MATH 0122 B: Calculus II
Fall Term 2013
Course Description

August 26, 2013

Instructor: John Schmitt
Office: Warner 311, Ext. 5952
e-mail: jschmitt@middlebury.edu
Office Hours: Tuesday 1:30pm–3pm, Wednesday 11am–12noon, Thursday 11am–12:15pm and by arrangement
Webpage: http://community.middlebury.edu/~jschmitt/

Meeting Times:
Section B
MWF, 9:05—9:55 am Warner Hall 203
R, 9:30 — 10:45 am Warner Hall 208

Homework: Homework will be assigned on a daily basis. The content of this course is best learned by *practicing problems*. I *encourage you to work together* and attend the help sessions. However, the write-up of homework solutions should be done on your own. Homework will be collected three times a week - Monday, Wednesday and Friday. Please read my *Thoughts on Homework*.

Quizzes: I reserve the right to give quizzes. If given, they will be short in length and cover recent homework problems. They will generally be announced beforehand.

Calculus Help is available at the *Drop In* tutoring sessions.
Session Times: Sunday, Tuesday, and Thursday 7-9 p.m.
Location: Mathematics Common Room, 3rd floor Warner.
Beginning: soon!

Special Needs: If you require special arrangements for class or during tests/exams please talk to me as soon as possible to make such arrangements.
Eligibility: If you have scored a 4 or 5 on the BC Calculus exam you are NOT permitted to take this course, per college regulations. More specifically, we have the following from the Mathematics Department’s website, “Students who have earned grades on advanced placement calculus exams that are eligible for credit may not register for the equivalent course at Middlebury College. Thus students who have earned 4 or 5 on the Calculus AB exam or a 3 on the Calculus BC exam may not register for MATH 0121, students who have earned 4 or 5 on the Calculus BC exam may not register for MATH 0121 or MATH 0122, and students who have earned 4 or 5 on the Statistics exam may not register for MATH 0116. This policy applies irrespective of whether students choose to use their AP credits toward meeting Middlebury’s graduation requirements. The following international credentials carry the same credit as a 4 or 5 on the Calculus BC Exam: A-level exam with a mathematics grade of A, B, or C; or IB Higher Level Mathematics with a grade of 6 or 7.”

Grading Percentages:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework/Quizzes</td>
<td>10</td>
</tr>
<tr>
<td>Three midterms</td>
<td>60 (20 each)</td>
</tr>
<tr>
<td>Final</td>
<td>30</td>
</tr>
</tbody>
</table>

Assignment of Grades:

The assignment of grades will follow the scheme below.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 and above</td>
<td>A</td>
</tr>
<tr>
<td>80 - 89</td>
<td>B</td>
</tr>
<tr>
<td>70 - 79</td>
<td>C</td>
</tr>
<tr>
<td>60 - 69</td>
<td>D</td>
</tr>
<tr>
<td>below 60</td>
<td>F</td>
</tr>
</tbody>
</table>

Plus and minus will be assigned at the end of the course. The two lowest homework scores will be dropped from consideration.

Midterm Exams: Tentative Schedule:
Thursday, October 3
Thursday, October 17
Thursday, November 14

Final Exam: Wednesday, December 11th 9am–12pm. The final exam will be given ONLY at the assigned time – please plan accordingly.

Absences: Please see me as far in advance as possible for absences that will occur on the day of an exam. Any such absences, or unforeseen ones, must be documented in writing by the appropriate person.

Honor Code: The Middlebury College Honor Code will be observed throughout this class and for all examinations. If you have a question about how the Honor Code applies to this class please ask.
Course Webpage: Problem sets, syllabi, practice exams and other relevant material will be posted on a course website, available by linking from my homepage: http://community.middlebury.edu/~jschmitt/.
Calculus II - Course Content

1. Review
 • The Fundamental Theorem of Calculus

2. Transcendental Functions
 • The Logarithm Defined as an Integral
 • Derivatives of Inverse Functions and Logarithm
 • Exponential Growth and Decay
 • Relative Rates of Growth
 • Inverse Trigonometric Functions

3. Techniques of Integration
 • Basic Integration Formulas
 • Integration by Parts
 • Improper Integrals

4. Infinite Sequences and Series
 • Sequences
 • Infinite Series
 • The Integral Test
 • Comparison Tests
 • The Ratio and Root Tests
 • Alternating Series, Absolute and Conditional Convergence
 • Power Series
 • Taylor and Maclaurin Series
 • Convergence of Taylor Series; Error Estimates
 • Applications of Power Series

5. Parametric Equations
 • Calculus with Parametric Curves

6. Differential Equations
 • Slope Fields and Separable Differential Equations
• First-Order Linear Differential Equations
• Graphical Solutions of Autonomous Equations
• Applications of First-Order Differential Equations
• Series Solutions of Differential Equations
Table 1: Below is a fairly accurate schedule for the topics we will cover, and exam dates. These may change, if need be; there are times when flexibility in scheduling is important. I will do my best to warn you of changes. Note that sections 6.2* – 6.4* are different than 6.2 – 6.4.

<table>
<thead>
<tr>
<th>Week beginning</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 9</td>
<td>Intro. IVT, MVT, Limits, Derivative of a function</td>
<td>4.3 Fundamental Theorem of Calculus</td>
<td>6.1 Inverse Functions</td>
<td>6.2* The Natural Logarithmic Function</td>
<td></td>
</tr>
<tr>
<td>September 16</td>
<td>6.3* Natural Exponential Function</td>
<td>6.4* General Logarithmic and Exponential Functions</td>
<td>6.5 Exponential Growth and Decay</td>
<td>6.6 Inverse Trigonometric Functions</td>
<td></td>
</tr>
<tr>
<td>September 23</td>
<td>6.8 Indeterminate Forms and L’Hopital’s Rule</td>
<td>Continued</td>
<td>7.1 Integration by Parts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 30</td>
<td>7.2 Trigonometric Integrals</td>
<td></td>
<td>EXAM thru 6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 7</td>
<td>7.4 Partial Fractions</td>
<td></td>
<td>7.8 Improper integrals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 14</td>
<td>11.1 Sequences</td>
<td></td>
<td>EXAM on Chapter 7</td>
<td>11.1 Sequences</td>
<td></td>
</tr>
<tr>
<td>October 21</td>
<td>Fall Recess</td>
<td>Fall Recess</td>
<td>11.2 Series</td>
<td>11.3 The Integral Test</td>
<td>11.4 The Comparison Test</td>
</tr>
<tr>
<td>October 28</td>
<td>11.5 Alternating Series</td>
<td>11.6 Abs. Convergence, Ratio and Root test</td>
<td>11.8 Power Series</td>
<td>11.9 Representations</td>
<td></td>
</tr>
<tr>
<td>November 4</td>
<td>11.10 Taylor and Maclaurin Series</td>
<td>11.10</td>
<td>11.11 Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 11</td>
<td>11.7 Strategy</td>
<td></td>
<td>EXAM on Chapter 11</td>
<td>10.1 Parametric Equations</td>
<td></td>
</tr>
<tr>
<td>November 18</td>
<td>10.2 Calculus of Parametric Curves</td>
<td>9.1 Differential Equations</td>
<td></td>
<td>9.2 Direction Fields</td>
<td></td>
</tr>
<tr>
<td>November 25</td>
<td>9.3 Separable Equations</td>
<td>Recess for Thanksgiving</td>
<td>No Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 2</td>
<td>9.4 Population Growth</td>
<td>9.5 Linear Equations</td>
<td>9.6 Predator-Prey Systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>