 11), Spin(n) (n = 9, n ≥ 11), SU(n) (n ≥ 7), and Sp(n) (n ≥ 5).
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