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Abstract. Eilers et al. have recently completed the geometric classification of unital graph C�-
algebras up to Morita equivalence using a set of moves on the corresponding digraphs. We explore

the question of whether these moves preserve the nonzero elements of the spectrum of a finite digraph,

which in this paper is allowed to have loops and parallel edges. We consider several different digraph
spectra that have been studied in the literature, answering this question for the Laplace and adjacency

spectra, their skew counterparts, the symmetric adjacency spectrum, the adjacency spectrum of the

line digraph, the Hermitian adjacency spectrum, and the normalized Laplacian, considering in most
cases two ways that these spectra can be defined in the presence of parallel edges. We show that the

adjacency spectra of the digraph and line digraph are preserved by a subset of the moves, and the
skew adjacency and Laplace spectra are preserved by the Cuntz splice. We give counterexamples to

show that the other spectra are not preserved by the remaining moves. The same results hold if one

restricts to the class of strongly connected digraphs.
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1. Introduction

Given a graph, undirected or directed, there are a number of ways to associate a matrix to the
graph and, as a consequence, various eigenvalue spectra that can be considered. These spectra are
graph isomorphism invariants and have been studied in their own right. For example, the spectrum
of the adjacency matrix of a digraph characterizes the number of cycles in the graph; see [4], [44]. See
[9], [5] for basic introductions to the subject.
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Beyond the study of intrinsic properties of graphs, spectra of graphs arise in the study of other
mathematical structures. For instance, the spectrum of the Laplacian on a domain or manifold is a
classical geometric invariant that has been extensively studied for decades. The notion of discretizing
the Laplace spectrum of a manifold has led to the investigation of approximating graphs whose spectra
tends to the spectrum of the manifold Laplacian. For example, by embedding a finite graph with a
given Laplace spectrum into a manifold and extending the metric globally, Colin de Verdière showed
that for any closed manifold M , one can choose a metric on M in such a way as to prescribe the first
N eigenvalues of the Laplacian acting on functions on M ; see [12, 30, 17], and [24] for the case of
orbifolds.

As another important instance of associating a mathematical structure to a graph, given a directed
graph D � pV,E, r, sq (which in this context is often simply called a graph), we can generate a C�-
algebra C�pDq based on the information encoded in the digraph. For example, starting from either a
one-vertex digraph having N loops, or from the complete digraph on N vertices, we can generate a C�-
algebra that is canonically isomorphic to the Cuntz algebra ON . More generally, given an irreducible
matrix Ab of 0’s and 1’s, we can interpret Ab as the adjacency matrix of a digraph DAb

. The C�-
algebra C�pDAb

q associated to DAb
is canonically isomorphic to the Cuntz-Krieger algebra OAb

. See
[14] and [13].

This paper focuses on the relationship between the spectra of a finite digraph (i.e. a directed graph
with finitely many vertices and edges, which we allow to have loops and parallel edges, sometimes
referred to as a pseudodigraph) and the Morita equivalence class of its associated C�-algebra. The
main question that we address is: given a digraph, to what extent does the Morita equivalence class
of the associated C�-algebra determine the spectrum of the graph? We note that there are numerous
matrices, and thus numerous eigenvalue spectra, that one can associate to a given digraph. We examine
a wide collection here; see Definition 2.8.

Our work is based on recent results on a classification of graph C�-algebras via K-theoretic and
combinatorial invariants. In particular, in a series of papers [40, 42, 18, 22, 20, 21] Eilers, et al. obtained
a geometric classification of unital graph C�-algebras. Observe that a graph C�-algebra is unital if
and only if its corresponding graph has finitely many vertices (see [21, Section 2.3]). See [21] for the
culmination of this work. The authors of these papers defined six “moves”, labeled (S), (R), (O), (I),
(C), and (P), that can be performed on digraphs having countably many vertices and edges. Although
these moves can be defined for countable graphs, for their classification results, Eilers, et al. restrict
their attention to graphs having finitely many vertices (see [21, Theorem 3.1 and Corollaries 3.2 and
3.3]). In [21], they show that the graph C�-algebras C�pD1q and C�pD2q associated to two digraphs
D1 and D2 are stably isomorphic if and only if D1 and D2 differ by a finite sequence of these six
moves and their inverses. In this context, because C�pD1q and C�pD2q are unital C�-algebras, they
are stably isomorphic if and only if they are Morita equivalent. We note further that by [1], for a
digraph D, the graph C�-algebra C�pDq is isomorphic to C�pLpDqq, where LpDq denotes the line
digraph, also known as the dual graph, associated to D (see Definition 2.4).

A natural question arises from the above results: How does the spectrum of a digraph behave under
the above moves? For instance, the fact that the C�-algebras of D and LpDq are isomorphic, together
with the fact that the nonzero elements of the adjacency spectra of D and LpDq coincide (see [5,
p. 2183], [34, Theorem 1.4.4], and Proposition 3.4 below), indicate a potential connection. In this
paper, we restrict our attention to finite graphs, i.e. graphs having finitely many vertices and edges, so
that the spectrum is defined. For graphs having finitely many vertices, this amounts to the requirement
that the graphs have no infinite emitters. We also consider this question with the additional restriction
that the graphs are strongly connected.

Our main result is the following, corresponding to Propositions 4.2, 4.3, 4.4, and 4.5, as well as
Tables 1 and 2 in Section 5.

Theorem 1.1. Let D be a finite digraph, and consider the Moves (S), (R), (O), (I), (C), and (P)
that preserve the Morita equivalence class of the C�-algebra of D.



THE SPECTRA OF DIGRAPHS WITH MORITA EQUIVALENT C�-ALGEBRAS 3

(i) Moves (S), (O), and (I) preserve the multiset of nonzero elements of the adjacency spectrum
SpecApDq of D while Moves (R), (C), and (P) do not;

(ii) Moves (S), (O), and (I) preserve the multiset of nonzero elements of the line adjacency spec-
trum SpecLpDq while Moves (R), (C), and (P) do not;

(iii) Move (S) preserves the multiset of nonzero elements of the binary adjacency spectrum SpecAb
pDq

while Moves (R), (O), (I), (C), and (P) do not; and
(iv) Move (C) preserves the multisets of nonzero elements of the skew adjacency spectrum SpecSpDq,

the binary skew adjacency spectrum SpecSb
pDq, the skew Laplace spectrum Spec∆S

pDq, and
the binary skew Laplace spectrum Spec∆b,S

pDq, while Moves (S), (R), (O), (I), and (P) do
not.

The (nonzero elements of the) other spectra Spec∆pDq, SpecSApDq, SpecSAb
pDq, SpecHpDq, are not

preserved by any of the moves.
If D is a strongly connected digraph, then only the Moves (R), (O), (I), and (C) can be applied to

D, and these claims remain true. Furthermore, the spectra Spec∆N
pDq, Spec∆b,N

pDq, Spec∆C
pDq,

and Spec∆b,C
pDq, which are only defined for strongly connected digraphs, are not preserved by any of

these four moves.

Note that if a move preserves a spectrum, then it is clear that the inverse of the move also preserves
the spectrum.

The proofs of parts (i), (ii), and (iii) of Theorem 1.1 rely on the characterization of the adjacency
spectrum and line adjacency spectrum of a digraph in terms of the number of cycles of a given length
that the graph contains. The key idea of each proof consists of showing that the number of cycles
of a given length is preserved by the appropriate moves. Part (iv) follows in a straightforward way
from the definition of Move (C). We provide counterexamples to show that none of the other spectra
are preserved. Because of the number of spectra and moves considered, Tables 1 and 2 summarize
the result or counterexample that proves each case of Theorem 1.1. Observe that parts (i) and (ii) of
Theorem 1.1, are consistent with the observation above that for a given digraph D, C�pDq coincides
with C�pLpDqq.

In recent years, Kumijan and Pask developed a theory of higher-rank graphs, also known as k-graphs,
which provide a generalization of digraphs to higher dimensions; see [33]. Following the work of Eilers,
et al., in [16] steps are taken toward extending the geometric classification of digraph C�-algebras
and their Morita invariant moves to the setting of higher-rank graphs by introducing generalizations
of many of the graph moves listed above. In Section 6, we provide a move-by-move analysis of the
spectra of digraphs under these moves. Specifically, we indicate which of the moves defined in [16] for
k-graphs preserve the spectra under consideration.

Finally, we observe that a question that is beyond the scope of this paper and that remains open
for further investigation is: does there exist as sequence of graph moves that characterizes digraph
isospectrality? For instance, some such moves have been identified for the Hermitian spectrum in
[26, 38].

This paper is organized as follows. In Section 2, we set the graph terminology that we will use
throughout the paper and catalog the various matrices and spectra whose relation to Morita equivalence
we will explore. Sections 3 and 4 contain the positive results of our paper. The results of Section 3
allow us to reduce the questions of adjacency isospectrality and line adjacency isospectrality to an
enumeration of cycles of a given length. In Section 4, we use these results to show which graph moves do
preserve these spectra, proving Propositions 4.2, 4.3, 4.4, and 4.5. Section 5 contains counterexamples
that support our negative results. In particular, these examples show which of the various spectra are
not preserved by the various graph moves. Finally, in Section 6, we give a brief discussion of how our
result extend to the case of k-graphs.

Many of the examples in Section 5 were produced using Mathematica [29]. Mathematica notebooks
implementing the moves and spectra considered here are available from the authors upon request.

1.1. Acknowledgements. C.F. would like to thank the sabbatical program at the University of
Colorado at Boulder and was partially supported by the Simons Foundation Collaboration Grant for
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Mathematicians #523991. C.S. would like to thank the sabbatical program at Rhodes College and
was partially supported by the E.C. Ellett Professorship in Mathematics.

2. Digraphs and Their Spectra

2.1. Background and notation for digraphs. We focus in this paper on finite digraphs, i.e., di-
rected graphs with finitely many vertices and finitely many edges that may have loops and parallel
edges. We clarify the language with the following.

Definition 2.1 (digraph, multidigraph, simple digraph). A digraph D � pV,E, r, sq consists of a set
of vertices V , a set of edges E, and functions s : V Ñ E and r : V Ñ E called the source and range,
respectively. In a fixed digraph D, a loop is an edge e P E such that rpeq � speq, and two edges e � f
are parallel if speq � spfq and rpeq � rpfq. A simple directed graph or simple digraph is a digraph with
no loops nor parallel edges, and a multidigraph is a digraph that may have parallel edges but contains
no loops. A digraph is finite if V and E are both finite sets.

Note that, for simplicity, we use the term digraph to refer to what is sometimes called a pseudodi-
graph, as some authors require that digraphs have no loops nor multiple edges. We will use simple
digraph when we would like to emphasize the absence of loops and multiple edges, and multidigraph
when we would like to emphasize the absence of loops. For simplicity, we will sometimes say that an
edge e P E such that speq � v and rpeq � w is an edge from v to w. We use the notation |S| to denote
the cardinality of the set S.

Following [19], we have the following definitions for a digraph D � pV,E, r, sq.
Definition 2.2 (path, cycle, simple cycle, vertex-simple cycle, exit, return path). A path of length n
is a finite sequence pe1, . . . , enq of edges with rpeiq � spei�1q for i � 1, . . . n� 1. A cycle is a nonempty
path pe1, . . . , enq such that rpenq � spe1q. A cycle of length n is simple if ei � ej for any i, j � 1, . . . , n
with i � j and it is vertex-simple if rpeiq � rpejq for any i, j � 1, . . . , n with i � j. We say that
a vertex-simple path pe1, . . . , enq has an exit if there is an edge f such that spfq � speiq for some
i � 1, . . . , n with f � ei. A cycle pe1, . . . , enq is a return path if rpenq � rpeiq for any i � 1, . . . , n� 1.

We also have the following for vertices.

Definition 2.3 (source, sink, regular vertex). A source is a vertex v such that r�1pvq � H. A sink is
a vertex v such that s�1pvq � H. A regular vertex is a vertex for which s�1pvq is finite and nonempty.

We will make use of the following two constructions of digraphs from a given digraph. Note that
the line digraph is often called the dual graph in the literature on C�-algebras of digraphs, [1], [37,
p. 237], while the term line digraph appears in the graph theory literature [5, p. 2182], [31, p. 173].

Definition 2.4 (line digraph, unparalleled digraph). Let D � pV,E, r, sq be a digraph.

(i) The line digraph LpDq associated to D is the digraph with vertex set E and edge set given by
the set of composable pairs of edges. That is, the edge set of LpDq is the set of pairs pe, fq P E2

such that rpeq � spfq, with sLpDq
�pe, fq� � e and rLpDq

�pe, fq� � f .
(ii) Define an equivalence relation � on E by saying e � f if speq � spfq and rpeq � rpfq. The

unparalleled digraph UPpDq associated to D is the digraph with vertex set V and edge set
E{ �, where the source and range of UPpDq are those inherited from D.

It follows from the definition that LpDq equals UPpLpDqq for any digraph D, i.e., UPpDq may have
loops but has no parallel edges.

We will sometimes restrict our attention to the following class of digraphs.

Definition 2.5 (strongly connected digraph). A digraph D � pV,E, r, sq is strongly connected if for
each pair of vertices v, w P V , there is a path from v to w.

Finally, we will use the following various notions of degree for elements of V based on those defined
in [5], [6, p. 53], and [11]. Note that our notions of binary indegree and binary outdegree correspond
to the indegree and outdegree defined in [10].
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Definition 2.6 (indegree, outdegree, binary indegree, binary outdegree). Let D � pV,E, r, sq be a

finite digraph. If v P V , the indegree of v, denoted din
v , is |r�1pvq|, the number of edges with range

v, and the outdegree of v dout
v , is |s�1pvq|, the number of edges with source v. The binary indegree of

v denoted db,in
v , is

∣∣s�r�1pvq�∣∣, the number of distinct w such that there is an edge from w to v, and

the binary outdegree of v db,out
v , is

∣∣r�s�1pvq�∣∣, the number of distinct vertices w such that there is an
edge from v to w.

If D is simple, it is easy to see that db,in
v � din

v and db,out
v � dout

v for each v P V . For a general

digraph D, the binary outdegree db,out
v of v P V is the outdegree of the vertex v in the unparalleled

graph UPpDq, and similarly db,in
v in D is equal to din

v with respect to UPpDq.

2.2. Matrices and spectra associated to digraphs. Suppose that D � pV,E, r, sq is a finite
digraph. There are a variety of matrices and corresponding eigenvalue spectra that have been associated
to D. Before stating the formal definitions, let us briefly discuss the appearances of these spectra and
explain our terminology. Note that the authors of some of the publications cited below consider only
simple digraphs, multidigraphs, etc., but the definitions extend readily to the case of a general finite
digraph. In some cases, we consider two such generalizations, one binary and one non-binary, as
described below.

The matrices most commonly associated toD are the Laplacian or Kirchhoff matrix, defined in terms
of the incidence matrix (see [3, Def. 4.2, Prop 4.8] and [43, Def. 9.5, Lem. 9.6]), and the adjacency
matrix. Authors differ on whether the adjacency matrix takes parallel edges into consideration ([6,
p. 53, Sec. 3.6], [34, p. 1]), in which case the values of the adjacency matrix are nonnegative integers;
or ignores parallel edges, ([27], [32], [7, Sec. 1.7]), in which case the entries are elements of t0, 1u. For
our purposes, both cases will be of interest. Specifically, the moves we will consider in Section 4 can
add or remove parallel edges; an example is illustrated in Figure 4, where the application of Move
(O) splits the parallel loops at vertex v2 (and hence the inverse of Move (O) can introduce parallel
loops). Following the convention established in Definition 2.6, we will use the term binary to indicate a
matrix, spectrum, degree, etc. that ignores parallel edges and hence depends only on the unparalleled
digraph UPpDq. Hence, we consider both the adjacency matrix and the binary adjacency matrix. We
also consider the symmetric adjacency spectrum, that of the product of the adjacency matrix and its
transpose, which was studied in [31] and appeared in [5] as the singular value decomposition of the
adjacency matrix. This can be defined in a binary and non-binary sense as well. The adjacency matrix
of the line digraph LpDq, here called the line adjacency matrix, has appeared for instance in [5, p.2182],
and we will see that its spectrum is closely related to that of the adjacency matrix. One could also
consider a binary line adjacency matrix as the adjacency matrix of the line digraph associated to the
unparalleled digraph UPpDq, but we consider this unmotivated and redundant, because a consequence
of [5, p. 2183] or Proposition 3.4 below is that this spectrum coincides with the spectrum of the binary
adjacency matrix up to the addition of zeros. As the line digraph has no multiple edges, its adjacency
matrix is equal to its binary adjacency matrix, so the other interpretation of a “binary line adjacency
matrix” is as well redundant.

More recently, the Hermitian adjacency matrix and its spectrum were introduced in [26, 35] and
studied further in [39, 45]. The graphs considered in [26, 39] are mixed graphs, which have both directed
and undirected edges. However, as noted in [45, Sec. 2.1], each undirected edge can be replaced with
two directed edges, one in each direction, yielding a digraph with the same Hermitian adjacency matrix.
The skew adjacency matrix [8, 25] and related skew Laplacian [25] are defined for digraphs formed
by orienting the edges of a simple (unoriented) graph, and hence are binary in our terminology and
ignore pairs of directed edges in opposite directions. However, they admit a non-binary generalization
to arbitrary finite digraphs, and we consider both cases.

A final recent addition to the literature is the normalized Laplacian and related combinatorial
Laplacian [10, 11] and [7, Sec. 5.4.1]. These matrices are defined for strongly connected digraphs,
and their definition relies on this hypothesis in an essential way. Chung and Butler consider weighted
digraphs, but here we consider the two cases that are intrinsic to D, the case where each edge has
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weight 1, and the binary case where, from every set of parallel edges, one edge has weight 1 and the
others have weight 0.

We collect the formal definitions of these matrices in the following.

Definition 2.7 (matrices associated to a digraph). Let D � pV,E, r, sq be a finite digraph, and fix a
linear order of V .

(i) The incidence matrix MpDq � pmveqvPV,ePE of D is the matrix whose rows are indexed by V ,
columns are indexed by E, and whose entries are given by

mve �

$'&
'%
�1, speq � v � rpeq,
�1, rpeq � v � speq,
0 otherwise.

The Laplacian ∆pDq, also called the Kirchhoff matrix, is the matrix defined by ∆pDq �
MpDqMpDqT. Some authors define MpDq to be the negative of that given here, but clearly
∆pDq is independent of this choice.

(ii) The adjacency matrix ApDq � pavwqv,wPV of D is the square matrix whose rows and columns
are indexed by V such that avw � |

�
s�1pvqXr�1pwq�|, the number of edges e P E with speq � v

and rpeq � w.
The binary adjacency matrix AbpDq � pab,vwqv,wPV of D is given by AbpDq � A

�
UPpDq�.

That is, AbpDq is the square matrix whose rows and columns are indexed by V such that
avw � �1 if there is an edge e P E with speq � v and rpeq � w, and 0 otherwise.

(iii) The line adjacency matrix LpDq � pbef qe,fPE of D is given by LpDq � A
�
LpDq�. That is,

LpDq is the square matrix whose rows and columns are indexed by E such that bef � �1 if
rpeq � spfq and 0 otherwise.

(iv) The Hermitian adjacency matrix HpDq � phvwqv,wPV of D is the square matrix whose rows
and columns are indexed by V such that

avw �

$'''&
'''%
�1, s�1pvq X r�1pwq � H and s�1pwq X r�1pvq � H,
�i, s�1pvq X r�1pwq � H and s�1pwq X r�1pvq � H,
�i, s�1pvq X r�1pwq � H and s�1pwq X r�1pvq � H,
0, otherwise.

(v) The skew adjacency matrix SpDq � psvwqv,wPV of D is the square matrix whose rows and
columns are indexed by V such that svw � ∣∣s�1pvq X r�1pwq∣∣ � ∣∣s�1pwq X r�1pvq∣∣. That is,

SpDq � ApDq �ApDqT.
The binary skew adjacency matrix SbpDq � psb,vwqv,wPV of D is given by SbpDq � S

�
UPpDq�.

That is, SbpDq is the square matrix whose rows and columns are indexed by V such that

sb,vw �

$'&
'%
�1, s�1pvq X r�1pwq � H and s�1pwq X r�1pvq � H,
�1, s�1pvq X r�1pwq � H and s�1pwq X r�1pvq � H,
0, otherwise,

and hence SbpDq � AbpDq �AbpDqT.

(vi) The skew Laplacian matrix ∆SpDq is given by diagpdout
v � din

v q � SpDq where diagpdout
v � din

v q
is the diagonal matrix with rows and columns indexed by V whose vv-entry is the difference
between the outdegree and indegree of v.
The binary skew Laplacian matrix ∆b,SpDq is given by diagpdb,out

v � db,in
v q � SbpDq where

diagpdb,out
v � db,in

v q is the diagonal matrix with rows and columns indexed by V whose vv-
entry is the difference between the binary outdegree and binary indegree of v.
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(vii) The transition probability matrix PpDq � ppvwqv,wPV of D is the square matrix whose rows
and columns are indexed by V and such that

pvw �
#

|s�1pvqXr�1pwq|
dout
v

, there is an edge from v to w,

0, otherwise.

Note that pvw is the probability of moving from v to w if each edge is equally likely.
Assume D is strongly connected, which is equivalent to the transition probability matrix PpDq
being irreducible. The Perron-Frobenius vector φ � φpDq is the unique left-eigenvector of PpDq
with positive entries that sum to 1. Let Φ � ΦpDq be the diagonal matrix with entries given
by those of φ. The normalized Laplacian ∆N pDq is given by

∆N pDq � I|V | � Φ1{2PpDqΦ�1{2 � Φ�1{2PpDqTΦ1{2

2
,

where I|V | is the |V | � |V | identity matrix, and the combinatorial Laplacian ∆CpDq is given
by

∆CpDq � Φ� ΦPpDq �PpDqTΦ
2

.

The binary transition probability matrix PbpDq � ppb,vwq is the square matrix whose rows and
columns are indexed by V and such that

pb,vw �
#

1

db,out
v

, there is an edge from v to w,

0, otherwise.

Hence, pb,vw is the probability of moving from v to w in UPpDq if every vertex in r
�
s�1pvq� is

equally likely. In other words, parallel edges do not affect the likelihood of choosing a vertex.
The definitions of the binary normalized Laplacian ∆b,N pDq and binary combinatorial Lapla-
cian ∆b,CpDq are identical to those of the normalized Laplacian ∆N pDq and combinatorial
Laplacian ∆CpDq, respectively, but with PpDq replaced by PbpDq.

We will omit D from the notation when it is clear from the context, e.g., M � MpDq, ∆ � ∆pDq, etc.

The spectra we consider are defined in terms of these matrices as follows.

Definition 2.8 (spectra of a digraph). Let D � pV,E, r, sq be a finite digraph with a fixed linear
order of V .

(i) The Laplace spectrum Spec∆pDq of D is the multiset of eigenvalues of ∆pDq.
(ii) The adjacency spectrum SpecApDq of D is the multiset of eigenvalues of ApDq.

The symmetric adjacency spectrum SpecSApDq ofD is the multiset of eigenvalues of ApDqApDqT.
The binary adjacency spectrum SpecAb

pDq of D is the multiset of eigenvalues of AbpDq.
The symmetric binary adjacency spectrum SpecSAb

pDq of D is the multiset of eigenvalues of

AbpDqAbpDqT.
(iii) The line adjacency spectrum SpecLpDq of D is the multiset of eigenvalues of LpDq.
(iv) The Hermitian adjacency spectrum SpecHpDq of D is the multiset of eigenvalues of HpDq.
(v) The skew adjacency spectrum SpecSpDq of D is the multiset of eigenvalues of SpDq.

The binary skew adjacency spectrum SpecSb
pDq of D is the multiset of eigenvalues of SbpDq.

(vi) The skew Laplace spectrum Spec∆S
pDq is the multiset of eigenvalues of ∆SpDq.

The binary skew Laplace spectrum Spec∆b,S
pDq is the multiset of eigenvalues of ∆b,SpDq.

Suppose further that D is strongly connected.

(vii) The normalized Laplace spectrum Spec∆N
pDq of D is the multiset of eigenvalues of ∆N pDq.

The binary normalized Laplace spectrum Spec∆b,N
pDq of D is the multiset of eigenvalues of

∆b,N pDq.
The combinatorial Laplace spectrum Spec∆C

pDq of D is the multiset of eigenvalues of ∆CpDq.
The binary combinatorial Laplace spectrum Spec∆b,C

pDq of D is the multiset of eigenvalues of

∆b,CpDq.
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Note that in Definition 2.8(ii), we could also consider the “right symmetric adjacency spectrum”
defined as the spectrum of ApDqTApDq. However, the nonzero eigenvalues of ApDqApDqT and

ApDqTApDq coincide, so this spectrum differs from SpecSApDq only at the multiplicity of zero; see
[31, p. 169]. The same statement holds for the binary counterpart.

3. The adjacency and line adjacency spectra via counting cycles

Let D � pV,E, r, sq be a digraph and let NmpDq denote the total number of cycles in D of length m.
We have the following, which was proven by Bowen and Lanford [4, Theorem 1]; see also [44, Lemma 6].
The proof of Bowen and Lanford applies without change to the case of digraphs. In particular, though
[44] restricts to the case of a strongly connected digraph that is not a cycle, the proof applies to an
arbitrary finite digraph.

Proposition 3.1. Let D � pV,E, r, sq be a finite digraph. Let M be the maximum modulus of elements

of SpecApDq. Then
°8
m�1

tm

m NmpDq converges absolutely for |t|   1{M , and

(3.1) exp
8̧

m�1

tm

m
NmpDq � det

�
I � tApDq��1

.

Proof. For v, w P V , let Npm, v,wq denote the number of walks from v to w of length m. Note that
Np1, v, wq � ApDqvw. Similarly,

Np2, v, wq �
¸
uPV

Np1, v, uqNp1, u, wq

� �
ApDq2�

vw
,

from which it follows that Npm, v,wq � �
ApDqm�

vw
for each m ¡ 0.

The total number of cycles of length m starting at a specific v P V is Npm, v, vq � �
ApDqm�

vv
so

that

(3.2) NmpDq �
¸
vPV

Npm, v, vq �
¸
vPV

�
ApDqm�

vv
� Trace

�
ApDqm� � |V |̧

i�1

λmi ,

where the λi are the eigenvalues of ApDq, i.e. the elements of SpecApDq.
Now consider the Taylor series at x � 1

(3.3) � log x �
8̧

m�1

p1� xqm
m

.

Exponentiating yields the infinite product representation

1

x
� exp

8̧

m�1

p1� xqm
m

,

and substituting x � 1� tλ yields

1

1� tλ
� exp

8̧

m�1

tmλm

m
.
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Then we have

1
|V |±
i�1

p1� tλiq
�

|V |¹
i�1

exp
8̧

m�1

λmi
m
tm

� exp
8̧

m�1

tm

m

|V |̧

i�1

λmi

� exp
8̧

m�1

tm

m
NmpDq.

Noting that the series in Equation (3.3) has a radius of convergence of 1 so that
°8
m�1

tm

m NmpDq
converges absolutely to log 1{±|V |

i�1p1� tλiq whenever each |tλi|   1 completes the proof. �

As a consequence of Proposition 3.1, the nonzero elements of the adjacency spectrum of a finite
digraph D are determined by the NmpDq, i.e., we have the following.

Corollary 3.2. Let D1 � pV1, E1, r1, s1q and D2 � pV2, E2, r2, s2q be two finite digraphs. Suppose that
NmpD1q � NmpD2q for all m. Then the multiset of nonzero elements of SpecApD1q is equal to the
multiset of nonzero elements of SpecApD2q.

Proof. The right-hand side det
�
I � tApDq��1

of Equation (3.1) is a rational function in t and hence
meromorphic on C; its poles are the nonzero elements of SpecApDq with pole order corresponding to
multiplicity. Then as the left-hand side exp

°8
m�1 t

m NmpDq{m converges on a non-empty open set,
by [41, Corollary, p. 209], the right-hand side is the unique analytic continuation to its domain of the
left-hand side. In particular, the right-hand side is determined by the left-hand side, implying that
the set of NmpDq determines the nonzero elements of SpecApDq. �

In fact, we can strengthen Corollary 3.2 using elementary symmetric polynomials with the following.

Corollary 3.3. Let D1 � pV1, E1, r1, s1q and D2 � pV2, E2, r2, s2q be two finite digraphs. Suppose that
NmpD1q � NmpD2q for all m ¤ minp|V1|, |V2|q. Then the multiset of nonzero elements of SpecApD1q
is equal to the multiset of nonzero elements of SpecApD2q.

Proof. Note that by Equation (3.2), for j � 1, 2, the mth power sum
°|Vj |
i�1 λ

m
j,i of the eigenvalues

of ApDjq is equal to the number NmpDjq of cycles of length m in Dj . The first |Vj | power sums
generate the ring of symmetric polynomials in |Vj | variables with coefficients in C (or any field of
characteristic 0), see [36, Ch. I, (2.12)]. As the symmetric polynomials are the invariants under the
action of the symmetric group S|Vj | on C|Vj | by permuting coordinates, and S|Vj | is finite so that the

orbifold C|Vj |{S|Vj | is a good quotient for this action, the symmetric polynomials separate points, see
[15, Corollary 2.3.8]. It follows that the values of the first |Vj | power sums determine the S|Vj |-orbit,
which is exactly the multiset of eigenvalues tλj,1, . . . , λj,|Vj |u � SpecApDjq. If |V1| � |V2|, it follows
that SpecApD1q � SpecApD2q. If |V1|   |V2|, then SpecApD2q is given by SpecApD1q with |V2| � |V1|
additional zero elements. �

We can now apply Proposition 3.1 to show that the non-zero adjacency spectrum of a digraph
D � pV,E, r, sq is equal to the non-zero adjacency spectrum of the line digraph LpDq of D. Because
the adjacency matrices of D and LpDq are generally not the same size, the spectra are not exactly
equal in general. After removing zeros, however, the spectra do match. Alternate proofs of this result
can be found in [5, p. 2183], [34, Theorem 1.4.4], and the references contained therein.

Proposition 3.4 ([5, 34]). Let D � pV,E, r, sq be a finite digraph. The multiset of non-zero elements
of SpecApDq is equal to the multiset of non-zero elements of SpecApLpDqq.
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Proof. By Corollary 3.2 or 3.3, it suffices to show that NmpDq � NmpLpDqq for all m P N.
Suppose that C � pe1, e2, . . . , emq is a cycle in D. Thus rpeiq � spei�1q for all i � 1, � � �m � 1

and rpemq � spe1q. Note that it is possible that ei � ej for some i � j. By the definition of the line
digraph, C corresponds to a sequence C 1 of edges

�pe1, e2q, pe2, e3q, . . . , pem�1, emq, pem, e1q
�

in LpDq.
Furthermore, because C is a cycle of length m of composable edges in D, it follows that C 1 forms a
cycle of length m in LpDq. We show that the correspondence C ÞÑ C 1 is bijection.

By definition of LpDq, each edge in ED maps to a distinct vertex in VLpDq. Thus, if C1 and C2 are dis-
tinct cycles in D, the corresponding sequences C 1

1 and C 1
2 are distinct cycles in LpDq, so the correspon-

dence is one-to-one. On the other hand, suppose that C 1 � �pe1, e2q, pe2, e3q, . . . , pem�1, emq, pem, e1q
�

is a cycle of length m in LpDq. Then C 1 by definition of LpDq, C � pe1, . . . , emq is a cycle in D. Thus
the correspondence is onto, and we conclude that the number of cycles of length m in D is equal to
the number of cycles of length m in LpDq, as desired. �

4. Morita equivalence moves and spectrum

For a digraph D � pV,E, r, sq, we consider transformations of the graph, referred to as Moves (S),
(R), (I), (O), (C), and (P), following [2, 19, 21, 42]. It was shown in [42] that if pseudeodigraphs D1

and D2, each having a finite number of vertices, differ by a sequence of Moves (S), (R), (O), and (I),
then the associated C�-algebras are stably equivalent, and thus Morita equivalent. In [19], this list of
moves was extended when it was shown that if D1 and D2 differ by Move (C), then they are stably
equivalent. Finally, in [21], by introducing Move (P) the authors achieved a full classification: digraphs
D1 and D2 having finitely many vertices have Morita equivalent C�-algebras if and only if they differ
by a finite sequence of Moves (S), (R), (O), (I), (C), and (P) and their inverses, see [21, Theorem 3.1].

For the ease of reading, we describe the moves here. Following this, we apply Proposition 3.1 to
determine which of the moves preserve the non-zero portion of the adjacency spectrum. In Section 5,
we give a series of counterexamples that show which of the spectra of Definition 2.8 are not preserved
by the various moves.

4.1. Move (S), remove a regular source. (See [42, Section 3].) Let D � pV,E, r, sq be a digraph,
and let v P V be a regular vertex that is a source. Define a psuedodigraphDpSq � pV pSq, EpSq, rpSq, spSqq
by

V pSq :� V ztvu, EpSq :� Ezts�1pvqu, rpSq :� r|VS
, spSq :� s|VS

.

4.2. Move (R), reduce at a regular vertex. (See [42, Section 3].) Let D � pV,E, r, sq be a digraph,
and let v P V be a regular vertex that s�1pvq and spr�1pvqq are one-point sets. Let u be the only vertex
that emits to v and let f be the only edge v emits. Define a digraph DpRq � pV pRq, EpRq, rpRq, spRqq by

V pRq :� V ztvu and EpRq :�
�
Ez

�
r�1pvq

¤
tfu

		¤ 
ef | e P r�1pvq( ,

with range and source maps that extend those of D and satisfy rpRqpefq � rpfq and spRqpefq � speq �
u.

4.3. Move (O), outsplit at a non-sink. (See [2, Section 3] and [42, Section 3].) Let D � pV,E, r, sq
be a digraph, and let v P V . Suppose that v is not a sink. Partition s�1pvq into a finite number, n
say, of sets tE1, E2, . . . , Enu. Define a digraph DpOq � pV pOq, EpOq, rpOq, spOqq by:

V pOq � pV ztvuq Y tv1, v2, . . . , vnu and

EpOq � �
Ezr�1pvq�Y te1, e2, . . . , en | e P E, rpeq � vu.

For e R r�1pvq let rpOqpeq � rpeq and for e P r�1pvq let rpOqpeiq � vi for i � 1, 2, . . . , n. For e R s�1pvq
let spOqpvq � speq, for e P s�1pvqzr�1pvq let spOqpeq � vi if e P Ei, and for e P s�1pvq X r�1pvq let
spOqpejq � vi if e P Ei, for i, j � 1, 2, . . . , n.
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4.4. Move (I), insplit at a regular non-source. (See [2, Section 5] and [42, Section 3].) Let
D � pV,E, r, sq be a digraph, and let v P V . Suppose that v is not a source. Partition r�1pvq into a
finite number, n say, of sets tE1, E2, . . . , Enu.6[( Define a digraph DpIq � pV pIq, EpIq, rpIq, spIqq by:

V pIq � pV ztvuq Y tv1, v2, . . . , vnu and

EpIq � �
Ezs�1pvq�Y te1, e2, . . . , en | e P E, speq � vu.

For e R r�1pvq let rpIqpeq � rpeq, for e P r�1pvqzs�1pvq let rpIqpeq � vi for e P Ei, and for e P
r�1pvq X s�1pvq let rpIqpejq � vi if e P Ei for i, j � 1, 2, . . . , n. For e R s�1pvq let spIqpvq � speq and for
e P s�1pvq let spIqpeiq � vi for i � 1, 2, . . . , n.

4.5. Move (C), the Cuntz splice at a vertex admitting at least two distinct return paths.
(See [19, Section 2] and [42, Section 3].) Let D � pV,E, r, sq be a digraph, and let v P V be a regular
vertex that supports at least two return paths. Define a digraph DpCq � pV pC,vq, EpC,vq, rpC,vq, spC,vqq
by

V pC,vq � V Y tu1, u2u and

EpC,vq � E Y te1, e2, f1, f2, h1, h2u,

where rpC,vq|E � r, spC,vq|E � s,

rpC,vqpe1q � u1, rpC,vqpe2q � v, rpC,vqpfiq � ui, rpC,vqphiq � ui,

and

spC,vqpe1q � v, spC,vqpe2q � u1, spC,vqpfiq � u1, spC,vqphiq � u2.

We say that DpC,vq is the digraph obtained from D by performing Move (C) at vertex v.
If S is a subset of E such that each w P S is a regular vertex supporting at least two return paths,

then we may perform Move (C) at each w P S. We label the resulting digraph DpC,Sq, and in this case
refer to the additional vertices by uwi , i � 1, 2, for each w P S.

Remark 4.1. We note that the Cuntz move can in theory be performed at any vertex, regardless of
whether it has at least two distinct return paths. The condition on return paths is required in order
to conclude that the corresponding C�-algebras are Morita equivalent, see [21, Section 2.5].

4.6. Move (P), eclose a cyclic component. (See [21, Section 2].) Let D � pV,E, r, sq be a digraph
and let v P V support a loop but no other return path. Suppose that the loop has an exit. Note that
these conditions imply that there is at least one vertex w P V distinct from v such that there is an
edge e with speq � v and rpeq � w.

Let S � tw P V ztvu | s�1pvq X r�1pwq � Hu. Suppose further that if w P S, then w is a regular
vertex that supports at least two return paths. Define a digraph DpP,vq � pV pP,vq, EpP,vq, rpP,vq, spP,vqq
by

V pP,vq � V pC,Sq

EpP,vq � EpC,Sq Y tēw, ẽw |w P S, e P s�1pvq X r�1pwqu,

where rpP,vq|EpC,Sq � rpC,Sq, spP,vq|EpC,Sq � spC,Sq, rpP,vqpēwq � rpP,vqpẽwq � vw2 , and spP,vqpēwq �
spP,vqpẽwq � v.

We say that DpP,vq is the digraph formed by performing Move (P) at v.
As in Remark 4.1, Move (P) can in theory be performed at any vertex. The requirement in the

definition of Move (P) that vertex w be a regular vertex that supports at least two return paths ensures
that when two digraphs differ by Move (P), their corresponding C�-algebras are Morita equivalent.



12 CARLA FARSI, EMILY PROCTOR, AND CHRISTOPHER SEATON

4.7. Moves that preserve spectra. Based on these descriptions of the moves given above, we can
now prove the positive part of Theorem 1.1, which we organize into three propositions. We begin with
the following.

Proposition 4.2. Given a finite digraph D, let DpSq, DpOq, and DpIq be digraphs resulting from
performing Move (S), (O), and (I) to D respectively. Then the multisets of nonzero elements in
SpecApDq, SpecApDpSqq, SpecApDpOqq, and SpecApDpIqq are all equal.

Proof. The result follows directly from either Corollary 3.2 or 3.3.
For Move (S), since the vertex that is removed is a source, it is not part of any cycles, and therefore

the number of cycles of a given length in D is equal to the number of cycles of that length in DpSq.
Now, suppose that DpOq is the digraph that results from performing Move (O) to D at vertex v.

Then there is a bijection between the cycles of length m in D and the cycles of length m in DpOq as
follows. Suppose that e1, e2, . . . , em is a collection of edges in D forming a cycle pe1, e2, . . . , emq. (Note
that it may be the case that ej � ek for j � k.). If spejq � v for j � 1, . . . ,m, then by definition

of Move (O), this cycle is mapped to exactly one cycle, namely pe1, e2, . . . , emq in DpOq. If spejq � v
for some j � 1, . . . ,m, suppose without loss of generality that spe1q � v. Using notation from above,
suppose further that e1 P Ei. Then the cycle pe1, e2, . . . , emq in D is mapped to cycle pe1, e2, . . . , eimq in
DpOq, where rpeimq � spe1q � vi. Again, by definition of Move (O), this correspondence is one-to-one.

On the other hand, suppose that pe1, e2, . . . , emq is a cycle of length m in DpOq. If spejq � vi for

any j � 1, . . . ,m, i � 1, . . . , n, then, as above pe1, e2, . . . , emq in DpOq is the image under Move (O)
of pe1, e2, . . . , emq in D. If spejq � vi for some j � 1, . . . ,m, i � 1, . . . , n, suppose without loss of
generality that spe1q � vi for some i � 1, . . . , n. Then em � ei for some edge e in D with rpeq � v, and
pe1, e2, . . . , emq � pe1, . . . , em�1, e

iq in DpOq is the image under Move (O) of cycle pe1, e2, . . . , em�1, eq
in D. Thus, we have a bijective correspondence between the cycles of length m in D and the cycles
of length m in DpOq, and by Corollary 3.2 or 3.3, the multisets of nonzero elements in SpecApDq
and SpecApDpOqq are equal. The argument that the multisets of nonzero elements in SpecApDq and
SpecApDpIqq are equal is similar. �

Proposition 4.3. Given a finite digraph D, let DpSq, DpOq, and DpIq be digraphs resulting from
performing Move (S), (O), and (I) to D respectively. Then the multisets of nonzero elements in
SpecLpDq, SpecLpDpSqq, SpecLpDpOqq, and SpecLpDpIqq are all equal.

Proof. The result follows directly from Propositions 3.4 and 4.2. �

Proposition 4.4. Given a finite digraph D, let DpSq be a digraph resulting from performing Move (S)
to D. Then the multisets of nonzero elements in SpecAb

pDq and SpecAb
pDpSqq are equal.

Proof. The binary adjacency spectrum of a graph can be obtained by first replacing all multiple
directed edges from vertex v to vertex w with a single directed edge from v to w, then computing the
spectrum of the adjacency matrix of the resulting digraph. Because the binary adjacency spectrum is
computed using an adjacency matrix, Corollary 3.2 and 3.3 apply; here we need only confirm that the
number of cycles of length m in the resulting digraph is equal before and after we perform Move (S).
But since Move (S) is the removal of a source, that vertex is not included in any cycles, and thus the
number of cycles of length m remains unchanged, as desired. The result follows. �

Proposition 4.5. Given a finite digraph D, let DpCq be a digraph resulting from performing Move (C)
to D. Then the multisets of nonzero elements in SpecSpDq and SpecSpDpCqq are equal, the multisets
of nonzero elements in SpecSb

pDq and SpecSb
pDpCqq are equal, the multisets of nonzero elements in

Spec∆S
pDq and Spec∆S

pDpCqq are equal, and the multisets of nonzero elements in Spec∆b,S
pDq and

Spec∆b,S
pDpCqq are equal.

Proof. Following the notation of Section 4.5, let v be the vertex at which Move (C) is applied and
let V Y tu1, u2u be the vertex set of DpCq. The new vertices and edges that are added by Move (C)

are pictured in Figure 1. In particular, note that dout
v , din

v , db,out
v , and db,in

v are each increased by 1.



THE SPECTRA OF DIGRAPHS WITH MORITA EQUIVALENT C�-ALGEBRAS 13

v u1 u2...

Figure 1. The vertices and edges added to a digraph by Move (C).

Furthermore, for each w,w1 P V , the w,w1-entries of SpDq and SpDCq coincide, as do the w,w1-entries

of SbpDq and SbpDCq, the diagonal entries dout
w � din

w of ∆SpDq and ∆SpDpCqq, and the diagonal entries

db,out
w � db,in

w of ∆b,SpDq and ∆b,SpDpCqq. The entries corresponding to u1 and u2 are easily seen to

vanish so that, ordering the vertex set of DpCq with u1, u2 as the last two elements, we have

SpDpCqq �

�
������

0 0

SpDq ...
...

0 0
0 � � � 0 0 0
0 � � � 0 0 0

�
�����
, SbpDpCqq �

�
������

0 0

SbpDq
...

...
0 0

0 � � � 0 0 0
0 � � � 0 0 0

�
�����
,

∆SpDpCqq �

�
������

0 0

∆SpDq
...

...
0 0

0 � � � 0 0 0
0 � � � 0 0 0

�
�����
, and ∆b,SpDpCqq �

�
������

0 0

∆b,SpDq
...

...
0 0

0 � � � 0 0 0
0 � � � 0 0 0

�
�����


The claim then follows. �

5. Negative results

In this section, we give counterexamples to illustrate the failures of the various spectra to be pre-
served under the remaining moves, completing the proof of Theorem 1.1. Specifically, Examples 5.1,
5.2, 5.3, 5.4, and 5.5 are sufficient to indicate the failures of moves to preserve spectra stated in Theo-
rem 1.1. Note in particular that the digraphs in Examples 5.1 and 5.2 are not strongly connected, while
the digraphs in Examples 5.3, 5.4, and 5.5 are strongly connected. To clarify the organization, Ta-
ble 1 indicates which counterexample applies to each spectrum and move pair, while Table 2 indicates
counterexamples within the class of strongly connected digraphs.

Note that if digraphs D1 and D2 are related by Move (S), then one must contain a source and
therefore is not strongly connected. Similarly, Move (P) only applies to a digraph containing a vertex
u that supports a loop and no other return path, and such that the loop at u has an exit. Therefore,
the exit begins with an edge from u to another vertex v which cannot begin a return path, implying
that there is no path from v to u and that the digraph is not strongly connected. That is, Moves (S)
and (P) do not apply within the class of strongly connected digraphs, and the spectra Spec∆N

, Spec∆C
,

Spec∆b,N
, and Spec∆b,C

are not defined for at least one element of a pair of digraphs connected by

Move (S) or (P).

Example 5.1. Let D1 denote the digraph of [21, Fig. 1(a)] (there denoted E); see Figure 2A. Let

D
pSq
1 denote the digraph obtained from D1 by applying the inverse of Move (S), adjoining a source

vs that has edges to v1, v2, and v3 (Figure 2B); let D
pRq
1 denote the digraph obtained by applying

the inverse of Move (R) to D1, adjoining a vertex vr with edges to and from v2 (see Figure 2C); let

D
pOq
1 denote be obtained by applying Move (O) at v1 using the partition with two elements, the first
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Spectrum Move (S) Move (R) Move (O) Move (I) Move (C) Move (P)
Spec∆ Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.2
SpecA Prop. 4.2 Ex. 5.1 Prop. 4.2 Prop. 4.2 Ex. 5.1 Ex. 5.2
SpecAb

Prop. 4.4 Ex. 5.1 Ex. 5.3 Ex. 5.1 Ex. 5.1 Ex. 5.2

SpecSA Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.2

SpecSAb
Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.2

SpecL Prop. 4.3 Ex. 5.1 Prop. 4.3 Prop. 4.3 Ex. 5.1 Ex. 5.2
SpecH Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.1 Ex. 5.2
SpecS Ex. 5.1 Ex. 5.5 Ex. 5.1 Ex. 5.1 Prop. 4.5 Ex. 5.2
SpecSb

Ex. 5.1 Ex. 5.5 Ex. 5.1 Ex. 5.1 Prop. 4.5 Ex. 5.2
Spec∆S

Ex. 5.1 Ex. 5.5 Ex. 5.1 Ex. 5.1 Prop. 4.5 Ex. 5.2
Spec∆b,S

Ex. 5.1 Ex. 5.5 Ex. 5.1 Ex. 5.1 Prop. 4.5 Ex. 5.2

Spec∆N
NA Ex. 5.4 Ex. 5.3 Ex. 5.3 Ex. 5.4 NA

Spec∆C
NA Ex. 5.4 Ex. 5.3 Ex. 5.3 Ex. 5.4 NA

Spec∆b,N
NA Ex. 5.4 Ex. 5.3 Ex. 5.3 Ex. 5.4 NA

Spec∆b,C
NA Ex. 5.4 Ex. 5.3 Ex. 5.3 Ex. 5.4 NA

Table 1. For each move and spectrum pair, the result demonstrating that the move
preserves the nonzero elements of the spectrum or a counterexample indicating that
the nonzero spectral elements are not preserved. Moves (S) and (P) either must be
applied to or produce non-strongly connected digraphs, for which the spectra Spec∆N

,
Spec∆C

, Spec∆b,N
, and Spec∆b,C

are not defined.

Spectrum Move (R) Move (O) Move (I) Move (C)
Spec∆ Ex. 5.4 Ex. 5.4 Ex. 5.4 Ex. 5.4
SpecA Ex. 5.4 Prop. 4.2 Prop. 4.2 Ex. 5.4
SpecAb

Ex. 5.4 Ex. 5.3 Ex. 5.3 Ex. 5.4

SpecSA Ex. 5.4 Ex. 5.4 Ex. 5.4 Ex. 5.4

SpecSAb
Ex. 5.4 Ex. 5.4 Ex. 5.4 Ex. 5.4

SpecL Ex. 5.4 Prop. 4.3 Prop. 4.3 Ex. 5.4
SpecH Ex. 5.4 Ex. 5.4 Ex. 5.4 Ex. 5.4
SpecS Ex. 5.5 Ex. 5.4 Ex. 5.4 Prop. 4.3
SpecSb

Ex. 5.5 Ex. 5.4 Ex. 5.4 Prop. 4.5
Spec∆S

Ex. 5.5 Ex. 5.4 Ex. 5.4 Prop. 4.5
Spec∆b,S

Ex. 5.5 Ex. 5.4 Ex. 5.4 Prop. 4.5

Spec∆N
Ex. 5.4 Ex. 5.4 Ex. 5.4 Ex. 5.4

Spec∆C
Ex. 5.4 Ex. 5.4 Ex. 5.4 Ex. 5.4

Spec∆b,N
Ex. 5.4 Ex. 5.4 Ex. 5.4 Ex. 5.4

Spec∆b,C
Ex. 5.4 Ex. 5.4 Ex. 5.4 Ex. 5.4

Table 2. For each move and spectrum pair, the result demonstrating that the move
preserves the nonzero elements of the spectrum or a counterexample indicating that
the nonzero spectral elements are not preserved within the class of strongly connected
digraphs. Moves (S) and (P) are omitted, as they do not preserve strongly connect-
edness.

containing the loop at v1 and edge from v1 to v2, the second containing both edges from v1 to v3 (see

Figure 2D); let D
pIq
1 denote the digraph obtained by applying Move (I) at v2 using the partition with

two elements, the first containing one loop at v2 and the edge from v1 to v2, the second containing the
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other loop at v2 (Figure 2E); and let D
pCq
1 denote the digraph obtained from D1 by applying Move (C)

to D1 at vertex v2 (Figure 2F). Note that D1 does not satisfy the hypotheses required to apply Move
(P) as discussed in Section 4.7; see Remark 4.1. Specifically, v3 is the range of edges with source v1
and v2, respectively, and v3 supports only one return path, so Move (P) cannot be applied at v1 nor
v2; since there are no edges from v3 to any other vertex, the move cannot be applied at v3. Hence,
Move (P) will be considered in Example 5.2 below.

The Laplace spectra of the digraphs formed from D1 are follows, with numerical approximations
given when expressions by radicals are cumbersome:

Spec∆pD1q �
"

15�?
33

2
, 9,

15�?
33

2

*
,

Spec∆pDpSq
1 q � t� 11.4186, 10,� 6.38787,� 2.19358u,

Spec∆pDpRq
1 q � t� 9.05932, 9,� 4.59559,� 1.34509u,

Spec∆pDpOq
1 q � t� 10.592,� 7.49276, 6,� 1.91524u,

Spec∆pDpIq
1 q � t10, 8�

?
2, 8�

?
2, 4u,

Spec∆pDpCq
1 q �

"
9�

?
17, 9,

13�?
17

2
, 9�

?
17,

13�?
17

2

*
,

Hence, these examples illustrate that the Laplace spectrum, as well as the submultiset of nonzero
elements, is not preserved by any of the moves (S), (R), (O), (I), nor (C).

The adjacency spectra of the digraphs formed from D1 are:

SpecApD1q � t2, 1, 1u,
SpecApDpSq

1 q � SpecApDpOq
1 q � SpecApDpIq

1 q � t2, 1, 1, 0u,

SpecApDpRq
1 q �

"
1�?

5

2
, 1, 1,

1�?
5

2

*
,

SpecApDpCq
1 q � t� 2.80194,� 1.44504, 1, 1,� �0.24698u.

Hence, the submultiset of nonzero elements of the adjacency spectrum is not invariant under moves
(R) and (C) and, as expected from Proposition 4.2, is not changed by moves (S), (O), and (I).

The binary adjacency spectra of the digraphs formed from D1 are:

SpecAb
pD1q � t1, 1, 1u,

SpecAb
pDpSq

1 q � SpecAb
pDpOq

1 q � t1, 1, 1, 0u

SpecAb
pDpRq

1 q �
"

1�?
5

2
, 1, 1,

1�?
5

2

*
,

SpecAb
pDpIq

1 q � t2, 1, 1, 0u,
SpecAb

pDpCq
1 q � t1�

?
2, 1, 1, 1, 1�

?
2u.

The nonzero elements of the binary adjacency spectrum are not preserved by moves (R), (I), and (C);
Move (O) will be treated in Example 5.3 below. Move (S) does not change the nonzero elements of
SpecAb

pD1q as indicated by Proposition 4.4.

The symmetric adjacency spectra SpecSA and symmetric binary adjacency spectra SpecSAb
are given

below. In each case, the multiset of nonzero elements of the spectrum are not invariant under any of



16 CARLA FARSI, EMILY PROCTOR, AND CHRISTOPHER SEATON

v1

v2

v3

(A) The digraph D1.

v1

v2

v3

vs

(B) The digraph D
pSq
1 obtained by apply-

ing the inverse of Move (S) to D1, adjoining
source s.

v1

v2

v3

vr

(C) The digraph D
pRq
1 obtained by applying

the inverse of Move (R) to D1, adjoining the
vertex r.

o1o2

v2

v3

(D) The digraph D
pOq
1 obtained by applying

Move (O) to D1 at v1 using the partition
whose first element contains the loop at v1
and edge from v1 to v2 and second element
contains both edges from v1 to v3.

v1

v3

i1 i2

(E) The digraph D
pIq
1 obtained by apply-

ing Move (I) to D1 at v2 using the partition
whose first element contains one loop at v2
and the edge from v1 to v2 and second con-
tains the other loop at v2.

v1

v2

v3

w1 w2

(F) The digraph D
pCq
1 obtained by applying

Move (C) to D1 at vertex v2.

Figure 2. The digraph D1 and the application of Moves (S), (R), (O), (I), and (C)
from Example 5.1.
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the moves.

SpecSApD1q � t� 10.0494,� 1.719,� 0.231548u,
SpecSApDpSq

1 q � t� 12.7148,� 1.74411,� 0.541128, 0u,
SpecSApDpRq

1 q � t� 8.73968,� 1.46182,� 0.684079,� 0.114421u,
SpecSApDpOq

1 q � t� 7.70156, 4,� 1.29844, 0u,
SpecSApDpIq

1 q � t� 10.8363,� 1.86713,� 0.296548, 0u,
SpecSApDpCq

1 q � t� 11.5864,� 4.6524,� 1.42213,� 0.294867,� 0.0442395u;

SpecSAb
pD1q � t� 5.04892,� 0.643104,� 0.307979u,

SpecSAb
pDpSq

1 q � t� 7.89167,� 0.785825,� 0.322504, 0u,

SpecSAb
pDpRq

1 q �
"

1�?
5

2
, 1, 1,

1�?
5

2

*
,

SpecSAb
pDpOq

1 q �
"

4,
3�?

5

2
,

3�?
5

2
, 0

*
,

SpecSAb
pDpIq

1 q � t� 8.12071,� 1.31922,� 0.560067, 0u,
SpecSAb

pDpCq
1 q � t� 7.19584,� 3.35194,� 0.844535,� 0.511755,� 0.0959274u;

The line adjacency spectra of the digraphs formed by applying moves to D1 are:

SpecLpD1q � t2, 1, 1, 0, 0, 0, 0, 0u,
SpecLpDpSq

1 q � SpecLpDpIq
1 q � t2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0u,

SpecLpDpRq
1 q �

"
1�?

5

2
, 1, 1,

1�?
5

2
, 0, 0, 0, 0, 0

*
,

SpecLpDpOq
1 q � t2, 1, 1, 0, 0, 0, 0, 0, 0u,

SpecLpDpCq
1 q � t� 2.80194,� 1.44504, 1, 1,� �0.24698, 0, 0, 0, 0, 0, 0, 0, 0, 0u.

As guaranteed by Corollaries 3.2 and 3.3, the nonzero elements of SpecLpD1q coincide with the nonzero
elements of SpecApD1q. As in the case of SpecApD1q, we see that the multiset of nonzero elements of
SpecLpD1q is not invariant under moves (C) and (R) and is invariant under the moves guaranteed by
Proposition 4.2.

The Hermitian adjacency spectra are

SpecHpD1q � t1�
?

3, 1, 1�
?

3u,
SpecHpDpSq

1 q � t� 3.22001,� �1.74108,� 1.23136,� 0.289713u,
SpecHpDpRq

1 q � t� 2.86081,� 1.2541,� �1.11491, 0u,
SpecHpDpOq

1 q � t� 2.81361,� �1.34292, 1,� 0.529317u,
SpecHpDpIq

1 q � t� 3.34292,� 1.47068,� �0.813607, 0u,
SpecHpDpCq

1 q � t3, 2,�1, 1, 0u,

demonstrating that SpecH is not preserved by any of these moves.
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The skew adjacency spectra, binary skew adjacency spectra, skew Laplace spectra, and binary skew
Laplace spectra are

SpecSpD1q � ti
?

6,�i
?

6, 0u,
SpecSpDpSq

1 q � t3i,�3i, 0, 0u,
SpecSpDpRq

1 q � ti
?

6,�i
?

6, 0, 0u,

SpecSpDpOq
1 q � SpecSpDpIq

1 q �
$&
%i

d
3
?

5� 7

2
,�i

d
3
?

5� 7

2
, i

d
7� 3

?
5

2
,�i

d
7� 3

?
5

2

,.
- ,

SpecSpDpCq
1 q � ti

?
6,�i

?
6, 0, 0, 0u;

SpecSb
pD1q �

!
i
?

3,�i
?

3, 0
)
,

SpecSb
pDpSq

1 q �
"
i

b
2
?

2� 3,�i
b

2
?

2� 3, i

b
3� 2

?
2,�i

b
3� 2

?
2

*
,

SpecSb
pDpRq

1 q �
!
i
?

3,�i
?

3, 0, 0
)
,

SpecSb
pDpOq

1 q � t2i,�2i, 0, 0u,

SpecSb
pDpIq

1 q �
"
i

b?
3� 2,�i

b?
3� 2, i

b
2�

?
3,�i

b
2�

?
3

*
,

SpecSb
pDpCq

1 q �
!
i
?

3,�i
?

3, 0, 0, 0
)

;

Spec∆S
pD1q �

!
�
?

3,
?

3, 0
)
,

Spec∆S
pDpSq

1 q � Spec∆S
pDpIq

1 q �
!
�
?

3� 1, 2,
?

3� 1, 0
)
,

Spec∆S
pDpRq

1 q �
!
�
?

3,
?

3, 0, 0
)
,

Spec∆S
pDpOq

1 q � t0, 0, 0, 0u,
Spec∆S

pDpCq
1 q �

!
�
?

3,
?

3, 0, 0, 0
)

;

Spec∆b,S
pD1q � t�1, 1, 0u,

Spec∆b,S
pDpSq

1 q � t�2, 2, 0, 0u,
Spec∆b,S

pDpRq
1 q � t�1, 1, 0, 0u,

Spec∆b,S
pDpOq

1 q � t0, 0, 0, 0u,
Spec∆b,S

pDpIq
1 q � t�2, 1, 1, 0u,

Spec∆b,S
pDpCq

1 q � t�1, 1, 0, 0, 0u.
The nonzero elements of these spectra are therefore not preserved by Moves (S), (O), nor (I). That
they are preserved by Move (C) follows from Proposition 4.5. The case of Move (R) will be treated in
Example 5.5 below.

Note in particular that the digraphs D
pSq
1 , D

pRq
1 , D

pOq
1 , and D

pIq
1 in Example 5.1 each have four

vertices. Hence, as at least one of moves (S), (R), (O), and (I) fail to preserve the nonzero elements of
each spectrum under consideration, this example also illustrates the failure of spectra to be preserved
when restricting to digraphs with Morita equivalent C�-algebras and the same number of vertices.

The following demonstrates that none of the spectra are preserved by Move (P).
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v1

v2

v3

(A) The digraph D2.

v1

v2

v3

w1 w2

(B) The digraph D
pP q
2 obtained by applying

Move (P) to D2 at vertex v1.

Figure 3. The digraph D2 and the application of Move (P) from Example 5.2.

Example 5.2. Let D2 denote the digraph in [21, Fig. 1(b)] (there denoted F ) pictured in Figure 3A,

and let D
pP q
2 denote the digraph obtained by applying Move (P) to D2 at v1. We compute each of the

spectra of D2 and D
pP q
2 in Definition 2.8 to demonstrate that none of these spectra (or their nonzero

elements) are preserved by Move (P).
The Laplace spectra are

Spec∆pD2q �
"

15�?
33

2
, 5,

15�?
33

2

*
,

Spec∆pDpP q
2 q � t13.3202, 9.86733, 7.4031, 4.96287, 4.44646u;

the adjacency spectra are

SpecApD2q � t2, 1, 1u,
SpecApDpP q

2 q � t� 2.80194,� 1.44504, 1, 1,� �0.24698u;
the binary adjacency spectra are

SpecAb
pD2q � t1, 1, 1u,

SpecAb
pDpP q

2 q � t1�
?

2, 1, 1, 1, 1�
?

2u;
the symmetric adjacency spectra are

SpecSApD2q � t� 6.15633,� 1.3691,� 0.474572u,
SpecSApDpP q

2 q � t� 11.3293,� 4.32428,� 1.50561 � 0.824316,� 0.0164465u;
the symmetric binary adjacency spectra are

SpecSAb
pD2q � t� 3.24698 � 1.55496,� 0.198062u,

SpecSAb
pDpP q

2 q � t� 7.45504,� 2.40912,� 1.52115,� 0.547884,� 0.0668084u;
the line adjacency spectra are

SpecLpD2q � t2, 1, 1, 0, 0, 0u,
SpecLpDpP q

2 q � t� 2.80194,� 1.44504, 1, 1,� �0.24698, 0, 0, 0, 0, 0, 0, 0, 0, 0u;
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the Hermitian adjacency spectra are

SpecHpD2q �
!?

2� 1, 1, 1�
?

2
)
,

SpecHpDpP q
2 q �

#
1

2

�c
2
�?

17� 5
	
� 2



,

1

2

�c
2
�

5�
?

17
	
� 2



,

1

2

�
2�

c
2
�?

17� 5
	


, 1,
1

2

�
2�

c
2
�

5�
?

17
	
+

;

the skew adjacency spectra are

SpecSpD2q �
!
i
?

2,�i
?

2, 0
)
,

SpecSpDpP q
2 q �

"
i

b?
5� 3,�i

b?
5� 3, i

b
3�

?
5,�i

b
3�

?
5, 0

*
;

the binary skew adjacency spectra are

SpecSb
pD2q �

!
i
?

2,�i
?

2, 0
)
,

SpecSb
pDpP q

2 q �
#
i

c
1

2

�?
5� 3

	
,�i

c
1

2

�?
5� 3

	
, i

c
1

2

�
3�

?
5
	
,�i

c
1

2

�
3�

?
5
	
, 0

+
;

the skew Laplace spectra are

Spec∆S
pD2q � ti,�i, 0u,

Spec∆S
pDpP q

2 q � t�1, 1, 0, 0, 0u;
and the binary skew Laplace spectra are

Spec∆b,S
pD2q � ti,�i, 0u,

Spec∆b,S
pDpP q

2 q � t0, 0, 0, 0, 0u.
In Examples 5.1 and 5.2 the nonzero elements of the binary adjacency spectrum were preserved

by Move (O). With the following, we indicate that this does not occur in general and also consider
the spectra Spec∆N

, Spec∆C
, Spec∆b,N

, and Spec∆b,C
that are only defined for strongly connected

digraphs. We consider Move (O) as well as Move (I) for its relevance in Example 5.4 below.

Example 5.3. Let D3 denote the digraph pictured in Figure 4A, and let D
pOq
3 denote the digraph

obtained from D3 by applying Move (O) to D3 at vertex v2 with the partition with two elements, the
first containing the edge from v2 to v1 and a loop at v2, and the second containing the other loop at

v2 (Figure 4B). Let D
pIq
3 denote the digraph obtained from D3 by applying Move (I) to D3 at vertex

v2 with the partition with two elements, the first containing the edge from v1 to v2 and a loop at v2,
and the second containing the other loop at v2 (Figure 4C). Note that all three of these digraphs are
strongly connected.

The binary adjacency spectra of these digraphs are

SpecAb
pD3q �

"
1�?

5

2
,

1�?
5

2

*
,

SpecAb
pDpOq

3 q � SpecAb
pDpIq

3 q � t1�
?

2, 1�
?

2, 0u,

demonstrating that Moves (O) and (I) do not preserve (the nonzero elements of) SpecAb
.
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The normalized Laplace spectra of these digraphs are

Spec∆N
pD3q �

"
4

3
, 0

*
,

Spec∆N
pDpOq

3 q �
"

1

12

�
2
?

2� 13
	
,

1

12

�
13� 2

?
2
	
, 0

*
,

Spec∆N
pDpIq

3 q �
"

1

6

�?
3� 7

	
,

1

6

�
7�

?
3
	
, 0

*
;

the combinatorial Laplace spectra of these digraphs are

Spec∆C
pD3q �

"
2

3
, 0

*
,

Spec∆C
pDpOq

3 q �
"

1

12

�
2
?

3� 9
	
,

1

12

�
9� 2

?
3
	
, 0

*
,

Spec∆C
pDpIq

3 q �
"

1

6

�
2
?

3� 9
	
,

1

6

�
9� 2

?
3
	
, 0

*
;

the binary normalized Laplace spectra of these digraphs are

Spec∆b,N
pD3q �

"
3

2
, 0

*
,

Spec∆b,N
pDpOq

3 q �
"

1

12

�
2
?

2� 13
	
,

1

12

�
13� 2

?
2
	
, 0

*
,

Spec∆b,N
pDpIq

3 q �
"

1

6

�?
3� 7

	
,

1

6

�
7�

?
3
	
, 0

*
;

and the binary combinatorial Laplace spectra of these digraphs are

Spec∆b,C
pD3q � t1, 0u,

Spec∆b,C
pDpOq

3 q �
"

1

12

�
2
?

3� 9
	
,

1

12

�
9� 2

?
3
	
, 0

*
,

Spec∆b,C
pDpIq

3 q �
"

1

6

�
2
?

3� 9
	
,

1

6

�
9� 2

?
3
	
, 0

*
.

Example 5.4. Let D4 denote the digraph used to illustrate Move (C) in [42, p.1204]; see Figure 5A.
We apply moves (R), (O), (I), and (C) as described in Figure 5 and denote the resulting digraphs

D
pRq
4 , D

pOq
4 , etc. Note that these digraphs are all strongly connected.

The Laplace spectra of these digraphs are

Spec∆pD4q � t2p2�
?

2q, 2p2�
?

2qu,
Spec∆pDpRq

4 q � t8u,

Spec∆pDpOq
4 q � Spec∆pDpIq

4 q �
"

7�?
33

2
, 5,

7�?
33

2

*
,

Spec∆pDpCq
4 q �

#
2

�
3�

b
3�

?
6



, 2

�
3�

b
3�

?
6



,

2

�
3�

b
3�

?
6



, 2

�
3�

b
3�

?
6


+
,
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v1 v2

(A) The digraph D3.

v1

u1

u2

(B) The digraph D
pOq
3 obtained by applying

Move (O) to D3 at v2 using the partition
whose first element contains the edge from
v2 to v1 and a loop at v2, and whose second
element contains the other loop at v2.

v1

u1

u2

(C) The digraph D
pIq
3 obtained by apply-

ing Move (I) to D3 at v2 using the partition
whose first element contains the edge from
v1 to v2 and a loop at v2, and whose second
element contains the other loop at v2.

Figure 4. The strongly connected digraph D3 and the application of Moves (O) and
(I), also yielding strongly connected digraphs, from Example 5.3.

demonstrating that the nonzero elements of Spec∆ are not preserved by any of these moves. The
adjacency spectra are

SpecApD4q �
"

1�?
5

2
,

1�?
5

2

*
,

SpecApDpRq
4 q � t2u,

SpecApDpOq
4 q � SpecApDpIq

4 q �
"

1�?
5

2
,

1�?
5

2
, 0

*
,

SpecApDpCq
4 q � t� 2.53209,� 1.3473,� �0.879385, 0u,



THE SPECTRA OF DIGRAPHS WITH MORITA EQUIVALENT C�-ALGEBRAS 23

v1 v2

(A) The digraph D4.

v1

(B) The digraph D
pRq
4 obtained by applying

Move (R).

v2

u1

u2

(C) The digraph D
pOq
4 .

v2

u1

u2

(D) The digraph D
pIq
4 .

v1 v2 u1 u2

(E) The digraph D
pCq
4 obtained from D4 by

applying Move (C) at vertex v2.

Figure 5. The strongly connected digraph D4 and the application of Moves (R),
(O), (I), and (C), yielding strongly connected digraphs, from Example 5.4.

and the line adjacency spectra are

SpecLpD4q �
"

1�?
5

2
,

1�?
5

2
, 0

*
,

SpecLpDpRq
4 q � t2, 0u,

SpecLpDpOq
4 q � SpecLpDpIq

4 q �
"

1�?
5

2
,

1�?
5

2
, 0, 0, 0

*
,

SpecLpDpCq
4 q � t� 2.53209,� 1.3473,� �0.879385, 0, 0, 0, 0, 0, 0u.

Moves (O) and (I) preserve the nonzero elements of SpecA and SpecL by Propositions 3.4 and 4.2,
while this example illustrates that Moves (R) and (C) do not. The binary adjacency spectrum of these
digraphs are given by

SpecAb
pD4q �

"
1�?

5

2
,

1�?
5

2

*
,

SpecAb
pDpRq

4 q � t1u,

SpecAb
pDpOq

4 q � SpecAb
pDpIq

4 q �
"

1�?
5

2
,

1�?
5

2
, 0

*
,

SpecAb
pDpCq

4 q � t� 2.53209,� 1.3473,� �0.879385, 0u.

Hence, Moves (R) and (C) do not preserve the nonzero elements of SpecAb
(while the same was

demonstrated form Moves (O) and (I) in Example 5.3; see above).
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The symmetric adjacency spectra are given by

SpecSApD4q �
"

3�?
5

2
,

3�?
5

2

*
,

SpecSApDpRq
4 q � t4u,

SpecSApDpOq
4 q � SpecSApDpIq

4 q � t4, 1, 0u,
SpecSApDpCq

4 q � t� 6.41147,� 1.81521,� 0.773318, 0u;
the symmetric binary adjacency spectra are given by

SpecSAb
pD4q �

"
3�?

5

2
,

3�?
5

2

*
,

SpecSAb
pDpRq

4 q � t1u,
SpecSAb

pDpOq
4 q � SpecSAb

pDpIq
4 q � t4, 1, 0u

SpecSAb
pDpCq

4 q � t� 6.41147,� 1.81521,� 0.773318, 0u;
and the Hermitian adjacency spectra are given by

SpecHpD4q �
"

1

2

�?
5� 1

	
,

1

2

�
1�

?
5
	*

,

SpecHpDpRq
4 q � t1u,

SpecHpDpOq
4 q � SpecHpDpIq

4 q �
!
�
?

3,
?

3, 1
)
,

SpecHpDpCq
4 q � t2.35567, 1.47726,�1.09529, 0.26236u,

demonstrating that the nonzero elements of SpecSA, SpecSAb
, and SpecH are not preserved by these

four moves.
The skew adjacency spectra are given by

SpecSpD4q � t0, 0u,
SpecSpDpRq

4 q � t0u,
SpecSpDpOq

4 q � SpecSpDpIq
4 q �

!
i
?

2,�i
?

2, 0
)
,

SpecSpDpCq
4 q � t0, 0, 0, 0u;

the binary skew adjacency spectra are given by

SpecSb
pD4q � t0, 0u,

SpecSb
pDpRq

4 q � t0u,
SpecSb

pDpOq
4 q � SpecSb

pDpIq
4 q �

!
i
?

2,�i
?

2, 0
)
,

SpecSb
pDpCq

4 q � t0, 0, 0, 0u;
the skew Laplace spectra are given by

Spec∆S
pD4q � t0, 0u,

Spec∆S
pDpRq

4 q � t0u,
Spec∆S

pDpOq
4 q � Spec∆S

pDpIq
4 q � ti,�i, 0u,

Spec∆S
pDpCq

4 q � t0, 0, 0, 0u;
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and the binary skew Laplace spectra are given by

Spec∆b,S
pD4q � t0, 0u,

Spec∆b,S
pDpRq

4 q � t0u,
Spec∆b,S

pDpOq
4 q � Spec∆b,S

pDpIq
4 q � ti,�i, 0u,

Spec∆b,S
pDpCq

4 q � t0, 0, 0, 0u,
demonstrating that the nonzero elements of SpecS, SpecSb

, Spec∆S
, and Spec∆b,S

are not preserved

by Moves (O) nor (I). Note that Move (C) preserves these the nonzero elements of these spectra by
Proposition 4.5; the case of Move (R) will be considered in Example 5.5 below.

The normalized Laplace spectra are given by

Spec∆N
pD4q �

"
3

2
, 0

*
,

Spec∆N
pDpRq

4 q � t0u,

Spec∆N
pDpOq

4 q � Spec∆N
pDpIq

4 q �
"

7

4
,

3

4
, 0

*
,

Spec∆N
pDpCq

4 q �
"

3

2
,

1

12

�?
13� 7

	
,

1

12

�
7�

?
13
	
, 0

*
;

the combinatorial Laplace spectra are given by

Spec∆C
pD4q � t2, 0u,

Spec∆C
pDpRq

4 q � t0u,

Spec∆C
pDpOq

4 q � Spec∆C
pDpIq

4 q �
"

7

4
,

3

4
, 0

*
,

Spec∆C
pDpCq

4 q �
"

1

2

�?
2� 2

	
, 1,

1

2

�
2�

?
2
	
, 0

*
;

the binary normalized Laplace spectra are given by

Spec∆b,N
pD4q �

"
3

2
, 0

*
,

Spec∆b,N
pDpRq

4 q � t0u,

Spec∆b,N
pDpOq

4 q � Spec∆b,N
pDpIq

4 q �
"

7

4
,

3

4
, 0

*
,

Spec∆b,N
pDpCq

4 q �
"

3

2
,

1

12

�?
13� 7

	
,

1

12

�
7�

?
13
	
, 0

*
;

and the binary combinatorial Laplace spectra are given by

Spec∆b,C
pD4q � t2, 0u,

Spec∆b,C
pDpRq

4 q � t0u,

Spec∆b,C
pDpOq

4 q � Spec∆b,C
pDpIq

4 q �
"

7

4
,

3

4
, 0

*
,

Spec∆b,C
pDpCq

4 q �
"

1

2

�?
2� 2

	
, 1,

1

2

�
2�

?
2
	
, 0

*
,

demonstrating that none of these moves preserve the nonzero elements of Spec∆N
, Spec∆C

, Spec∆b,N
,

nor Spec∆b,C
.
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v1

v2

v3

(A) The digraph D5.

v1 v2

(B) The digraph D
pRq
5 obtained from D5 by

applying Move (R) at vertex v1.

Figure 6. The strongly connected digraph D5 and the application of Move (R),
yielding a strongly connected digraph, from Example 5.5.

w1 w2

e1

e2

(A) The digraph D0.

w1 w2

e1

e2

f1,m f2,m

v1

v2

vm

...

(B) The digraph Dm.

Figure 7. The digraphs D0 and Dm ofrom Example 5.6.

It remains only to demonstrate that Move (R) does not preserve the nonzero elements of SpecS,
SpecSb

, Spec∆S
, nor Spec∆b,S

.

Example 5.5. Let D5 denote the digraph in Figure 6A given by a single cycle of length 3, and let

D
pRq
5 denote the result of applying Move (R) to D5 at vertex v1. Note that both D5 and D

pRq
5 are

strongly connected.
The skew adjacency spectra, binary skew adjacency spectra, skew Laplace spectra, and binary skew

Laplace spectra of these digraphs all coincide and are given by

SpecSpD5q � SpecSb
pD5q � Spec∆S

pD5q � Spec∆b,S
pD5q � ti

?
3,�i

?
3, 0u

SpecSpDpRq
5 q � SpecSb

pDpRq
5 q � Spec∆S

pDpRq
5 q � Spec∆b,S

pDpRq
5 q � t0, 0u.

Hence, Move (R) does not preserve the nonzero elements of any of these spectra.

We end this section with the following example, which indicates the degree to which several features
of the Laplace spectrum can change within a class of digraphs with Morita equivalent C�-algebras.
Specifically, repeated application of Move (S) yields a family of digraphs for which the number of
nonzero elements of Spec∆, the maximum multiplicity of a nonzero element of Spec∆, and the maximum
modulus of an element of Spec∆ are all unbounded.

Example 5.6. Let D0 be the digraph with V0 � tw1, w2u and E0 � te1, e2u, where spe1q � w1,
spe2q � w2, rpe1q � w2, and rpe2q � w1; see Figure 7A. Let Dm be the digraph with vertices
Vm � V0 Y tvi : i � 1, . . . ,mu and edges Em � E0 Y tf1,i, f2,i : i � 1, . . . ,mu, where for each i,
spf1,iq � spf2,iq � vi, rpf1,iq � w1, and rpf2,iq � w2; see Figure 7B. Then applying move S to remove
vertex vn from Dm yields Dm�1 for m ¥ 1.
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Ordering the vertices and edges of Dm as listed, we have

MpD0q �
��1 1

1 �1



, ∆D0 �

�
2 �2
�2 2



, Spec∆pD0q � t4, 0u.

Ordering the vertices and edges of Dm as listed, we have

MpDq �

�
������

MpD0q I2 I2 � � � I2
0 b 0 � � � 0
0 0 b � � � 0
...

...
...

. . .
...

0 0 � � � 0 b

�
�����
,

where I2 is the 2� 2 identity matrix, each 0 is a 1� 2 block, and b is the 1� 2 block p�1,�1q. Then

∆Dm �

�
��������

�
m� 2 2

2 m� 2



B B � � � B

B 2I2 0 � � � 0
B 0 2I2 � � � 0
...

...
...

. . .
...

B 0 � � � 0 2I2

�
�������

,

where 0 is a 2� 2 block B is a 2� 2 block with all entries �1. Hence

Spec∆pDmq �
 
m� 4,m� 2,

m� 1 timeshkkkkikkkkj
2, 2, . . . , 2, 0

(
.

Hence, among the Dm, m ¥ 0, the maximum multiplicity and maximum modulus of an element of
Spec∆pDmq are unbounded.

6. The case of k-graphs

In this section, we briefly discuss the extension of the results of this paper to the case of finite
k-graphs. Recall [33, Definition 1.1] that a k-graph pΛ,degq is a countable small category Λ equipped
with a functor deg : Λ Ñ Nk satisfying a factorization property: if degpλq � m � n for λ P Λ and
m,n P Nk, then λ can be factored uniquely as λ � µν with degpµq � m and degpνq � n. As explained
in [33, Example 1.3], there is a correspondence between 1-graphs and digraphs, where the category
associated to a digraph is the so-called path category, whose objects are vertices, morphisms are paths of
the digraph, and the degree functor is given by the path length. Hence, k-graphs form a generalization
of digraphs, and in [33] a C�-algebra is associated to a k-graph in such a way that the C�-algebra of
a 1-graph coincides with the C�-algebra of the corresponding digraph.

The recent paper [16] introduced generalizations to row-finite k-graphs of the moves recalled in
Section 4 above and proved that they preserve the Morita equivalence class of the corresponding C�-
algebra, making progress towards a complete description of the equivalence class of k-graphs with
Morita equivalent C�-algebras.

Note that using the results of [28], a k-graph can be thought of as a digraph with colored edges and an
equivalence relation on the set of paths, where the colors correspond to the standard basis vectors of Nk;
see [28] or [16, Section 2] for more information. If pΛ,degq is a k-graph, we refer to the corresponding
colored digraph as the underlying colored digraph of pΛ,degq. Similarly, the ordinary digraph formed
by forgetting the coloring of the edges of the underlying colored digraph is the underlying (uncolored)
digraph. The moves introduced in [16] are described as moves on the underlying colored digraph. As
well, each of the notions of the spectrum of a digraph given in Definition 2.8 admit an extension to
the case of a k-graph by defining the spectrum of the k-graph to be the spectrum of its underlying
uncolored digraph; this coincides with summing the matrix used to define the spectrum over the colors
as was done for the Laplacian in [23]. Note that in the context of k-graphs, a digraph is often replaced
with its transpose, the digraph formed by reversing the direction of each edge. Hence, in-splitting a
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k-graph corresponds to out-splitting the underlying uncolored digraph, the analogue for k-graphs of
Move (S) is the deletion of a sink, etc.

The move of in-splitting a k-graph [16, Section 3] is an analogue of Move (O) for digraphs. Specif-
ically, applying this move to a k-graph corresponds exactly to applying Move (O) to the underlying
uncolored digraph, where the partition of the uncolored graph is the same partition used to in-split
with the colors forgotten. Hence, in-splitting a k-graph preserves the multiset of nonzero elements of
the adjacency spectrum and the multiset of nonzero elements of the line adjacency spectrum, while
none of the other spectra are preserved.

The move of delaying a k-graph [16, Section 4] is an analogue of the inverse of Move (R), though is
much more restricted and involved in the context of k-graphs. In examples, applying the delay move
to the k-graph does not preserve any of the spectra we consider.

Sink deletion [16, Section 5] is an analogue of Move (S), though it does not necessarily correspond
to applying Move (S) to the underlying uncolored digraph. Specifically, for the underlying colored
graph of a k-graph, a vertex can be deleted if it is a sink with respect to the edges of one color but
not the others. Hence, the deleted vertex need not be a sink (or source) of the underlying uncolored
digraph. Hence, sink deletion preserves the multisets of nonzero elements of the adjacency spectrum,
the line adjacency spectrum, and the binary adjacency spectrum only when applied to a vertex that
is simultaneously a sink in every color. We have observed in examples that these spectra are not
preserved when this move is applied to a vertex that is not a sink in every color.

Reduction [16, Section 6] for k-graphs corresponds to applying Move (R) to the underlying uncol-
ored digraph; though the inverse of any delay operation is a reduction for (uncolored) digraphs, the
relationship in the case of k-graphs is more subtle. As in the case of digraphs, reduction of k-graphs
does not preserve any of the spectra in examples.
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