Mass spectrometric 3He measurement in 4He-rich phases: Techniques and limitations for cosmogenic 3He dating of zircon, apatite, and titanite

William H. Amidon and Kenneth A. Farley
Geological and Planetary Sciences Division, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA (wamidon@gps.caltech.edu)

Recent calibration studies have expanded the range of target minerals suitable for cosmogenic 3He dating to include U and Th-rich phases such as zircon, apatite, and titanite. These minerals often contain large amounts of radiogenic 4He that present several analytical challenges for precise and accurate 3He determinations. In this paper we document the abundance sensitivity and changes in the absolute sensitivity and time evolution of the 3He signal over a wide range of 4He pressures in a MAP 215-50 noble gas mass spectrometer. Large (>50%) decreases in sensitivity with 4He amount arising from space charge effects were observed but can be corrected for using an isotope dilution–like technique in which 3He spike is added to a sample midway through the mass spectrometric analysis. Large amounts of 4He also cause the time evolution of the 3He signal to become steeper, degrading precision of the initial peak height determination from the intercept. Taken together we find that these effects preclude reliable analysis of samples with 4He $>$ 1 μmol and that 3He/4He ratios of greater than \sim5 \times 10$^{-10}$ are required to routinely measure 3He to better than 20% precision. We present some general considerations by which to assess the probability of success of measuring cosmogenic 3He in these phases as a function of elevation, exposure age, and helium cooling age.

1. Introduction

Cosmogenic dating is a widely used tool for establishing exposure histories of both terrestrial and extraterrestrial surfaces. Because of its nuclear stability, high production rate from most target elements, and relative ease of measurement, 3He is a particularly attractive nuclide for these studies. Efforts have been made to develop a diverse family of minerals amenable to cosmogenic 3He dating; for example, cosmogenic 3He production rates in apatite, zircon and titanite were recently determined [Amidon et al., 2008, 2009; Farley et al., 2006]. These particular minerals are ubiquitous on Earth and are therefore appealing dating targets, but they present a unique analytical challenge because they...
often carry extremely high ^4He concentrations from U and Th decay. For several reasons such high concentrations can reduce the accuracy and precision of ^3He measurements. In this paper we document how high ^4He abundances degrade mass spectrometric ^3He measurements and present approaches by which to minimize these negative consequences. Ultimately the utility of these mineral phases for cosmogenic ^3He dating will hinge on the long-term geological history of the sample. Most notably, samples with old (U/Th)-^4He ages may not be suitable for cosmogenic ^3He dating due to excessively high ^4He contents. Based on these considerations we present constraints on the range of geological settings in which cosmogenic ^3He dating of apatite, zircon and titanite is likely to be successful.

[3] The presence of spallation produced cosmogenic ^3He in terrestrial samples was first recognized by researchers who had been focusing on measuring the trapped magmatic He component in olivine and pyroxene [Craig and Poreda, 1986; Kurz, 1986; Lal, 1987]. As a result, early applications of cosmogenic ^3He dating focused on olivine and pyroxene, and only recently has attention extended to more diverse mineral phases such as zircon, apatite, titanite, garnet, and Fe-Ti oxides [Amidon et al., 2008; Farley et al., 2006; Gayer et al., 2004; Kober et al., 2005; Margerison et al., 2005]. Of these, the production rates in zircon and apatite are the best calibrated (against both ^{10}Be and ^{14}C), giving production rates of ~ 103 and 133 at $\text{g}^{-1}\text{a}^{-1}$, respectively [Amidon and Farley, 2010]. However, most of these calibration studies were performed on samples with (U/Th)-^4He ages of $<6\text{Ma}$, which accordingly have relatively low concentrations of radiogenic ^4He. As the technique is applied more widely, the range of (U/Th)-^4He ages (a proxy for radiogenic ^4He), and exposure ages (a proxy for ^3He) that combine to give routinely measurable $^3\text{He}/^4\text{He}$ ratios must be defined.

[5] Helium extraction is performed by thermal degassing in a double-walled resistance furnace or by Nd-YAG laser heating of sample loaded in a platinum packet. In the resistance furnace, samples are heated to 1500°C for 20min following standard procedures [Patterson and Farley, 1998]. However, in many cases a variant of the laser method developed for (U/Th)-^4He dating is preferred because grains can be recovered after He outgassing for additional analyses or to demonstrate sample purity [House et al., 2000]. For cosmogenic dating, large ($6\times3\text{mm}$) platinum tubes are used, which can typically accommodate up to 35mg of zircon or 25mg of apatite. Previously degassed capsules are loaded with sample and placed into wells in a copper planchet. To minimize thermal conduction to the copper, the capsules are placed on top of small lengths of tungsten wire. The capsules are heated to about 1200°C by rastering the laser beam across the surface of the capsule for $\sim 30\text{min}$. Although the exact temperature achieved by each sample is not monitored, complete degassing is verified by reextraction steps at the same temperature. Blanks obtained by lasing empty packets are indistinguishable from procedural blanks (i.e., the same gas handling procedure without lasing), and are typically $\sim 5\times10^{-6}$ fmoI of ^3He and ~ 3.3 fmoI of ^4He. In no cases were analyses limited by background counts or “dark noise,” which was monitored at mass 2.7 in ten cycles totaling 100~s during each analysis. No background counts were recorded during any of the analyses, placing an upper limit of 0.001cps on this signal.

[6] Following extraction, the evolved gas is exposed to a hot SAES getter and expanded into a $\sim 1.5\text{L}$ expansion volume. A $\sim 1\%$ aliquot is then analyzed in a Pfeiffer Prisma quadrupole mass spectrometer to obtain a ^4He measurement [Wolf et al., 1996]. The remainder of the He is cryogenically focused and released into a MAP 215-50 magnetic sector mass spectrometer. This instrument uses a Nier-type
electron impact ion source, and measures the resulting ion signal by peak jumping between a Channeltron electron multiplier operated in pulse counting mode for 3He and a Faraday cup with 10^{11} Ω resistor for 4He. Most of the ~ 45 min sample collection time is devoted to counting 3He ions using 30 s integrations and 600 s blocks. Measurements of the 4He peak, as well as off-peak masses 2.7 and 3.2 are made for 30 s each between 3He collection cycles.

Simultaneous with this analysis, an aliquot of the “Murdering Mudpot” (MM) standard (16.45 Ra; ~ 2.31 pmol of 4He) is prepared in the extraction line for use as an isotope dilution spike. The Murdering Mudpot standard was prepared from gas captured from a volcanic vent in Yellowstone National Park, Wyoming, U.S.A. After ~ 45 min of data acquisition on the sample this spike is introduced into the mass spectrometer. This results in a large increase in the 3He signal without a significant change in the amount of 4He or in sensitivity. This step allows the in-run 3He sensitivity to be determined by fitting one regression line to the prespike 3He data, and another to the postspike data. The linear fit applied to the prespike data is used to estimate the 3He signal derived from the sample at time zero, and also to make a forward prediction of the signal generated by the sample at the time of the spike inlet. A second line is then fit to the postspike data, and is used to predict the combined signal from the sample and spike immediately after spike introduction. The difference between these two values is the net signal resulting from the 3He in the spike, and is divided by the known amount of 3He in the spike to estimate the 3He sensitivity for each individual analysis.

Calculation of the 3He sensitivity (cps/ppm STP) by the spiking method is summarized by:

$$1^3\text{He Sensitivity} = (B_{\text{post}} - (m_{\text{pre}} \times T_{\text{spike}} + B_{\text{pre, spike}}))/[^3\text{He std}]$$

where B_{post} denotes the beam intensity at the spike time (cps) extrapolated from a linear fit to the postspike data, m_{pre} denotes the slope of the prespike data (cps/s), T_{spike} denotes the spike time (seconds), and $B_{\text{pre, spike}}$ denotes the intercept of the prespike data (cps), and $[^3\text{He std}]$ denotes the amount of 3He in the standard (ppm STP).

Upon completion of the measurement, the mass spectrometer inlet valve is opened and the helium gas back-pumped to a turbomolecular pump. This step prevents exposure of the mass spectrometer ion pump to large amounts of 4He, which we observed to become a source of 4He following repeated exposure.

3. Determining Instrument Sensitivity

The accuracy of the spiking technique was demonstrated by analyzing a series of 14 aliquots of the Caltech “Air” standard (3He/4He ratio of 2.05 Ra; ~ 4.4 pmol of 4He) using this method. As shown in Figure 1, the sensitivity calculated from the mean of the 14 Air standards agrees to within 2% of the mean sensitivity computed from the 14 MM standard spikes. Likewise, the mean deviation between pairs of sensitivities computed by the Air and MM standards in a single analysis is $\sim 2\%$. The 3He sensitivities calculated from the 14 replicate MM spikes have a standard deviation of 1.3%, lower than the 3.5% for the replicate Air standards because the larger 3He signal derived from the MM standard reduces the counting statistics error.

It is necessary to spike our analyses because large amounts of 4He result in space charge effects that lead to decreases in the sensitivity of the mass spectrometer. Figure 2 shows a compilation of 3He sensitivities obtained for various amounts of 4He under various tuning conditions over a several year period.

![Figure 1.](image.png)

Figure 1. Results of 14 replicate standard analyses demonstrating that instrument sensitivity can be reliably determined by an isotope dilution approach. Shaded symbols denote instrument sensitivities determined by running the “Air” standard (3He/4He ratio of 2.05 Ra; ~ 4.4 pmol of 4He) in the normal fashion. Solid symbols denote sensitivities determined by spiking the same “Air” standard with an aliquot of the “MM” standard (3He/4He ratio of 16.45 Ra; ~ 2.31 pmol of 4He) midway through the analysis.
period that unambiguously document this effect. Although sensitivities up to ~13.5 kcps/fmol 3He can be obtained by setting the trap current to 500 μA, the maximum 3He sensitivity decreases rapidly with increasing 4He amount. In contrast, when operated at a trap current of 150 μA, the sensitivity decreases much more slowly with increasing 4He. It has been shown previously that the highest sensitivity is typically achieved near the 4He pressure at which the mass spectrometer is tuned [Burnard and Farley, 2000]. Our data agree with this result, and it is thus possible that higher sensitivities can be obtained for high-4He analyses at 500 μA by tuning the instrument at higher 4He pressures.

4. Measurement of Low 3He/4He Ratios

The feasibility of accurately measuring cosmogenic 3He in high-4He phases depends on the 3He/4He ratio of the mineral. For minerals with extremely low 3He/4He ratios ($\ll 10^{-3}$), generating a measurable 3He signal often requires introduction of very large amounts of 4He that may cause electrical arcing (electrical discharge through a gas) between the high-voltage plates of the ion source or cause measurable tailing of the 4He peak (or the HD peak) onto the 3He peak.

The potential for arcing imposes a “technical” limit on the measurable 3He/4He ratio that can be estimated by combining estimates of the effective detection limit for 3He with the 4He pressure at which arcing is expected. Assuming a plate spacing of about 5 mm and a voltage difference of ~ 4 kV in the ion source, the Paschen equation [Hartmann et al., 2000] indicates electrical discharge will occur at about 4 mbar He pressure. Given a volume of about 1 L in the MAP flight tube, this pressure corresponds to about ~0.2 μmol ($\approx 10^{17}$ atoms) of 4He. Assuming a detection limit of 1 cps of 3He and a sensitivity of 2.3 kcps/fmol 3He (Figure 2), the absolute detection limit for 3He at high 4He pressure is ~ 3.7 fmol ($\sim 1 \times 10^5$ atoms). Combining these two values gives the lowest 3He/4He ratio at which 3He can be accurately detected: about 1×10^{-12}. Attempts to measure 3He in gas with a lower 3He/4He ratio would either yield a 3He beam too small to accurately quantify, or amounts of 4He so large that arcing would occur.

Above this technical limit, the lowest measurable 3He/4He ratio is governed by the abundance sensitivity of the mass spectrometer as a function of the 4He amount. In this discussion, we take abundance sensitivity to be defined as the fraction of 4He atoms that fall on mass 3 during measurement of a pure 4He beam. For example, an abundance sensitivity of 10^{-10} implies that 10^{10} atoms of 4He are introduced to the mass spectrometer, an average of one of those 4He atoms falls on mass 3. Importantly, the abundance sensitivity is a function of the slit widths, which at Caltech and in other labs are commonly spaced to give a mass resolution ($\Delta M/M$) of ~ 600 (relative to 10% peak height) for the MAP 215-50 instrument.

To constrain this characteristic for the MAP 215-50, we used a sample of cosmic ray shielded thorianite (ThO$_2$) from Andalobe, Madagascar as a source of nearly pure 4He. Thorianite was selected for its high 4He production rate relative to other nuclear reactions (e.g., 6Li(n, α)3H) and because unlike 238U, 232Th does not undergo ternary fission, and therefore does not produce 3He via fission. We established the 3He/4He ratio of the thorianite by running incrementally larger aliquots of He until a measurable 3He signal was obtained. To ensure that no 4He ions or HD ions were tailing onto mass 3 during these experiments, the ion count rate at mass 3.2 was monitored during the analysis and mass scans were performed immediately following the analysis (Figure 3). Because 3He measurements were close to blank level the measured 3He/4He ratios have large errors. Nonetheless, four replicate analyses suggest the thorianite has a 3He/4He ratio of $0.54 \times 10^{-10} \pm 0.17 \times 10^{-10}$ (1σ) (Table 1). This value places on an upper
limit on the abundance sensitivity of the MAP 215-50, which must be lower than $\sim 0.54 \times 10^{-10}$ at ^4He amounts near 0.5 nmol.

[16] Next, we analyzed successively larger aliquots of the thorianite-derived gas, monitoring mass 3.2 during each analysis to detect scattered ^4He ions. The presence of scattered ^4He ions at mass 3.2 was first detected at a ^4He amount of ~ 1.16 nmol ($\sim 7 \times 10^{14}$ atoms). Mass scans up to 3.6 AMU demonstrate conclusively that the measured signal at mass 3.2 is due to tailing of the ^4He peak (Figure 3).

Although the onset of detectable ^4He scattering appears abrupt, the limited number of experiments performed here are insufficient to determine whether the scattering results from self-similar growth of the ^4He peak, or from a change in the ^4He peak shape at higher pressures. Likewise, further experiments are required to determine how the threshold for severe ^4He tailing may change under different tuning conditions, although ~ 1.16 nmol ($\sim 7 \times 10^{14}$ atoms) should provide a reasonable estimate for typical operating conditions.

5. Precision of ^3He Measurements

[17] A major factor controlling the precision of the ^3He concentration is the need to make a series of time-resolved ^3He measurements that document ion consumption and/or liberation of ^3He from surfaces within the mass spectrometer. These factors are usually eliminated by regressing the temporal evolution of the ^3He peak height to the time of inlet. The ^3He count rate typically decreases with time at very low ^4He amounts due to the consumption of ions. At high ^4He amounts, ^3He count rates typically increase with time due to scrubbing of ^3He atoms from the surfaces of the ionization chamber and detector by collisions with ^4He atoms. In almost all cases we find that ^3He count rate is a linear function of time justifying our use of linear regression techniques. Our experimental data show that the rise rate of the ^3He signal correlates with the amount of ^4He in the mass spectrometer (Figure 4).

[18] The uncertainty on the intercept of the ^3He evolution array increases as the slope of the line becomes steeper. Because the amount of ^4He exerts the strongest control on the slope of the array, the precision with which low ^3He signals can be determined depends on the amount of ^4He present. However, because the positive slope results from ^3He ions from previous samples implanted into the mass spectrometer (i.e., “memory”), this effect may

<table>
<thead>
<tr>
<th>Table 1. Thorianite Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass 3 (amol)</td>
</tr>
<tr>
<td>TH1</td>
</tr>
<tr>
<td>TH2</td>
</tr>
<tr>
<td>TH3</td>
</tr>
<tr>
<td>TH4</td>
</tr>
<tr>
<td>Mean</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observed Tailing of ^4He Onto Mass 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH5</td>
</tr>
<tr>
<td>TH6</td>
</tr>
<tr>
<td>TH7</td>
</tr>
<tr>
<td>TH8</td>
</tr>
</tbody>
</table>

Figure 3. Mass scans performed on helium gas derived from a shielded thorianite sample. Samples with ~ 0.2 nmol of ^4He do not show tailing of ^3He ions onto mass 3, whereas samples with ~ 1.7 nmol of ^4He show significant tailing on this mass. The inset shows results of the same mass scan over a larger mass range, clearly demonstrating tailing of the ^4He peak.
be lower in instruments with limited exposure to 3He. This concept is evidenced by the two clusters of data points plotted at >0.5 nmol 4He in Figure 4, which were collected at different times and plot on different trajectories due to different memory effects at the time of analysis. The total least squares regression line shown in Figure 4 is fit through all data points at <0.5 nmol 4He and through only the “lower memory” cluster (unfilled symbols) at >0.5 nmol 4He.

To illustrate the approximate tradeoffs between slope and 3He precision, we performed a Monte Carlo simulation in which a series of synthetic data sets (time versus 3He counts) were produced for a range of 3He signals from 0.5 to 3 cps. The first step was to determine the standard deviation of 18 actual data sets with negligible temporal evolution in 3He. These standard deviations are plotted against 3He beam size (cps) in Figure 5 and agree well with the standard deviations predicted from counting statistics. Synthetic data sets (time versus 3He cps) with zero slope were then randomly created for 0.5, 1, 2, and 3 cps, each with a standard deviation predicted by counting statistics. Slopes of 0.001 to 0.01 (cps s$^{-1}$) were then applied to each synthetic data set and the uncertainty of the intercept determined for each slope. This process was repeated 500 times, and the mean uncertainty for each combination of signal intensity and slope was computed. The results (Figure 5) show that the error on the intercept is most sensitive to slope when the 3He signal is <=1 cps.

6. Discussion

[20] The considerations described above define a minimum 3He/4He ratio above which 3He in a sample can be reliably measured. The onset of severe tailing of the 4He peak onto the 3He peak occurs at ~1.16 nmol of 4He (~7 x 1014 atoms), at which point the highest achievable 3He sensitivity is near 2.3 kcps/fmol. At this sensitivity ~5.02 fmol (~135,000 atoms) of 3He are required to generate a measurable signal of 0.5 cps, corresponding to a minimum measurable 3He/4He ratio of ~2 x 10$^{-10}$. Under typical operating conditions, a single analysis of a sample with a 3He/4He ratio of ~2 x 10$^{-10}$ would be subject to an uncertainty of about 75%. However, because counting statistics scale as the square root of the counts, this uncertainty decreases rapidly as the 3He/4He ratio increases and the achievable 3He cps rise above 0.5 cps.

[21] The lowest achievable uncertainty for a given 3He/4He ratio is determined by the 3He count rate and the slope of the time versus 3He array. As described above, these variables are determined by the sample size (i.e., the amount of 4He released from the sample) and the instrument sensitivity. An inherent tradeoff exists when considering the...
The minimum \(^3\)He versus time relationship for a given \(^4\)He amount is taken from the fit to observed data shown by the line in Figure 4 and described above. The uncertainty as a function of slope and \(^3\)He signal intensity is taken from the Monte Carlo calculations shown in Figure 5. For each \(^3\)He/\(^4\)He ratio, an iterative search is then performed for the \(^4\)He amount (a proxy for sample mass), that gives the lowest uncertainty for that \(^3\)He/\(^4\)He ratio while also giving at least 0.5 cps of \(^3\)He signal and less than 1.16 nmol of \(^4\)He. Results in Figure 6 show that uncertainties of <20% (on a single analysis) can be routinely achieved for samples with \(^3\)He/\(^4\)He ratios above \(\sim 5 \times 10^{-10}\). For all measurable \(^3\)He/\(^4\)He ratios, the lowest error is always achieved by running the largest sample possible. In other words, the reduction in counting statistics error associated with running a larger sample always outweighs the added uncertainty introduced by steeper slopes of the \(^3\)He versus time array. However, for any sample with a \(^3\)He/\(^4\)He ratio \(>8 \times 10^{-9}\) running the maximum sample size (i.e., approaching the threshold for \(^4\)He tailing) yields a precision of less than 1%. Thus, as the \(^3\)He/\(^4\)He ratio increases above a value of \(\sim 8 \times 10^{-9}\), proportionally smaller samples can be analyzed while still obtaining a 1% analytical precision. This calculation was repeated using a linear fit to the “high memory” points (filled symbols at >0.5 nmol \(^4\)He) in Figure 4, and although errors were slightly higher in this case, the minimum error was still obtained by analyzing the largest sample possible in all cases.

[23] The minimum \(^3\)He/\(^4\)He ratio that can be routinely measured \((\sim 2 \times 10^{-10})\) places fundamental limitations on the geological contexts within which cosmogenic \(^3\)He dating is possible inapatite, titanite and zircon. Because \(^9\)Be is produced from radioactive decay of \(^9\)Be and \(^9\)Be, the \(^4\)He concentration in a mineral is a function of \(^9\)Be and \(^9\)Be concentration and \(^4\)He close age. The latter depends on both sample cooling history and on the mineral’s \(^4\)He diffusivity. The closure temperatures of the accessory phases considered here are \(\sim 70\)°C forapatite and about \(\sim 180\)°C for both zircon and titanite. \(^3\)He is produced via two distinct pathways: (1) cosmic ray neutron-induced spallation in the near surface and (2) low-energy neutron capture on \(^6\)Li in both the near-surface and subsurface [Amidon et al., 2008; Farley et al., 2006]. For the purpose of this discussion, we will assume that production via Li can be ignored noting that the details of production from \(^6\)Li have been discussed elsewhere [Amidon et al., 2008; Dunai et al., 2007;

Figure 6. (top) The lowest analytical precision that can be achieved for a given \(^3\)He/\(^4\)He ratio (black line) as determined by the Monte Carlo calculations described in section 5. The lowest precision is always achieved by running the largest possible sample size, corresponding to the plotted \(^3\)He signal (gray line). (bottom) The evolution of \(^3\)He/\(^4\)He ratios as a function of sample exposure age for a unique combination of (U-Th)/He closure age and effective U (eU) content. Note that the lines will shift up or down linearly for sample locations with higher or lower cosmogenic \(^3\)He production rates, respectively. Shaded bands represent the approximate uncertainty with which \(^3\)He can be determined on a single analysis of a sample with the given \(^3\)He/\(^4\)He ratio assuming a relatively small “memory” effect as discussed in section 5.

Table 1. Minimum \(^3\)He sensitivity for 2.3 kcps/fmol for all analyses.

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>(^3)He Signal</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>(>0.5) nmol</td>
<td>(<0.1)%</td>
</tr>
<tr>
<td>Small</td>
<td>(0.25) nmol</td>
<td>(>0.5)%</td>
</tr>
</tbody>
</table>

7 of 9
Farley et al., 2006]. The amount of 3He present in a sample is then a function of the local spallation production rate and the exposure age. For any given mineral, spallation production rates increase exponentially with increasing elevation and can decrease by as much as 50% from the poles to the equator [Lal and Peters, 1967]. As a consequence of these factors, high 3He/4He ratios are expected in samples with young 4He closure ages exposed at high elevations (e.g., a 100 ka ignimbrite erupted at 5000 m in Bolivia) for long time periods, whereas low 3He/4He ratios are expected from samples with old 4He closure ages exposed at lower elevations for shorter periods (e.g., a Holocene landslide deposit in coastal Australia).

[24] The trade-offs between exposure age and (U-Th)/4He closure age on the precision of the 3He determination are illustrated in Figure 6, which shows the expected 3He/4He ratio for apatite as a function of its cosmogenic exposure age, closure age and effective U (eU) content (defined as: $[eU] = [U] + 0.235[Th]$) [Shuster et al., 2006]. Figure 6 allows the user to make a rough calculation of the expected 3He/4He ratio in minerals from a variety of geologic contexts. Each curved line represents the evolution of the 3He/4He ratio for a unique multiple of the closure age (Ga) and eU content (ppm). Overlain on the lines of constant eU*age are shaded bands that correspond to the approximate exposure age with which a single analysis of the given 3He/4He ratio can be performed. For comparison, we have plotted samples from the following geologic contexts: Tioga-aged (~18 ka) moraines from the Sierra Nevada (W. Amidon, unpublished data, 2009), metametasedimentary rocks from moraines in the Nepal Himalaya [Amidon et al., 2008], rhyolite surfaces from Coso, California [Amidon et al., 2009] and Twin Falls, Idaho [Amidon and Farley, 2010]. It is important to note that the lines of constant eU*age in Figure 6 are generated using a sea level high-latitude production rate of 133 at g$^{-1}$ a$^{-1}$ and a scaling factor 2.15. For minerals with different production rates or different scaling factors, these lines will scale linearly up or down in 3He/4He space. Likewise, the analysis of multiple aliquots of the same sample can greatly improve the precision of the 3He measurement for a given sample.

[25] Based on the above considerations, it is useful to consider which mineral phases are best suited for cosmogenic 3He dating in different geologic contexts. For example, because apatite has a lower 4He closure temperature, lower eU content, and higher cosmogenic 3He production rate, it often contains 3He/4He ratios that are 5–50 times higher than zircons from the same rock [Amidon et al., 2008, 2009]. This means that apatite is the preferred mineral to work with in geological terranes with (U-Th)/4He ages >50 Ma. However, purifying large quantities of zircon or titanite is typically easier than purifying apatite because of their higher abundance and because strong acids can be used during purification. Large samples are a great benefit because more large unbroken grains are available, and because replicate samples can be run to improve the precision. Additionally, zircon tends to survive much better in fluvial and marine environments, making it an obvious choice for detrital studies.

7. Conclusions

[26] Recent calibration studies have shown that apatite, zircon and titanite are suitable phases for cosmogenic 3He dating. However, the precision and accuracy with which 3He can be measured in these phases may be limited by the potentially large amount of 4He from the decay of U and Th over geologic time. Based on the characteristics of a typical MAP 215–50 noble gas mass spectrometer, we conclude that the lowest 3He/4He ratio that can be routinely measured is $\sim 2 \times 10^{-10}$. Ratios higher than 5×10^{-10} are required to achieve a precision of better than 20% on a single analysis. These constraints arise from the need to generate a 3He signal of >0.5 count per second, while not exceeding a threshold 4He concentration of ~ 1.16 nmol of 4He at which point tailing of the 4He peak begins to compromise the 3He measurement. While a broad range of (U-Th)/4He closure ages and exposure histories will produce mineral phases with 3He/4He ratios $>5 \times 10^{-10}$, there are limitations to applications of cosmogenic 3He dating in apatite, zircon, or titanite in geological terranes with (U-Th)/4He closure ages >50 Ma, exposure ages of <5 ka, or at sites very close to sea level.

Acknowledgments

[27] This manuscript benefited greatly from reviews by Rainer Wieler and two anonymous reviewers. This work was supported by NSF–EAR 0921295.

References

