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Abstract. We construct a Laplace isospectral deformation of metrics on an

orbifold quotient of a nilmanifold. Each orbifold in the deformation contains
singular points with order two isotropy. Isospectrality is obtained by modifying

a generalization of Sunada’s Theorem due to DeTurck and Gordon.
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1. Introduction

A Riemannian orbifold (see [11], [12]) is a mildly singular generalization of a
Riemannian manifold. For example the quotient space of a Riemannian manifold
under an isometric, properly discontinuous group action is a Riemannian orbifold
[16]. First defined in 1956 by I. Satake, orbifolds have proven useful in many settings
including the theory of 3-manifolds, symplectic geometry, and string theory.

The local structure of a Riemannian orbifold is given by the orbit space of a
Riemannian manifold under the isometric action of a finite group. If a point, p, in
the manifold is fixed under a nontrivial group action, the corresponding element
of the orbit space, p̄, is called a singular point of the orbifold. The isotropy type
of a point p̄ in the orbit space is the isomorphism class of the isotropy group of a
point p in the manifold that projects to p̄ under the quotient. The singular set of
an orbifold is the set of all singular points of the orbifold.

The tools of spectral geometry can be transferred to the setting of Riemannian
orbifolds by exploiting the well-behaved local structure of these spaces (see [3], [14]).
Given a smooth function f on an orbifold O, the Laplacian of f is computed by
taking the Laplacian of lifts of f in the orbifold’s local coverings. As in the manifold
setting, the eigenvalue spectrum of the Laplace operator of a compact Riemannian
orbifold is a sequence 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ . . . ↑ +∞ where each eigenvalue has
finite multiplicity. We say that two orbifolds are isospectral if their Laplace spectra
agree.

In this note we show that the formulation of Sunada’s Theorem found in [4]
can be used to obtain isospectral deformations on Riemannian orbifolds with non-
trivial singular sets. We prove this fact in Section 2 by observing that the proof of
Theorem 2.7 in [4] does not require that the action of the discrete subgroup Γ be
free. In Section 3 we display an example of an isospectral deformation of metrics
on an orbifold quotient of a nilmanifold.

The only other known examples of non-manifold isospectral deformations on orb-
ifolds were recently obtained by Sutton using a blend of the torus action method
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and the Sunada technique [15]. Other examples of non-manifold isospectral orb-
ifolds include pairs with boundary in [1], and in [2]; isospectral flat 2-orbifolds
that are not conjugate (in terms of lengths of closed geodesics) [6]; a (2m)-manifold
isospectral to a (2m)-orbifold on m-forms [7]; pairs of isospectral orbifolds for which
the maximal isotropy groups have different orders [10]; and arbitrarily large finite
families of isospectral orbifolds in [13].

1.1. Acknowledgments. The authors thank Carolyn S. Gordon for her helpful
suggestions during the course of this work. They also thank the reviewer for point-
ing out the example of an isospectral deformation of metrics on an orientable in-
franilmanifold.

2. Isospectral deformations on orbifolds

In this section we observe that the generalization of Sunada’s method found
in [4] can be further generalized to include isospectral deformations of metrics
on orbifolds. In what follows we will assume that G is a Lie group with simply
connected identity component G0. We let Γ be a discrete subgroup of G such that
G = ΓG0 and (G0 ∩ Γ)\G0 is compact.

Given an automorphism Φ : G→ G, we say that Φ is an almost-inner automor-
phism if for each x ∈ G there exists an element a ∈ G such that Φ(x) = axa−1.
More generally, if Φ : G → G is an automorphism such that for each γ ∈ Γ there
exists a ∈ G satisfying Φ(γ) = aγa−1, we say that Φ is an almost-inner automor-
phism of G relative to Γ. We denote the set of all almost-inner automorphisms of
G (resp. almost-inner automorphisms of G with respect to Γ) by AIA(G) (resp.
AIA(G; Γ)).

We have the following theorem.

Theorem 2.1. [4] Let G, G0, and Γ be as above with G0 nilpotent and let Φ ∈
AIA(G; Γ). Suppose that G acts effectively and properly discontinuously on the
left by isometries on a Riemannian manifold (M, g) and that Γ acts freely on M
with Γ\M compact. Then, letting g denote the submersion metric, (Φ(Γ)\M, g) is
isospectral to (Γ\M, g).

The proof of Theorem 2.1 is based on work by Donnelly in [5] concerning the
existence of a heat kernel on a manifold M that admits a properly discontinuous
(but not necessarily free) action by a group Γ. Donnelly shows that if Γ\M is
compact, then there exists a unique heat kernel on M . Furthermore, Donnelly
gives the following relationship between the heat kernels on M and on Γ\M .

Theorem 2.2. [5] Let Γ act properly discontinuously on M with compact quotient
M = Γ\M . Suppose that F is a fundamental domain for Γ\M . If x̄, ȳ ∈ M then
set

E(t, x̄, ȳ) =
∑
γ∈Γ

E(t, x, γ · y)

where x, y ∈ F , x̄ = π(x), and ȳ = π(y). If E is the heat kernel of M , the sum on
the right converges uniformly on [t1, t2]×F ×F , 0 < t1 ≤ t2, to the heat kernel on
M .
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Notice that since the action of Γ need not be free, the quotient space M may
not be a manifold.

Theorem 2.1 relies on the fact that two manifolds (M1, g1) and (M2, g2) are
isospectral if and only if they have the same heat trace, i.e.

∫
M1

E1(t, x, x) dx =∫
M2

E2(t, x, x) dx, where Ei denotes the heat kernel on Mi. In particular, the proof
uses Theorem 2.2 to pull the heat trace back from the quotient Γ\M to the cover
M in order to use combinatorial arguments to reexpress the heat trace on Γ\M .
The new expression of the heat trace makes it evident that, when comparing the
heat trace of (Γ\M, g) with the heat trace of (Φ(Γ)\M, g), if certain volumes (which
depend only on Γ and Φ(Γ)) are equal then the respective heat traces are equal.
DeTurck and Gordon show that when Φ is an almost-inner automorphism, these
volumes are in fact equal, and hence (Γ\M, g) and (Φ(Γ)\M, g) are isospectral.

We note that, as with Theorem 2.2, the proof of Theorem 2.1 does not rely on the
freeness of the action of Γ on M . Therefore we make the following generalization
of Sunada’s theorem.

Theorem 2.3. Suppose that G, G0, and Γ are as above and G0 is nilpotent. Sup-
pose that G acts effectively and properly discontinuously on the left by isometries
on (M, g) with Γ\M compact. Let Φ ∈ AIA(G; Γ). Then, letting g denote the sub-
mersion metric, the quotient orbifolds (Γ\M, g) and (Φ(Γ)\M, g) are isospectral.

3. Examples

Now we apply Theorem 2.3 to give an example of a nontrivial isospectral defor-
mation on an orbifold. We first note the following.

Lemma 3.1. Suppose that G is a Lie group and that Γ is a uniform discrete
subgroup of G. Suppose that G acts on M on the left by isometries. If Φ is an
automorphism of G and G acts on M in such a way that there exists a diffeomor-
phism Ψ of M satisfying Ψ(a · x) = Φ(a) · Ψ(x) for all a ∈ G and x ∈ M , then
(Γ\M,Ψ∗g) is isometric to (Φ(Γ)\M, g).

Proof. First, notice that if g is a metric on M and Ψ : M →M is a diffeomorphism,
then by design, Ψ : (M,Ψ∗g) → (M, g) is an isometry. Furthermore, if G acts on
(M, g) by isometries, then Φ(Γ), which is a subgroup of G, also acts on (M, g) by
isometries. Since Ψ(a ·x) = Φ(a) ·Ψ(x) for all a ∈ G and x ∈M , Γ acts on (M,Ψ∗g)
by isometries. Thus we may consider the Riemannian manifolds (Φ(Γ)\M, g) and
(Γ\M,Ψ∗g) where g and Ψ∗g denote submersion metrics.

Consider the map Ψ̄ : (Γ\M,Ψ∗g)→ (Φ(Γ)\M, g) given by

Ψ̄(p̄) = πΦ(Γ) ◦Ψ ◦ π−1
Γ (p̄),

where πΦ(Γ) and πΓ denote the natural projection maps. Since Ψ(a·x) = Φ(a)·Ψ(x)
for all a ∈ G and x ∈M , this map is well-defined and bijective. By the definitions
of the submersion metric and pullback metric, Ψ̄ is an isometry. �

Applying Theorem 2.3 in conjunction with Lemma 3.1 will allow us to produce
an isospectral deformation on a fixed orbifold Γ\M . Theorem 2.3 gives isospectral
metrics on two distinct orbifolds Γ\M and Φ(Γ)\M . We will ultimately use Lemma
3.1 to convert to a pair of isospectral metrics on a fixed orbifold, Γ\M .

In Appendix B to [4], K. B. Lee translates Theorem 2.1 to the setting of infranil-
manifolds. For a group G we have that Aut(G) nG acts on G by (φ, g) ·h = gφ(h).
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Consider the case when G is a simply connected nilpotent Lie group and Γ is a uni-
form discrete subgroup of G. Take Π to be a finite extension of Γ in Aut(G) nG.
If the action of Π on G is free, then Π\G is an infranilmanifold. Lee observes that
by setting Γ, G0, and G from Theorem 2.1 equal to Π, G, and ΠG, and assuming
that the action of Π on G is free, we can find isospectral deformations on infranil-
manifolds. We note that a priori, the action of Π on G need not be free. Thus by
working in this setting we introduce the possibility of finding isospectral orbifold
quotients of G.

Lee gives a specific example to illustrate his case. His example is based on a
similar example found in [8].

Let G be the Lie group

{(x1, x2, y1, y2, z1, z2)|xi, yi, zi ∈ R}

where group multiplication is defined by

(x1, . . . , z2)(x′1, . . . z
′
2)

= (x1 + x′1, . . . , y2 + y′2, z1 + z′1 + x1y
′
1 + x2y

′
2, z2 + z′2 + x1y

′
2).

Suppose that Γ is the integer lattice in G and define Φt : G→ G by

Φt(x1, x2, y1, y2, z1, z2) = (x1, x2, y1, y2, z1, z2 + ty2),

where t ∈ [0, 1). In the original example Gordon and Wilson show that each Φt is
an almost-inner automorphism so, applying Lemma 3.1 (with Ψ = Φt), the family
Φt, t ∈ [0, 1), gives rise to an isospectral deformation on Γ\G. They also show that
the deformation is nontrivial.

In his example, Lee defines α ∈ Aut(G) nG by

α(x1, x2, y1, y2, z1, z2) = (x1, x2,−y1,−y2,−z1,−z2 + 1
2 )

and lets Π = Γ ∪ αΓ. Since α commutes with Φt for all t, we can extend each Φt
to an element Φ̃t of AIA(ΠG; Π). If g is a ΠG-invariant metric on G, then for each
t, (Φ̃t(Π)\G, g) is isospectral to (Π\G, g).

Lee implicitly assumed that the action of Π on G is free. However, we can see
by closer inspection that the action of Π on G is not free. For example, any point
of the form (x1, x2, 0, 0, 0, 1

4 ) is fixed by α ∈ Π. In fact the set of all fixed points of
the action of Π on G is:

{(x1, x2, y1, y2, z1, z2) ∈ R6 | x1, x2 ∈ R, y1, y2, z1 ∈ 1
2Z, z2 = n

2 + 1
4}

where n is any integer. The isotropy group of a point in this set has the form

{1, (φ, (0, 0, 2y1, 2y2, 2z1, 2z2))}

where φ(x1, x2, y1, y2, z1, z2) = (x1, x2,−y1,−y2,−z1,−z2). So we see that Π\G is
an orbifold containing singular points with Z2 isotropy type. Thus Lee’s example is
an illustration of Theorem 2.3; after applying Lemma 3.1 with Ψ = Φt and Φ = Φ̃t,
we have an isospectral deformation of metrics on the orbifold Π\G.

This example is a nontrivial deformation. Indeed, suppose that τ : (Π\G, g) →
(Π\G,Φ∗t g) is an isometry. Then because G is simply connected and Π is discrete,
G is the universal cover of Π\G. Thus τ lifts to an isometry, also called τ from
(G, g) to (G,Φ∗t g). Since G is a nilpotent Lie group τ must be an element of
Aut(G) nG (see [9]). Furthermore, because τ is a lift we have that τ ◦Π ◦ τ−1 = Π
within the transformation group Aut(G) n G. On the other hand, G is normal in
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Aut(G) n G so conjugation by τ maps G to itself. Therefore, conjugation by τ
leaves Γ invariant. This implies that τ must descend to an isometry τ : (Γ\G, g)→
(Γ\G,Φ∗t g). However, from [8] we know that no such isometry can exist. Thus
(Π\G, g) cannot be isometric to (Π\G,Φ∗t g).

Note that Lee’s example can be modified to produce examples of isospectral
deformations on manifolds. For example, suppose that we define β : G→ G by

β(x1, x2, y1, y2, z1, z2) = (x1, x2, y1, y2,−z1, z2 + 1
2 ).

Letting Π′ = Γ∪βΓ we see that since β2 is simply translation by (0, 0, 0, 0, 0, 1), Π′

is a finite extension of Γ. Since β commutes with the maps Φt defined above, we can
extend each Φt to an element Φ̃t of AIA(Π′G; Π′). Finally by direct computation
we can see that the action of Π′ on G has no fixed points.

Notice that the manifold Π′\G is nonorientable. Indeed, if Π′\G were orientable,
it would possess a nonvanishing orientation form. This form would have to lift to
a Π′-invariant nonvanishing orientation form on G. However the fact that the
determinant of the Jacobian of β ∈ Π′ is negative makes this impossible.

On the other hand, suppose that

γ(x1, x2, y1, y2, z1, z2) = (−x1, x2,−y1, y2, z1 + 1
2 , z2 + 1

2 ).

Then we see that γ2 is translation by (0, 0, 0, 0, 1, 1). Letting Π′′ be the group
generated by Γ and γ, and using the same reasoning as above we find an isospectral
deformation on the orientable manifold Π′′\G

Thus we have isospectral deformations of metrics on manifolds. The proof that
the deformations are nontrivial is identical to the one given above.
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