Chapter 9

Recursion

In this chapter we introduce you to the very powerful programming technique of recursion. So far
the only ways we have seen to perform repetitive tasks have involved loops. While iterative con-
structs are very important for programming, recursion is in many ways a more powerful technique
for solving certain types of complex problems.

A key idea in designing a program to solve a complex problem is to break the complex problem
into simpler problems, solve the simpler problems, and then assemble the final answer from these
simpler pieces. An important reason for writing methods is to provide conceptually simple opera-
tions (even if their implementations might be quite complex) to be used in solving more complex
problems. Examples of this that we have seen so far in this book include . ..

The key idea involved in recursive algorithms is to fashion a solution to a complex problem by
solving one or more simpler versions of the same problem, and then using those to complete the
solution to the more complex version of the problem.

Here is a simple example. Suppose we are given a large stack of student papers and are told
to arrange them alphabetically by the student’s name. One strategy might be to first separate the
papers into two piles, where the first pile has student names from the first half of the alphabet and
the second has student names from the second half. If we (or better yet, an assistant) sort each of
these smaller piles separately, then we can arrange all of the papers alphabetically by taking the
stack with the first half of the alphabet and placing it on the stack with the second half of the
alphabet.

This seems like a perfectly sensible way of arranging the papers, but it leaves open one critical
problem. After separating the papers into two piles, how do we sort each of those? While we could
come up with some alternative procedure to sort these smaller stacks, the most straightforward
way of proceeding is to sort them using the same algorithm. That is, separate those into two piles,
where the first pile has the names from the first half of those names in the pile (e.g., the first quarter
of the alphabet when we are dealing with the first of our piles) and the second has the rest (e.g.,
the second quarter of the alphabet).

In other words, when we get someone to sort the smaller piles, we get them to use the same
algorithm or set of instructions as we used with the bigger piles. In particular, they divide their piles
in half alphabetically according to the range of names in their piles, sort each of those (presumably
by each getting two more assistants to help each of them) and then put the piles on top of each
other in the right order. A method in Java written in this style that results in other calls to the
same set of instructions (i.e, the same method) is said to be recursive, and the call to the same
method is said to be a recursive call.

We are still left with one problem. At some point it will no longer be possible to divide the
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stacks in half because there will be at most one element left in the stack. Luckily that is an easy
case to handle. Just leave the stack (of either 0 or 1 papers) there and declare it to be sorted — after
all, all the paper(s) in the (trivial) stack are in alphabetical order. As we will see later, it is very
important that every recursive method have a way of stopping — in particular, that it eventually
gets to a case where there is no recursive call.

We can write our algorithm quite succinctly:

To arrange papers in order from pile:

if there is more than 1 paper to be arranged then
place the papers into two piles,
one, pilel, with all papers from the lowest names in the range of
names in the stack
the other, pile2, with all the papers from the highest names

arrange papers in order from pilel

arrange papers in order from pile2

finish by placing the first stack on top of the second stack
else (there is at most 1 paper left)

don’t do anything -- the papers are already in the proper order.

The thing that makes this algorithm recursive is that in the middle of the algorithm it indicates
that the same set of instructions should be followed on other inputs; in this case, the two smaller
piles of papers. It is worth noting that we made no commitment as to who should perform these
operations on the smaller piles of papers. It is convenient to think that there are assistants available
who would be handed the smaller piles of papers and a copy of the above instructions and who could
perform the task. Of course if such assistants are not available, then whoever started executing the
task could also do the similar tasks on the smaller piles as long as they remembered where they
were in the original instructions when they finished the smaller task.

To test your understanding of this algorithm, get a stack of 8 notecards and write the letters
of the alphabet from “A” to “H” on them. Shuffle the cards and now use the algorithm above to
arrange them in order. Have assistants do the arranging of cards in smaller stacks. If assistants
are not available you’ll have to arrange the smaller stacks in order by following the instructions
yourself.

9.1 Graphic problems using recursion

We find it convenient to illustrate the ideas of recursion by starting with some graphical programs.
In this section we will illustrate recursion with three programs that draw and manipulate nested
rectangles, a fractal image, and even broccoli.

9.1.1 Nested rectangles

Our first recursive picture will be quite simple. We will design a class that will draw nested
rectangles of the sort shown in Figure 9.1. Eventually we would like to make these have as many
capabilities as the FramedRect or FilledRect objects from the objectdraw library. For example
we would them to have move and moveTo methods. For now, however, we’ll just be content in being
able to draw them.
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Figure 9.1: Nested rectangles

Because you are used to thinking in terms of loops, you can probably figure out a nice iterative
way of drawing these using a while loop. Here is an example of a constructor for the class
NestedRect that uses a while loop.

// Draw nested rectangles at the given x and y coordinates and
// with the given height and width (both of which must be
// non-negative)
public NestedRect(double x, double y, double width,
double height, DrawingCanvas canvas) {
new FramedRect( x, y, width, height, canvas );
while ( width >= 4 && height >= 4) {
width = width - 4;
height = height - 4;
X =x + 2;
y=y+*2
new FramedRect( x, y, width, height, canvas );

The idea of the constructor is quite simple. First we draw a framed rectangle with the dimensions
passed in to the constructor. Then, as long as the width and height of the rectangle you have drawn
are both greater than or equal to four, adjust the width, height, x, and y coordinates in order to
draw a new smaller rectangle centered inside the one just drawn. We presume the width and height
sent in as parameters are always non-negative, so we always draw the outer rectangle — otherwise
we might not see anything in the picture.

To see how to do this recursively, we need to change our point of view of how we see nested rect-
angles. Instead of drawing them as a series of FramedRects, we instead draw an outer FramedRect
an then, if there is enough space, draw a smaller nested rectangle object inside. See the picture
below in which the outer framed rectangle is drawn lighter than the collection of nested rectangles
inside.
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That is, when we look at pictures as being recursive, we try to find a smaller picture of what
we are looking at as part of the larger picture. Normally we look for the simplest description that
includes the recursive description. In this case, that is a description with a single outer framed
rectangle and a smaller NestedRectangle centered inside. Below is a recursive constructor for
NestedRect that corresponds to this recursive description:

// Draw a nested rectangle at the given x and y coordinates and
// with the given height and width (both of which must be positive)
public NestedRect(double x, double y, double width,
double height, DrawingCanvas canvas) {
new FramedRect( x, y, width, height, canvas );
if ( width >= 4 &% height >= 4) {
new NestedRect (x+2, y+2, width-4, height-4, canvas);

3

}

In this version of the constructor, we first draw the framed rectangle (just as before), but then
if the width and height are both at least four, we go ahead and draw a new nested rectangle in a
position 2 to the right and down from the first one and with width and height both reduced by 4
pixels.

The new constructor is a bit shorter than the iterative version, but that is not really very
important. What is important is that we have a simple description of a nested rectangle as an
outer rectangle with slightly smaller nested rectangle centered inside. This is actually easier to
grasp than a description that forces the programmer to think about executing a while loop some
possibly large number of times.

In the iterative version of the constructor for a nested rectangle, the while loop terminated
when either the width or height was reduced to a value below 4. We need a similar method to
stop a recursive algorithm. In this case, when the width or height passed in as parameters get
to be less than 4, only the outer rectangle is drawn. If we initially start with positive values of
width and height, then each call of the constructor for NestedRect inside the if statement will use
smaller and smaller values for width and height — to be exact, each is 4 units smaller than the
previous. Eventually either the length or width will get a value smaller than 4, the condition in
the if statement will be false, and no more nested rectangles will be drawn.

Let us see what happens when we actually call the constructor. Suppose we evaluate

new NestedRect(10,10,7,9,canvas);

This will result in the execution of
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new FramedRect(10,10,7,9,canvas);

which draws a 7 by 9 rectangle with upper left corner at (10,10). Next the if statement is
evaluated. Because width is 7 and height is 9, the condition is true. Thus we execute:

new NestedRect(12,12,3,5,canvas);

where the new parameters are calculated according to the expressions given in the constructor
call. We start executing at the beginning of the constructor with the new parameters, and hence
evaluate

new NestedRect(12,12,3,5,canvas);

which draws a 3 by 5 rectangle with upper left corner at (12,12). But now when we evaluate
the condition for the if statement, it will be false because the new width, 3, is not >= 4. As a
result the constructor terminates.

In summary, the original call of the constructor ends up drawing two rectangles before conclud-
ing. This is exactly what the iterative constructor would do with the same input, but the style of
writing the recursive version is quite different.

Let’s go on now and think about the next phase of writing a NestedRect class. Suppose we
want to write a method that moves the nested rectangle a given amount on the canvas. In order
to do this we will of course need to associate names with the parts of the nested rectangle.

Because we need to be able to move every FramedRect in a NestedRect object, it may seem
like we need a new name for each FramedRect. This would be a problem because we do not know in
advance how many rectangles will be drawn. However, if we think recursively then we will see that
only two names are necessary. To move a NestedRect object, we simply move the outer rectangle
and then move the inner NestedRect. See Figure 9.2 for the definition of this class with moveTo
and removeFromCanvas methods.

While the original recursive constructor used no instance variables, the new version of the
constructor uses two instance variables. One, outerRect, is a FramedRect variable that names the
outer rectangle. The other, rest, is a NestedRect variable that names the smaller nested rectangle
contained inside outerRect. We say that objects of type NestedRect are recursive data structures
because each of these objects has an instance variable, in this case named rest, of the same type
as the object itself.

If the constructor is provided with either a width or height value that is less than 4 then rest
will not be assigned a value. Thus its value will be null, as all object instance variables are given
a value of null by default. We will use this information to provide a way of stopping the recursion
in methods.

Thus in the moveTo method, we will always move outerRect, but we only move rest if the
value of rest is different from null. That is, we send a move message to rest only if it actually
contains a smaller NestedRect to move. Of course, it is also a good thing that we don’t try to send
a message to rest when it is null, because we would get one of those dreaded null pointer error
messages. However, it is also important because we need the method to eventually terminate.

Here are the details of what happens inside moveTo. First we move the outerRect to the desired
position. If there are any nested rectangles inside (i.e., if rest != null), then we move the rest
to a position 2 units to the right and below the position we moved the outerRect. This ensures
that the rest stays centered inside outerRect.

Other methods for NestedRect have similar structure. We have shown removeFromCanvas as
an example. It operates by removing outerRect from the canvas, and then, if rest is non-null,
removing rest from the canvas.
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public class NestedRect {
FramedRect outerRect; // outermost rectangle in picture
NestedRect rest; // inside nested rect

// Draw nested rectangles at the given x and y coordinates and
// with the given height and width (both of which must be
// non-negative)
public NestedRect(double x, double y, double width,
double height, DrawingCanvas canvas) {
outerRect = new FramedRect( x, y, width, height, canvas );
if ( width >= 4 &% height >= 4) {
rest = new NestedRect(x+2, y+2, width-4,
height-4, canvas);

// Move nested rect to (x,y)
public void moveTo(double x, double y) {
outerRect.moveTo(x,y) ;
if (rest != null) {
rest.moveTo(x+2, y+2);

// Remove the nested rect from the canvas
public void removeFromCanvas() {
outerRect.removeFromCanvas () ;
if (rest !'= null) {
rest.removeFromCanvas() ;

Figure 9.2: Recursive version of NestedRect class.



9.1. GRAPHIC PROBLEMS USING RECURSION 171

It should be clear that the methods of NestedRect have a structure which is based on the
recursive structure of objects from the class. That is, they do what is necessary to outerRect and
then, if rest != null, they call the method recursively on rest (though possibly with slightly
different parameters).

Of course, not all methods have that shape. For example, if we were to add a contains
method for NestedRect, we would simply check to see if the Location parameter were contained
in outerRect, as any point contained in the nested rectangles is contained in outerRect. However,
most methods will follow the recursive structure of the objects.

Exercise 9.1.1 1. Add methods setColor and move to the recursive version of NestedRect. If
we were to also add a method getColor, why wouldn’t it have to be recursive as well?

2. Write a class extending WindowController that draws a NestedRect object when the mouse
button is pressed, drags it around the screen when the mouse is dragged, and removes it from
the screen when the mouse button is released.

An iterative version of NestedRect !

By way of contrast, let’s take a quick look at an iterative version of nested rectangles. One
difficulty that we run into immediately is that we need to know how many rectangles will be drawn
so that we can give names to each of them. Unfortunately, because the number of rectangles drawn
depends on the values of the height and width, we cannot know when we write the class how many
framed rectangles will be needed.

When the height and width of the NestedRect are large, there will be many rectangles drawn.
Because of this and the fact that we don’t know in advance how many rectangles will be needed,
it makes more sense to consider storing these rectangles in an array, rather than trying to come
up with individual names for each. While we could do some calculations to determine how many
rectangles will be needed when we create the array in the constructor, we will be lazy and simply
assume there will never be more than 50 FramedRectangles needed in drawing a NestedRectangle.

An iterative version of the NestedRect class is provided in Figure 9.3. Both the moveTo and
removeFromCanvas methods require for loops to go through all of the elements of the rects array
and perform the appropriate operations. The code for moveTo is complicated by the fact that
successive framed rects are moved farther and farther.

While the iterative version of NestedRect is not that much more complex than the recursive
version, it does require more support from complex data structures like arrays.

9.1.2 Writing and understanding recursion

Now that we have run through this complete example, let’s step back and see if we can understand
how to write recursive constructors and methods in general. Recursive algorithms always have base
cases and recursive cases. Base cases are those where there is no recursive call, while recursive
cases are those where there is a recursive call of the method or constructor being defined.

We write the constructor or method as follows:

1. Write the “base case”. This is the case where there is no recursive call. Convince yourself
that this works correctly.

2. Write the “recursive case”.

IThis section should be skipped if the reader has not yet covered the chapter on arrays.
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public class NestedRect {
FramedRect[] rects; // Array of nested rectangles
int numRects; // Number of rectangles stored in rects

// Draw nested rectangles at the given x and y coordinates and
// with the given height and width (both of which must be
// non-negative)
public NestedRect(double x, double y, double width,
double height, DrawingCanvas canvas) {
rects = new FramedRect[50];
rects[0] = new FramedRect( x, y, width, height, canvas );
numRects = 1;
while ( width >= 4 && height >= 4) {
X =x + 2;
y=y+2;
width = width - 4;
height = height -4;
numRects++
rects[i] = new FramedRect(x, y, width, height, canvas);

// Move nested rect to (x,y)
public void moveTo(double x, double y) {
for (int count = 0; count < numRects; count++) {
rects[count] .moveTo (x+2*count,y+2*count) ;

// Remove the nested rect from the canvas
public void removeFromCanvas() {
for (int count = 0; count < numRects; count++) {
rects[count] .removeFromCanvas () ;

Figure 9.3: Iterative version of NestedRect class using array.
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e Make sure all recursive calls go to simpler cases than the one you are writing. Make sure
that the simpler cases will eventually get to a base case.

e Make sure that the general case will work properly if all of the recursive calls work
properly.

Let’s examine this advice in light of the NestedRect example. We first look at the constructor.
The base case here is when either the width or height is less than 4. If so, the constructor creates
the FramedRect for outer and leaves rest with the value null because the condition for the if
statement is false. This is the correct behavior for the constructor because if the width or height
is less than 4 there is only room for one rectangle in the picture.

The recursive case occurs when both the width and height are 4 or larger. In this case, the
recursive call passes along values for width and height that are 4 pixels smaller than the original
call. Thus this is a call to a simpler case. Because successive recursive calls have smaller and
smaller values for the width and height, we will eventually get a call where the width or height
is less than 4, and hence gives a base case.

Next we need to convince ourselves that the general case works properly as long as all of the
(simpler) recursive calls work. In the general case of the constructor, we draw an outer FramedRect,
and then create a new NestedRect object 2 units to the right and below, and with width and height
4 units less than the original. If that recursive call of the constructor really does work properly —i.e.,
it does draw nested rectangles at the position and with that width and height, then the outerRect
will be drawn in just the right place to make a slightly bigger collection of nested rectangles. Thus,
if we assume the simpler recursive calls of the constructor do what they are supposed to, then the
general case will work properly.

Let’s go through a similar argument for the moveTo method. This time the base case is when
rest is null. In that case, there is only one rectangle and we move it to the correct position. This
is clearly correct.

In the recursive case, after having moved outerRect to the correct position, we send the moveTo
method to rest, which is a simpler set of NestedRect. Thus the recursive call goes to a simpler
object than the one we are trying to move. Because successive collections of nested rectangles are
smaller and simpler, eventually we will get to one where there is only the outer rectangle and rest
is null. Thus we will eventually get to the base case.

Finally, suppose that the message send of moveTo to rest correctly moves those nested rectan-
gles to (x+2,y+2). Then moving the outer rectangle to (x,y) results in correctly nested rectangles,
with the outer one at (x,y), as desired.

Similar arguments can be used to show that removeFromCanvas correctly removes all of the
rectangles from the canvas.

Why does verifying these three items suffice to ensure that our recursive algorithm will work
correctly? A proof of this could be given using mathematical induction. Since not all readers of this
text may have encountered mathematical induction, we will instead give a more intuitive argument
for why this suffices.

Rather than giving an argument in general, let’s give a specific argument in the case of the
constructor for NestedRect. A similar argument works for all other cases of recursive constructors
and methods.

We will start from the smallest collections of NestedRect and work our way up. If the smallest
side is less than 4 pixels, then the constructor will construct exactly one FramedRect of the desired
size in the location specified. The recursive call of the constructor is not executed because the
condition in the if statement is false. Clearly drawing the one FramedRect is what should happen,
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so everything works fine when the smallest side is less than 4 pixels. Notice that this corresponds
to checking the base case of the recursion.

Now suppose the smallest side is less than 8 pixels, but greater than or equal to 4 pixels. Then
when the constructor is called, a FramedRect is drawn with the specified dimensions and at the
specified location. The condition on the if statement is now true, so the recursive call of the
constructor is executed. Because the original smallest side was less than 8 pixels, and the recursive
call involves parameters for length and width that are reduced by 4 each, the smallest side for the
recursive call is less than 4 pixels. It is also drawn 2 pixels to the right and below the original call.

We know the call of the constructor is correct when the smallest side is less than 4 pixels, so
we know that the recursive call does the right thing — that is, it draws a single FramedRect in the
desired position. Since the original call resulted in drawing a FramedRect which is 4 pixels larger
on each side, we know that the combination of drawing the FramedRect and the recursive call result
in drawing two nested rectangles, as desired.

Now suppose the smallest side is less than 12 pixels, but greater than or equal to 8 pixels.
Examining the constructor we see that it draws a FramedRect with the specified dimensions and at
the specified location and then calls the constructor recursively with length and width each reduced
by 4. That is, the recursive call has smallest side less than 8 pixels, but greater than or equal to
4 pixels. However, we already know that a call of the constructor with smallest side of this size
draws nested rectangles correctly. Thus it is easy to convince ourselves by looking at where each
of these is drawn that a call with smallest side less than 12 pixels, but greater than or equal to 8
pixels, works correctly and draws 3 nested framed rectangles.

We could continue in this way as far as we like, but you should be able to recognize the pattern
now. Each time we draw a new framed rectangle and rely on the fact that we already know that
the recursive call of the constructor does what it is supposed to. This is exactly what we our
instructions told us needed to be done in the two clauses for writing recursive cases of a recursive
constructor or method.

Thus in examing the first case (for smallest side less than 4 pixels), we applied part 1 of the
rules for writing recursion involving the base case. In each of the other cases we applied part
2 of the rules involving the recursive case. We did this by checking that the recursive call was
indeed simpler and that the new case worked under the assumption that the recursive call of the
constructor worked.

Very similar arguments can be used to show that the moveTo and removeFromCanvas methods
for NestedRect are correct. The idea of our rules for checking base cases and recursive cases is that
they tell us exactly what must be verified in order to have confidence that our recursive constructors
and methods will be correct.

9.1.3 Broccoli

Recursion can be used to create other interesting and fun examples. A picture of broccoli is shown
in Figure 9.4. If you examine the picture carefully, you will notice the recursive structure of the
plant. At the base is a stem that is about one-fourth of the height of the plant. At the upper end
the stem branches off three ways — one to the left, one straight up, and one to the right. If we look
at what grows out of those three branches, we see that those structures themselves look exactly
like smaller broccoli plants. We will take advantage of this structure by drawing broccoli as a stem
with three smaller broccoli plants attached to the ends of the stem.

We draw broccoli by following the approach in the previous section. We will keep track of the
size of the broccoli by keeping track of the size of the stem. This will help us decide whether we
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] Broccell ] =1

Figure 9.4: A broccoli plant

are in the base case or in the recursive case

If the stem is more than 25 pixels long then we will attach three smaller broccoli plants to the
end of the stem. Each of these will have a stem which is 80% of the size of the one just drawn.
Otherwise, if the stem is at most 25 pixels long then we will attach three flowers to the end of the
stem. Thus the base case occurs when the stem length is at most 25 pixels and the recursive case
when it is larger than 25 pixels. Notice that if we start with a stem length of greater than 25 pixels,
then after reseting the stem length to 80% of its value over and over, we will eventually get a stem
length which is 25 pixels or smaller. Thus our recursive constructor will terminate. We’ll verify the
correctness after we have written the code.

Before we start writing the code, there are two issues we need to resolve. The first is that while
the first stem will be drawn vertically, successive stems will be drawn at other angles (in particular,
the left-most and right-most branches will be drawn at angles of 7/9 radians (or 20°) from that of
the base stem. The Line class in the objectdraw library has a constructor that takes end points of
a line, but it would be more convenient to have a constructor that took the starting point, angle,
and length of a line.

The ObjectDraw library contains a class AnglLine that has the same methods as Line, but has
a constructor with parameters that are more convenient for drawing lines at an angle. We show
the constructor declaration below:

public Angline(Location start, double length, double radianAngle,
DrawingCanvas canvas)

The second issue we must contend with shows up when we start thinking about how to write
the Broccoli class. In order to be able to move the broccoli around on the screen, we would like
names for the different parts of the broccoli. We need an instance variable, stem, of type AngLine
to represent the stem. We also need three instance variables to represent the three broccoli parts
that grow off of the end of the stem. When the length of the stem is greater than 25 pixels, the
three broccoli parts will themselves be instances of Broccoli, but if the length does not exceed
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/**

* BroccoliPart is an interface for parts of broccoli.
*/

public interface BroccoliPart

{
// move the broccoli part by x in the horizontal direction and
// y in the vertical direction
public void move( double x, double y);

3

Figure 9.5: BrocolliPart interface

25 pixels then the three parts will be instances of a class Flower that we will design. Thus these
instance variables need to be able to hold either instances of the Broccoli or Flower class.

We have seen this kind of problem before, and have seen that interfaces are exactly suited to
solve this problem. Thus we will create a new interface, BroccoliPart, that will specify exactly
the methods needed by these values, and we will ensure that both the Broccoli and Flower classes
implement the interface.

In fact, all we will require of our broccoli parts is that we can move them around the screen.
Thus, all we really need is that they provide a move method. The rather trivial definition of interface
BroccoliPart is given in Figure 9.5.

With all of this out of the way, we are now ready to define the classes Broccoli and Flower.
Because the Flower class is the simplest (it is not recursive), we define it first. See Figure 9.6.

The constructor for flower takes the starting location startCoords, length of stem, size, angle
that the stem makes with the x-axis, direction, and the canvas that it will be drawn on. An
instance of Flower is composed of a AngLine, stem, which is colored dark green, connected to a
FilledOval, bud, which is colored yellow. Notice how handy the method getEnd is in finding the
end of a line which was created as an AngLine. The move method for Flower is trivial, as we simply
move the stem and bud the appropriate distance.

Figure 9.7 contains the code for the Broccoli class. The constructor takes the same parameters
as Flower. it draws the stem and then, depending on size, adds either three Broccolis or three
Flowers to the end of the stem. The instance variables, left, center, and right, all have type
BroccoliPart, so they can hold values from either the Broccoli or Flower classes. The value of
center will face the same direction as the stem, while the the values of 1eft and right are tipped
at angles of /9 or 20° to the left or right of the stem.

The base case of the constructor is when size does not exceed 25 pixels. In that case, the
constructor creates the stem and three Flowers that attach to the end. This is a reasonable picture
for the base case.

The recursive case is where size is greater than 25. In this case, the constructor creates the stem
and then three Broccolis that attach to the end. The recursive calls to the Broccoli constructor
have a size that is 80% of the original size. Thus they construct simpler Broccolis (the complexity
of Broccoli is measured by the size of its stem), as required by our rules for writing recursive
constructors and methods. If each time the new size is 80% of the previous size then eventually it
will become 25 or smaller, so we will eventually get to the base case.

Finally, we must verify that the constructor does the right thing if we assume that all simpler
calls of the constructor do the right thing. In this case, it is easy that the constructor does the
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public class Flower implements BroccoliPart {
// color of Broccoli - dark green
private static final Color broccoliColor = new Color(0,135,0);

private Angline stem; // stem of broccoli
private FilledOval bud; // Flower of broccoli plant
/**

* Draw flower at end of a stem
* Qparam startCoords - starting point of stem
* Qparam size - length of the stem
* Q@param direction - angle of stem with x-axis
* Q@param canvas - where picture is drawn
*/
public Flower (Location startCoords, double size,
double direction, DrawingCanvas canvas)

{
// Draw stem and color green
stem = new Angline(startCoords,size,direction,canvas);
stem.setColor (broccoliColor);
Location destCoords = stem.getEnd(); // end of stem
bud = new FilledOval(destCoords,3,3,canvas);
bud.setColor(Color.yellow) ;
}
/**
* Qparam x,y amount to move flower
*/
public void move( double x, double y)
{
stem.move (x,y) ; // move stem
bud.move(x,y) ;
}

Figure 9.6: Flower class implementing BroccoliPart
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VES
* Class to recursively draw broccoli
*/
public class Broccoli implements BroccoliPart {
private BroccoliPart left, center, right; // branches of broccoli
private Angline stem; // stem of broccoli

// Draw broccoli by recursively drawing branches (and flowers)
public Broccoli(Location startCoords, double size,
double direction, DrawingCanvas canvas)

{
// Draw stem and color green
stem = new Angline(startCoords,size,direction,canvas);
stem.setColor(Color.green);
Location destCoords = stem.getEnd(); // end of stem
if ( size > 25 ) // Big enough to keep growing
{
left = new Broccoli(destCoords, .8*size,
direction + Math.PI/9.0, canvas);
center = new Broccoli(destCoords, .8*size, direction, canvas);
right = new Broccoli(destCoords, .8%*size,
direction - Math.PI/9.0, canvas);
} else { // Draw flowers
left = new Flower(destCoords, .8%*size,
direction + Math.PI/9.0, canvas);
center = new Flower(destCoords, .8*size, direction, canvas);
right = new Flower(destCoords, .8%*size,
direction - Math.PI/9.0, canvas);
}
}

// @param x,y amount to move broccoli
public void move( double x, double y)

{
stem.move(x,y); // move stem
left.move(x,y); // move other parts
center.move(x,y);
right.move(x,y);

}

Figure 9.7: Broccoli class
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right thing as it is easy to see from the picture that a non-trivial Broccoli consists of a stem with
three Broccoli objects attached to the end of the stem.

Because we have verified all the conditions for writing correct recursive constructors and meth-
ods, we can be confident that the constructor does what it is supposed to.

Now let us take a look at the move method for Broccoli. To move Broccoli we just move the
stem and the left, center, and right BroccoliParts. This seems quite reasonable, but it is worth
noticing that the structure of this method is quite different from the recursive constructors and
methods that we have discussed to this point. All of the other recursive methods and constructors
included an if statement to separate the base case from the recursive case.

Exercise 9.1.2 Before reading further, see if you can figure out how the recursive and base cases
occur for this method.

The key to understanding the mystery of where the base case is handled is understanding that
which move method body is executed when the move message is sent to left, center, and right
depends on the class of the values held in those variables. Thus, if the values held in the three
variables are from class Flower then the move method of Flower, which is not recursive, will be
executed. On the other hand, if the values are from class Broccoli, then the move method of
Broccoli will be executed, which does involve recursive calls of move.

Thus the base case corresponds to when the values of the instance variables are from class
Flower, while the recursive case occurs when the values are Broccoli. We can check that move
works correctly by following the usual rules. First there is a base case (when the variables represent
Flowers), and it works correctly by moving the stem and bud the appropriate amount.

The recursive case (when the instance variables represent Broccoli) involves a call to a simpler
case — the broccoli instance variables have shorter stems (because of the way the constructor works)
and hence they will eventually not exceed 25 pixels, and thus we will eventually get to a case where
the instance variables are indeed Flowers. Finally if we assume the recursive sends of move to the
instance variables work correctly, then it is easy to see that the complete method works correctly:
the stem is moved the appropriate amount and each of the three broccoli parts are moved the same
amount.

Exercise 9.1.3 Add new methods moveTo and removeFromCanvas to the Broccoli and Flower
classes.

Exercise 9.1.4 To make the Broccoli drawing more interesting, we can make animate its growth
by making it into an ActiveObject. The constructor should draw the stem and then call start ().
The run() method should pause for 500 milliseconds and then create the three instance variables
that correspond to the three branches.

Exercise 9.1.5 Parsley is another plant that can be drawn recursively. Write a program to draw
parsley as shown in Figure 9.8.

9.1.4 Snowflake fractals

Another interesting recursively designed figure is the snowflake curve shown in Figure 9.9. The
snowflake is drawn by drawing a triangle. But rather than drawing the triangle out of straight
lines, we will draw it out of objects of type PushLine.
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Figure 9.8: Parsley

Figure 9.9: Snowflake fractal.
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9.2 Non-graphical recursion

An object of type PushLine is drawn by drawing a straight line and then erasing the middle third
of the line. The middle third is replaced by two lines of the same length as the original middle third
that are connected to the endpoints of the original middle third and are themselves connected to
form the shape _/\_. (See also Figure ?77.) You might find it convenient to think of this new figure
as being drawn by grabbing the center of that middle segment of the line and pushing it out until
it is twice as long as it was when it started. If the middle segment were still where it was, then the
new lines and the original would form an equilateral triangle.

Of course, we don’t want to stop there. (This is recursion after alll) Instead take all four of
the resulting line segments, break them into thirds and push them out again. Continue until the
length of the segments falls below some predetermined limit. When that happens, we simply draw
straight lines.

The class PushLine will have instance variables to hold the different parts of the figure. Most
of the time those instance variables will themselves be holding PushLines. However, at the base
case they will simply be objects of class AngLine.

As in the Broccoli class example, we would like to have an instance variable that can hold
either of the two possibilities for the sides: Angline or PushLine. To make this possible, we will
make sure both implement the same interface, DrawablelDInterface, which is provided in Figure
9.10.

The interface DrawablelDInterface is intended to describe a one-dimensional objects with a
start and end location. It is a bit simpler than normally would be expected — for example, there
is no way to set the start and end points. However, it is sufficient for our purposes here. Both
AngLine and PushLine classes implement the interface LineInterface.

The code for class PushLine is given in Figures 9.11 and 9.12. The constructor of PushLine has
a structure similar to that of the Broccoli constructor in the last section. If the length is smaller
than 1imit, then four straight line segments will be constructed from class Angline. However, if
the length is at least as large as 1limit, then four PushLines will be constructed.

The move and setColor methods are defined recursively. That is, the same message is passed
along to the four segments held as instance variables. In recursive cases, these messages will be
sent to other PushLines, while in base cases, the messages will be sent to AngLines.

The methods getStart, getEnd, and moveTo are not recursive, though moveTo calculates how
far the PushLine should move and then invokes its own move method.

The argument for the correctness of the constructor and methods is essentially the same as for
Broccoli. We can complete the program for drawing snowflake curves by writing an extension of
WindowController that draws three PushLines in the begin method. See Figure 9.13 for details.

9.3 Non-graphic problems and recursion

In this section we illustrate recursive solutions to two problems that do not involve drawing recursive
pictures. The first involves a fast algorithm for raising a number to a non-negative integer power,
while the second involves the solution to an interesting puzzle.

9.3.1 Fast exponentiation

Fast algorithms for raising large numbers to large integer powers are important to the RSA algo-
rithm for public key cryptography. We won’t discuss cryptography here, but we will investigate a
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public interface DrawablelDInterface {

/**
* Gets the line’s start point.
*
* Qreturn the start point
*/
public Location getStart ();

/**
* Gets the line’s end point.
*
* Qreturn the end point
*/
public Location getEnd ();

VAL
* move line by (dx,dy)
* Q@param dx,dy amount to move line
*/
public void move(double dx, double dy);

/**
* move line to (x,y)
* @param x,y - new location for start of line
*/

public void moveTo(double x, double y);

/**
* set color of object to newColor
* Q@param newColor - new color of object
*/

public void setColor(Color newColor);

Figure 9.10: DrawablelDInterface implemented by AngLine and PushLine.
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public class Pushline implements LineInterface

{

private Location start, end; // start and end points of line

// four lines constructing "PushLine"
LineInterface firstLine, secondLine, thirdLine, fourthLine;

* Constructor for line which eventually pushes out into fractal

* @param start - starting coordinates for line

* Q@param length - length of original line

* @param radians - angle of line from the horizontal

* Q@param limit - if length < limit then don’t push out into fractal
* @param canvas - where line will be drawn

public PushLine(Location start, double length, double radians, double limit,
DrawingCanvas canvas) {
this.start = start;

// Lines to be pushed
Location secondPt, thirdPt, fourthPt; // end points of lines

if (length < limit) { // Base case -- just make lines in _/\_ shape
firstlLine = new Angline(start,length/3,radians,canvas);
secondPt = firstLine.getEnd();
secondLine = new Angline(secondPt,length/3,radians+Math.PI/3,canvas);
thirdPt = secondLine.getEnd();
thirdLine = new Angline(thirdPt,length/3,radians-Math.PI/3,canvas);
fourthPt = thirdLine.getEnd();
fourthlLine = new Angline(fourthPt,length/3,radians,canvas);

}

else { // Recursive case -- make _/\_ shape with PushLines
firstLine = new PushLine(start,length/3,radians,limit,canvas);
secondPt = firstLine.getEnd();
secondLine = new PushLine(secondPt,length/3,radians+Math.PI/3,1limit,canvas);
thirdPt = secondLine.getEnd();
thirdLine = new PushLine(thirdPt,length/3,radians-Math.PI/3,1limit,canvas);
fourthPt = thirdLine.getEnd();
fourthLine = new PushLine(fourthPt,length/3,radians,limit,canvas);

}

end = fourthLine.getEnd();

Figure 9.11: PushLine, Part 1.
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VAL
* Q@returns start point of line
*/
public Location getStart() {
return start;

3

/**
* Q@returns end point of line
*/
public Location getEnd() {
return end;

}

/**
* move line by (dx,dy)
* Q@param dx,dy amount to move line
*/
public void move(double dx, double dy) {
firstLine.move(dx,dy);
secondLine.move (dx,dy) ;
thirdLine.move(dx,dy) ;
fourthLine.move(dx,dy) ;

/**
* move line to (x,y)
* @param x,y - new location for start of line
*/
public void moveTo(double x, double y) {
move( x - firstLine.getStart().getX(),
y - firstLine.getStart().getY() );

/**
* set color of object to newColor
* Q@param newColor - new color of object
*/
public void setColor(Color newColor) {
firstLine.setColor (newColor) ;
secondLine.setColor (newColor) ;
thirdLine.setColor (newColor) ;
fourthLine.setColor (newColor) ;

Figure 9.12: PushLine class, Part 2.
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public class FractalApplet extends WindowController
{

public static final double PI = 3.14159; // The number Pi

public static final int limit = 10; // Size at which stop pushing line into fractal

public static final double size = 200.0; // Size of lines in original triangle
public static final double startX = 100.0; // Starting coordinates of lower left cormer
public static final double startY = 150.0; // of triangle

PushLine linel, line2, line3; // 3 lines bounding star

Location lastLocation; // last location of mouse
/**
* Initializes the applet by creating the triangle with three "PushLine's.
*/
public void begin(){
linel = new PushLine(startX,startY,size,0,limit,canvas);
Location dest = linel.getEnd(Q);
line2 = new PushLine(dest,size,4*PI/3,1limit,canvas);
line3 = new PushlLine(line2.getEnd(),size,2+PI/3,1limit,canvas);

}

// Get ready to move star

public void onMousePress( Location point)
{

lastLocation = point;

}

// Drag the star around

public void onMouseDrag( Location point)

{

linel.move( point.getX()-lastLocation.getX(),
point.getY()-lastLocation.getY());

line2.move( point.getX()-lastLocation.getX(),
point.getY()-lastLocation.getY());

line3.move( point.getX()-lastLocation.getX(),
point.getY()-lastLocation.getY());

lastLocation = point;

}

}

Figure 9.13: Class to draw a snowflake curve.
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recursive algorithm that is substantially faster than the usual way of raising numbers to powers.
We begin by describing a simple recursive method to raise integers to non-negative powers that
is no more (or less) efficient than the obvious iterative algorithm.
As usual, the basic idea is to describe how you would complete the solution to the problem if
someone were to provide you with a partial solution. In this case, if we want to raise a number to
the nth power, we presume there is someone else who can raise it to the n-1st power.

/**
* @Oparam exponent >= 0
* Qreturns base raised to exponent power
*%/
public int simpleRecPower(int base, int exponent)
{
if (exponent == 0)
return 1;
else
return base * simpleRecPower (base,exponent-1);

}

Let’s check this out with the rules stated in Section 9.1.2.

1. The base case is where exponent == (. It returns 1, which is the correct answer for raising
base to the Oth power.

2. The recursive case is in the else clause.

e The recursive call involves base to the exponent - 1st power, which is smaller than
exponent. Because exponent is assumed to be greater than 0 (the original assumption
was that exponent is greater than equal to 0, but because we are in the else clause we
know exponent is not 0), the recursive calls will eventually get down to the base case of
0.

o If we assume that evaluating simpleRecPower (base, exponent-1) results in base
then the else clause returns

exponent-1

base*simpleRecPower (base,exponent-1) = base * base®¥ponent-1

— base®Xponent

Thus we can be confident that the above algorithm calculates base®¥POReNt [t ig also easy to
see that the evaluation of simpleRecPower (base,n) results in exactly n multiplications, because
there is exactly one multiplication associated with each recursive call.

Using a simple modification of the above recursive program, we can get a much more efficient
algorithm for calculating very large powers of integers. In particular, if we use the above program
(or the equivalent simple iterative program) it will take 1024 multiplications to calculate b1024,
for any integer b, while the program we are about to present cuts this count down to only 11
multiplications!

The algorithm above takes advantage of the following simple rules of exponents:

o base® =1

erp+1

e base = base * base®P
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The new algorithm that we present below takes advantage of one more rule of exponents:
o base** ™ = (base?) TP

The key is that by using the last of these rules as often as possible, we can cut down the amount
of work considerably, by reducing the size of the exponents in recursive calls faster. See the code
below:

VAL
Oparam exponent >= 0
Oreturns base raised to exponent power

*%/

public int fastRecPower(int base, int exponent) {
if (exponent == 0)

return 1
else if (exponent}2 == 1) // exponent is odd
return base * fastRecPower(base, exponent-1)
else // exponent is even

return fastRecPower(base * base, exponent / 2)

}

The fastRecPower method performs exactly the same computation as the previous one when
the exponent is 0 or an odd integer. However, it works very differently when the exponent is even.
In that case, it squares the base and divides the exponent in half.

Before analyzing exactly why this method works, let’s first look at an example of the use of this
algorithm and count the number of multiplications.

fastRecPower(3,16) = fastRecPower(9,8) // mult
= fastRecPower(81,4) // mult
= fastRecPower(6561,2) // mult
= fastRecPower(43046721,1) // mult
= 43046721 * fastRecPower (43046721,0)
= 43046721 * 1 // mult
= 43046721

Thus it only took 5 multiplications using fastRecPower, whereas it would have taken 16 mul-
tiplications the other way. While divisions are usually at least as expensive as multiplications on
computers, divisions by two can be done very efficiently because numbers are represented in binary.
Thus we will not bother to count division by 2 or using the “%” operation with 2 as something
worth worrying about in terms of the time complexity of the algorithm.

In general it takes somewhere between logs(exponent) + 1 (for exponents that are powers of 2)
and 2 * [ogs(exponent) multiplications to compute a power this way. While this doesn’t make a
difference for small values of exponent, it does make quite a difference when exponent is large. For
example, as noted above, computing fastRecPower (b,1024) would only take 11 multiplications,
while computing it the other way would take 1024 multiplications.

Let’s once again use the standard rules for understanding recursion to see why this algorithm
is correct.

1. The base case is again where exponent == 0. It returns 1, which is the correct answer for
raising base to the Oth power.
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2. The recursive case is in the else clause, but this time divides into two cases, depending on
whether exponent is odd or even.

e When exponent is odd, the recursive call is with exponent - 1, while, when exponent
is even, the recursive call is with exponent / 2. In either case, each of these calls is for
a smaller integer power because exponent is greater than zero. Thus no matter which
case is selected at each call, eventually the power will decrease to the base case, 0.

e We have already given the correctness argument for the code in the odd case in our

earlier analysis of the simpleRecPower method. Let’s convince ourself that it works for
the even case.
Let exponent be an even positive integer. Then the method returns the value of
fastRecPower (base * base, exponent / 2). That is simpler than the original call
because exponent/2 is less than exponent. Thus we can assume that it returns the
correct answer:

exponent/2 2)exponent/2

= (base
2 * exponent/2
exponent

(base * base)
= base
= base

Note that 2 * exponent/2 = exponent only because exponent is even. If exponent is
odd, the truncation in integer division would cause the product to evaluate to exponent
- 1.

Thus we see that the fastRecPower algorithm is correct.
While this algorithm can be rewritten in an iterative style, the recursive algorithm makes it
clearer where the rules of exponents are coming into play in the algorithm.

Exercise 9.3.1 a. It is not hard to see how to rewrite the simpleRecPower algorithm with a loop.
Please write it out.

b. Writing the iterative equivalent of the fastRecPower algorithm is a bit trickier. Please write
1t out.

9.3.2 Towers of Hanoi

One of the more interesting uses of recursion comes from an old story:

The Towers of Hanoi puzzle is reputed have arisen from a story about a group of
Buddhist monks in the Tower of Brahma. In the monastery were 3 diamond-tipped
needles which were supported vertically. On the first of the diamond-tipped needles
were 64 golden disks, arranged in order of size so that the largest was on the bottom.
The monks were reputedly given the task of moving the 64 golden disks from the first
to the third golden-tipped needle. Making the problem a bit more complicated were
the restrictions that only one disk can be moved at a time from one needle to another
(no disk may just be set aside) and that it is never allowable to put a large disk on a
smaller one.

One can buy a children’s puzzle based on this story, though these puzzles are typically made of
plastic or wood, and only come with 8 or fewer disks (for reasons that will become apparent later).
See a picture in Figure 9.14.
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Figure 9.14: Towers of Hanoi puzzle with 8 disks.
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The key to solving the puzzle is to consider how you could move the biggest disk from the
bottom item of the first needle to the bottom item of the third needle. Then think recursively!

A little thought should convince you that to move the biggest disk from the first to last needle,
you must first move all of the smaller disks to the middle needle. If any of the smaller disks are still
left on the first needle then they would be on top of the biggest disk, and hence the biggest disk
could not be moved. Similarly, if any of the smaller disks are on the third needle, then we could
not possibly move the biggest disk onto that needle, as that would be an illegal move.

Hence all but the largest disk must be moved to the middle needle. Then the biggest disk must
be moved to the third needle. Finally the remaining n-1 smaller disks must be moved from the
middle needle to the last needle.

We can write down this procedure more carefully as follows:

To move n disks from the first needle to the last needle using a helper needle:

1. If there is only one disk to move, just move it from the first to last needle, and you are done.

2. Otherwise move the top n-1 disks from the first needle to the helper needle (following the
rules, of course).

3. Then move the bottom disk from the first to the last needle.

4. Then move the top n-1 disks from the helping to the last needle (following the rules, of
course).

Here is a method to do this, written in Java. It assumes that the method moveDisk, which
moves a single disk from one needle to another has been written elsewhere.

public void recHanoi (int numDisks, int first, int last, int helper)
{

if (numDisks == 1)

{
moveDisk (numDisks, first, last); \emph{// move the only disk}
}
else
{
recHanoi (numDisks - 1, first, helper, last);
moveDisk(numDisks, first, last); \emph{// move the bottom disk}
recHanoi (numDisks - 1, helper, last, first);
}

}

We can understand this method a little better by looking at a specific example:

{towers(1,A,C,B) {moveDisk(1, A, C)
{towers(2,4,B,C) {moveDisk(2, A, B)
{ {towers(1,C,B,A) {moveDisk(1, C, B)
towers(3,A,C,B) {moveDisk(3, A, C)
{ {towers(1,B,A,C) {moveDisk (1, B, A)
{towers(2,B,C,A) {moveDisk(2, B, C)

{towers(1,A,C,B) {moveDisk(1, A, C)
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That is, a call to towers(3,A,C,B) results in calls to towers(2,A,B,C), moveDisk(3,4A,C),
and towers(2,B,C,A). Each of these recursive calls of method towers gets expanded, and so on.

How do we know this method will work properly? Once more, we go back to our standard check
list.

1. The base case of a single disk just moves it where it is supposed to go, and hence is correct.

e If you start with positive number of disks then the recursive calls to tower will be with
one fewer disk. Hence recursive calls will eventually get down to 1 disk, the base case.

e If we assume that the method works for n-1 disks, then it will work for n disks. (Can
you give a convincing argument!)

Exercise 9.3.2 We have not shown the code for method moveDisk. It could either just print out
a message (using System.out.println) describing which disk is moved from where to where, or it
could result in altering a picture of needles and disks. Write out the code for the text-only version
of moveDisk. Then write out the code for an animated graphic version of towers of Hanoi where
there is a delay between each move of a disk. That is, let an ActiveObject control the animation
of the algorithm. Interestingly, the code for the graphics is several times as long as the actual code
for determining which disk should be moved next.

Exercise 9.3.3 Determine how many calls of moveDisk are required to run towers(n,A,B,C) to
completion. Hint: first make a table of the number of moves for n ranging from 1 to 10. From the
table, guess a formula involving n for the number of calls of moveDisk. Use an inductive argument
similar to that given for the correctness of recursive programs to give a convincing argument that
your formula is correct. If a robotic arm could move 1 disk per second, how long would it take
to move all 64 disks from the first needle to the last needle using this algorithm. Do you now
understand why the commercial version of the game only includes 8 disks?

Exercise 9.3.4 The recursive algorithm given in the method is the most efficient solution in terms
of the number of disks moved. Try to find a convincing argument for this. Hint: Think about what
has to be the configuration in order to move the biggest disk.

We will present more examples of recursion later in Chapter xxx when we examine algorithms
for sorting and searching. Meanwhile, you will find that recursive algorithms are relatively simple
to write as long as you keep the rules in Section 9.1.2 in mind.



