
Chapter 3

Making Choices

In this chapter we show how to make choices in Java using the if statement. Conditional statements
like the if statement are programming constructs capable of choosing between blocks of code to
execute. These statements provide enormous expressive power to programmers. Despite their
strength, however, these statements are very easy to use and understand because they mimic the
way we think. For instance, the following sentences form a conditional statement in English:

‘‘If it’s sunny outside then we will play frisbee.
Otherwise we will play cards.’’

An example of a conditional statement that is a bit more relevant to our concerns with pro-
gramming might be:

‘‘If the mouse location is contained in the rectangle then increment counter1.
Otherwise increment counter2.’’

In Java, the if statement is the most commonly used conditional statement. It comes in a
variety of forms that we will explore, each of which is useful for certain situations. With the help
of conditionals we will write programs to determine a win or loss in the game of craps and to figure
out what to do on a weekend based on the weather and your finances.

After presenting a brief example illustrating the use of the if statement, we formally introduce
several of its variations that will allow us to handle more complex situations. We also introduce the
boolean data type for expressions that can be either true or false. Finally, we provide advice on
how to use conditionals clearly and effectively so that your programs can be understood correctly
by the Java compiler and, more importantly, by other programmers.

3.1 A brief example: using the if statement to count votes

We illustrate the use of conditionals with a simple example of a program to count votes in an
election. To accomplish this we will divide the program’s canvas in half vertically so that the left
and right sides represent candidates A and B respectively (see Figure 4.1). A mouse click on either
side will be treated as a vote for that half’s candidate.

Recall the program ClickCount, which keeps track of the number of times the user has clicked
the mouse (see chapter ???). The code for its onMouseClick method is given below:

67

68 CHAPTER 3. MAKING CHOICES

Figure 3.1: Screen shot of Voter program.

public void onMouseClick(Location point) {
count++;
display.setText("You have clicked " + count + " times.");

}

Whereas this method simply counts all mouse clicks on the canvas, by using the if statement our
voting program’s onMouseClick method will be able to discriminate between votes for candidate
A or B.

The code for class Voting is given in Figure 4.2. The begin method should be familiar by now.
It creates four new Text objects, the top two of which display voting instructions while the bottom
two display the current tally for each candidate. The last line of the method draws the vertical line
dividing the canvas.

The onMouseClick method, on the other hand, contains the new programming construct. The
if statement is used to determine which candidate gets each vote and then updates the appropriate
Text object to display the new total. To decide who receives each vote, the program compares the
x-coordinate of the location of the mouse click to the middle of the canvas. Note that we have
defined the constant MID X to refer to the x-coordinate of the middle of the canvas.

The if statement allows the programmer to make choices about which statements are executed
in a program based on a condition. In this case, when the mouse is clicked the program must decide
whether to give a vote to candidate A or B. The condition is whether the x-coordinate of the mouse
click, obtained by evaluating point.getx(), is less than MID X. The condition is written in Java as
point.getX() < MID X. If the condition is not satisfied (i.e., if point.getX() is greater than or
equal to MID X) then the code after the else keyword is executed.

The two lines of code following the line containing the if are grouped together by a pair of
matching curly braces. A series of statements surrounded by curly braces in this manner is called
a block. Similarly, the two statements immediately following the else also form a block. If the
condition of an if statement is true, the block of statements immediately after the condition is
executed. Otherwise the block immediately after the else is executed.

In the rest of this chapter we will formally define the if statement and some of its variations as
well as provide examples using more complex conditional statements.

3.2 if statements

Now that we have seen the if statement in action, let’s carefully examine its syntax and meaning.

3.2. IF STATEMENTS 69

public class Voting extends WindowController {
// coordinates of canvas, including x-coord of middle
private static final int MID_X = 300;
private static final int TOP = 0;
private static final int BOTTOM = 400;

// x-coordinates of A and B text messages
private static final int TEXT_A_X = 20;
private static final int TEXT_B_X = MID_X + 20;

// y coordinates of instructions and vote count info
private static final int INSTRUCTION_Y = 180;
private static final int DISPLAY_Y = 220;

private int countA = 0; // number of votes for A
private int countB = 0; // number of votes for B

private Text infoA; // display of votes for A
private Text infoB; // display of votes for B

// Create displays with instructions on how to vote
public void begin() {

new Text("Click on the left side to vote for candidate A.",
TEXT_A_X, INSTRUCTION_Y, canvas);

new Text("Click on the right side to vote for candidate B.",
TEXT_B_X, INSTRUCTION_Y, canvas);

infoA = new Text("So far there are " + countA + " vote(s) for A.",
TEXT_A_X, DISPLAY_Y, canvas);

infoB = new Text("So far there are " + countB + " vote(s) for B.",
TEXT_B_X, DISPLAY_Y, canvas);

new Line(MID_X, TOP, MID_X, BOTTOM, canvas);
}

// Update votes and display vote counts
public void onMouseClick(Location point) {

if (point.getX() < MID_X) {
countA++;
infoA.setText("So far there are " + countA + " vote(s) for A.");

}
else {

countB++;
infoB.setText("So far there are " + countB + " vote(s) for B.");

}
}

}

Figure 3.2: Code for Voting class.

70 CHAPTER 3. MAKING CHOICES

Figure 3.3: Semantics of the if-else statement.

The code in the Voting class example given in Figure 4.2 contains a form of conditional state-
ment called the if-else statement. Its syntax is:

if (condition) {
statements // if-part, executed when condition is true

}
else {

statements // else-part, executed when condition is false

}

We’ve included comments to make it clear when each part is executed, even though these are not
part of the formal syntax. The occurrences of statements in the syntax represent sequences of
statements in Java.

When the if-else statement is executed, the computer determines whether condition is true.
If so, it executes the statements in the block of code surrounded by the first pair of curly braces,
“{” and “}”, called the if-part, and then skips over the rest of the statement. Otherwise (i.e., if
condition is false), it skips over the if-part and will instead execute the block of statements after
the else keyword, called the else-part.This execution sequence is illustrated in Figure 3.3.

Therefore, when the if-else statement is executed, exactly one of the two blocks of code is pro-
cessed. When that block is completed, execution resumes immediately after the if-else statement.
The following example illustrates this behavior.

Suppose we want to modify our Voting program so that it always displays the total number of
votes. Let infoTotal be a variable of type Text that has been initialized in the begin method.
Here is a revised version of onMouseClick that displays the current vote total:

// Update votes and display vote counts

public void onMouseClick(Location point) {
if (point.getX() < MID_X) {

3.2. IF STATEMENTS 71

Figure 3.4: Semantics of the if with no else.

countA++;
infoA.setText("So far there are " + countA + " votes for A.");

}
else {

countB++;
infoB.setText("So far there are " + countB + " votes for B.");

}

infoTotal.setText("Votes so far: " + (countA + countB));
}

Each time the user clicks on the canvas, the line sending the setText message to infoTotal will
be executed regardless of which half of the screen the mouse was clicked on.

This seems pretty clear, but there are many situations in which we don’t need an else-part.
Fortunately, there is a simple variant of the if-else statement, the if statement, which does not
have the else keyword or the else-part.

if (condition) {
statements // if-part, executed when condition is true

}

next statement // executed after the if statement

If condition is true, then the if-part is executed as before. If it is false, however, the program
simply moves on to the next statement after the if-part because there is no else-part to execute.
The execution sequence is illustrated in Figure 3.4.

72 CHAPTER 3. MAKING CHOICES

3.2.1 Example: using the if statement with 2-D objects

Suppose we want to write a program that begins by displaying a square on the canvas. If the user
clicks inside the square then the computer moves the square 50 pixels to the right. If the click is
not inside the square, nothing happens.

Any attempt to write a program that satisfies this specification requires an answer to the
following question: How can we determine if a point is inside a square? While we could compare
the coordinates of the point to the locations of the left, right, top, and bottom edges of the square,
we are saved that effort because all of the two dimensional geometric objects (e.g., FramedRect,
FilledRect, FramedOval, FilledOval) provide the method contains that does this for us.

For example, let square be a variable of type FramedRect, and let point be a variable of
type Location. Then the expression square.contains(point) will be true if the object held in
square contains the point, and false otherwise. In our example, geomObj is a square and point
is the location of the mouse click.

For the sake of brevity we will only write out the onMouseClick method of this program. We
assume that square has been declared elsewhere to be a variable of type FramedRect and that it
is initialized in the begin method.

public void onMouseClick(Location point) {
if (square.contains(point)) {

square.move(X OFFSET, 0);
}

}

An English translation of the above method would read: “If the point where the mouse was clicked
is contained in the square then move the square to the right by X OFFSET pixels. Otherwise do
nothing.” (Of course, the computer code doesn’t say, “Do nothing.” Instead it simply omits the
else-part. At run-time if the condition fails then execution simply proceeds to the next statement
after the if-statement.)

We will present further variations of if statements later in this chapter, but first we will first
explore the kinds of expressions that can be used to form the condition part of these statements.

3.3 Understanding conditions

Comparison operators like “<” are used in expressions that evaluate to either true or false. Java
contains several comparison operators. They include:

< , > , ==, <=, >=, !=

We must use == to test for equality because = has already been used as the assignment operator.
The symbol != stands for inequality. Because keyboards do not generally include the symbols ≤
or ≥, Java uses the combinations <= and >= in their places.

Using these comparison operators, we can write x > 4, y != z+17, and x+2 <= y. Depending
on the values of the variables, each of these expressions will evaluate to either true or false. Suppose
the current value of x is 3, y is 6, and z is -10. Here are the results of evaluating the above
expressions:

• x > 4 is false because 3 is not greater than 4.

3.3. UNDERSTANDING CONDITIONS 73

• y != z+17 is true because 6 is different from -10+7.

• x+2 <= y is true because 3+2 is less than or equal to 6.

Exercise 3.3.1 Suppose the current value of x is 2, y is 4, and z is 15. For each of the following
conditions, determine whether they evaluate to true or false.

1. x + 2 < y.

2. z - 3 * x != y + 5.

3. x * y == z - 9.

4. z >= 3 * y.

Before we consider more complex conditions for the if statement, we first step back and look
at these expressions in a slightly different way.

3.3.1 The boolean data type

Java contains a primitive data type called boolean. Unlike other primitive types, such as int, that
have a large number of elements, the boolean type has only two values: true and false. However,
just as one can write down integer values directly as 17, -158, or 47, we can write down boolean
values directly in Java as true or false. We can also declare variables of type boolean.

There are a large number of expressions in Java that return values of type boolean. As we
have just seen, expressions consisting of two integer valued expressions separated by one of the
comparison operators, <, >, <=, >=, ==, and !=, return a result of type boolean. We have also seen
the method contains that returns a value of type boolean.

Example: analyzing WhatADrag We will use both the contains method and boolean variables
in the implementation of a new class WhatADrag. The complete code listing for this program is
given in Figure 3.5. The program begins by displaying a box on the screen. If the user presses the
mouse down while it is pointing inside of the box and then drags the mouse, the box will follow the
mouse on the canvas. If the mouse is not pointing in the box when the mouse button is pressed
then dragging the mouse will have no effect, even if the mouse happens to cross the box at some
point during the drag.

Let’s look at the code in the mouse handling methods to see how we can program this behavior.
As soon as the mouse button is pressed, the onMousePressmethod is executed. The first assignment
in onMousePress,

lastPoint = point;

results in saving the current location of the mouse (as held in parameter point) as the value of
variable lastPoint. The location is saved to be used when onMouseDrag is executed later.

The second assignment in onMousePress,

boxGrabbed = box.contains(point);

determines and then remembers whether the box contained the point where the mouse was initially
pressed. Because the result of evaluating box.contains(point) is a value of type boolean, it
can be stored in boxGrabbed, a variable of type boolean. The value of boxGrabbed, which reflects

74 CHAPTER 3. MAKING CHOICES

public class WhatADrag extends WindowController {
... // Constant declarations omitted

private FilledRect box; // box to be dragged

private Location lastPoint; // point where mouse was last seen

// whether the box has been grabbed by the mouse
private boolean boxGrabbed = false;

// make the box
public void begin() {

box = new FilledRect(START_LEFT, START_TOP,
BOX_WIDTH, BOX_HEIGHT, canvas);

}

// Save starting point and whether point was in box
public void onMousePress(Location point) {

lastPoint = point;
boxGrabbed = box.contains(point);

}

// if mouse is in box, then drag the box
public void onMouseDrag(Location point) {

if (boxGrabbed) {
box.move(point.getX() - lastPoint.getX(),

point.getY() - lastPoint.getY());
lastPoint = point;

}
}

}

Figure 3.5: Code for dragging a box.

3.3. UNDERSTANDING CONDITIONS 75

Figure 3.6: Three stages of dragging a rectangle.

whether or not the user actually pressed the mouse down inside box, will be used in onMouseDrag
to determine whether or not the box should be moved when the user drags the mouse.

As usual, the onMouseDrag method will be executed when the user drags the mouse. At that
time the values of the variables boxGrabbed and lastPoint become relevant.

If the value of boxGrabbed is true, box will be moved by the distance between the last loca-
tion of the mouse, saved in lastPoint, and the current position, held in point. The distance in
each of the horizontal and vertical directions is needed to actually perform the move. The hori-
zontal and vertical distances are obtained by evaluating point.getX() - lastPoint.getX() and
point.getY() - lastPoint.getY(), respectively.

Figure 3.6 illustrates three stages of dragging box in class WhatADrag. In the leftmost picture,
the mouse button has been pressed with the mouse inside the rectangle. After the execution of
onMousePress, the location of the mouse is stored in instance variable lastPoint. In the middle
picture, the mouse has been dragged down and to the right, and onMouseDrag has just begun
execution. The current location of the mouse is held in the parameter, point, but the if statement
has not yet been executed. The rightmost picture shows what has happened immediately after the
move message has been sent to box in the if statement during the execution of onMouseDrag. The
rectangle has been dragged to the right and down by the difference between the x-coordinates and
by the difference between the y-coordinates of point and lastPoint. The update of the value of
lastPoint to the location held in point is not shown.

Exercise 3.3.2 Rather than saving the results of box.contains(point) in a boolean variable,
we could have simply sent the contains message to box every time we dragged the mouse.

public void onMouseDrag(Location point) {
if (box.contains(point)) {

box.move(point.getX() - lastPoint.getX(),
point.getY() - lastPoint.getY());

lastPoint = point;
}

}
However, this would have made the computer do more work in rechecking whether box contains
point each time onMouseDrag is executed, rather than only when the mouse button is pressed.

76 CHAPTER 3. MAKING CHOICES

(Typically, onMouseDrag will be executed many times between executions of onMousePress if the
user is dragging the mouse.)

Beyond the difficulty of making the onMouseDrag method more complex, using the contains
method as part of the condition for the if statement is also tricky. Please explain why hav-
ing the test be box.contains(point), as written above, produces a different result from using
box.contains(lastPoint) in the same if statement? Which of these produces exactly the same
behavior as the onMouseDrag method in the WhatADrag class? In what circumstances and how does
the other one behave differently?

Exercise 3.3.3 Suppose we replace method onMouseDrag in class WhatADrag by the following code:

// if mouse is in box, then drag the box

public void onMouseDrag(Location point) {
if (boxGrabbed) {

box.moveTo(point);
}

}
This is simpler than the code in Figure 3.5. For example, we no longer need to keep track of
lastPoint. However, it does not result in as nice behavior. Explain why!

Exercise 3.3.4 Suppose the statement lastPoint = point; inside of method onMouseDrag in
Figure 3.5 was placed after the end of the if statement rather than inside the if-part. Would it
make any difference in the visible behavior of the program? If so, how would it change the appearance
on the screen during execution? If not, why put the statement inside of the if-part?

3.3.2 Comparing objects versus comparing primitive types

Comparisons of objects generated from classes raise more subtle issues than comparisons of values
of primitive types like int and double in Java. With objects, the “==” operator checks to see if
two expressions refer to exactly the same object rather than to similar objects. An example will
make the differences clear.

Recall the discussion from 2.9 on the difference between numbers and object types. There it
was emphasized that an assignment statement between variables of object types results in both
variables referring to the same object.

Suppose we execute the following three statements:

FramedRect firstVar = new FramedRect(25,25,100,100,canvas);
FramedRect secondVar = new FramedRect(25,25,100,100,canvas);
FramedRect otherVar = firstVar;

The first two statements generate two new FramedRect objects that happen to be at the same
location and have the same width and height. The third assignment results in otherVar referring
to the same FramedRect as firstVar.

Which of these variables should be treated as being equal? Certainly otherVar and firstVar
should be equal because they refer to exactly the same object. However, firstVar and secondVar
refer to different objects that happen to be at the same location and have the same size. Hence
they are in some sense equivalent, even though they are not the same objects.

In particular, suppose we execute the following statements:

3.4. SELECTING AMONG MANY ALTERNATIVES 77

firstVar.move(5,10);

Then firstVar and otherVar still refer to the same object, but firstVar and secondVar are no
longer in the same place. Thus the relationship between the values of firstVar and otherVar is
stronger than the relationship between the values of firstVar and secondVar before they were
moved. A good analogy is to think of firstVar and otherVar as being two handles attached to
the same framed rectangle. If the framed rectangle is moved or resized, both continue to refer
to it. Because secondVar is attached to a different FramedRect at the same location, if the first
FramedRect is moved, the other will stay where it is.

Because there are two reasonable definitions of equality between objects, Java supports two
different ways of comparing objects. The “==” operator is true between object expressions if the
expressions refer to the same object. Thus after executing the three assignment statements above,
firstVar == otherVar will evaluate to true, while firstVar == secondVar will return false. Of
course firstVar == otherVar also remains true after sending a move message to firstVar.

All objects also support an equalsmethod that can be used for the weaker sort of equality. After
the three assignments above, all three of firstVar.equals(secondVar), firstVar.equals(otherVar),
and secondVar.equals(otherVar) will be true. After sending a move message to firstVar, the
expression firstVar.equals(otherVar) remains true, but the comparisons with secondVar both
become false because the FramedRect referred to by firstVar and otherVar is now at a different
location from the FramedRect referred to by secondVar.

Most of the time you will want to use the equals method rather than “==” when comparing
objects. This is especially important with strings. If string1 and string2 refer to two different
string objects that both hold the same sequence of characters, then string1 == string2 would
return false, but string1.equals(string2) would return true.

The only time it is appropriate to use == with objects is when you want to know if the expressions
refer to the same objects rather than to objects with equivalent features.

Here are some simple rules of thumb:

• When comparing objects, you should almost always use the equals method rather than “==”.
In particular, always use equals with strings.

• Only use “==” with objects if you really want to know whether they are the same object,
rather than that they represent objects that look or behave the same.

• You cannnot send an equals method to an integer or double because they are not objects.
Thus “==” is always the correct thing to use in testing numbers for equality.

3.4 Selecting among many alternatives

The if-else statements discussed earlier in this section are ideally suited when we have to choose be-
tween executing two different blocks of statements at some point in a program. However, sometimes
there are more than two alternatives that have to be considered.

A simple example might include assigning letter grades based on numeric scores on an exam-
ination. Scores greater than or equal to 90 are assigned an “A,” scores from 80 to 89 (inclusive)
are assigned a “B,” scores from 70 to 79 are assigned a “C,” and those below 70 are assigned “no
credit.” Suppose that a variable score of type int contains the numeric score of a particular
examination. We would like to display the appropriate letter grade in a Text item, gradeDisplay.
In this situation we have not just two, but four different possibilities to worry about, so it is clear
that a simple if-else statement is insufficient.

78 CHAPTER 3. MAKING CHOICES

Java allows us to extend the if-else statement for more than two possibilities by including one
or more else if clause(s) in an if statement. Thus we can display the appropriate grade using
the following statement:

if (score >= 90) {
gradeDisplay.setText("The grade is A");

}
else if (score >= 80) {

gradeDisplay.setText("The grade is B");
}
else if (score >= 70) {

gradeDisplay.setText("The grade is C");
}
else {

gradeDisplay.setText("No credit is given");
}

When we execute this if statement, the computer first evaluates the boolean expression score
>= 90. If that is true, an “A” will be displayed and execution will continue after the last else-part
of the statement. However, if it is false the program will evaluate the next boolean expression,
score >= 80. If that is true, a grade of “B” will be displayed and execution will continue after the
last else-part. If not, the expression score >= 70 will be evaluated. If that is true then a grade
of “C” will be displayed and execution will continue after the else-part. Otherwise, the statement
in the else-part will be executed and a grade of “no credit” will be displayed.

This seems pretty intuitive, but we must wonder why, when checking to see if the student should
be given a “B,” we didn’t also have to check whether score < 90. The reason is that to get to the
condition score >= 80, the previous test, score >= 90, must have already failed. That is, we only
execute the else clauses if score is less than 90. The same reasoning shows that we do not need
to check if score < 80 when we determine whether to give a “C” as the grade. We can always
count on the fact that the conditions within the if-else statements are evaluated sequentially, and
therefore that all previous tests in the if statement have failed before determining whether to
execute the next block.

We can summarize the execution of an if statement including else if’s as follows:

• Evaluate the conditions after the if’s in order until one is found to be true.

• Execute the statements in the block following that if and then resume execution with the
first statement after the entire if statement.

• If none of the conditions are true and there is an else-part, then execute the statements
in the else-part. If there is no else-part, don’t execute any of the statements in the if
statement.

• Resume execution with the first statement after the if statement.

If there is an else clause in an if statement, then it must be the very last part of the if. That
is, no further else if’s are allowed after a plain else clause.

We will see later that this more complex if statement is actually a special case of a more general
way of nesting if statements. However, it is convenient for the moment to consider it by itself.

3.5. MORE ON BOOLEAN EXPRESSIONS 79

3.5 More on boolean expressions

The if-else statement in the Voting class at the beginning of this chapter worked very well because
there were only two candidates to consider when assigning a new vote. However, for more than two
candidates the else if clause introduced in the last section becomes necessary.

In the next example our program must choose between 3 candidates, A, B, and C, who each
have been allotted a vertical third of the canvas. We will not rewrite the entire program here, but
will instead focus on the onMouseClick method.

Let LEFT SEP and RIGHT SEP be constants representing the x-coordinates of the vertical lines
that divide the canvas into the three pieces. The int variables countA, countB, and countC will
keep track of the number of votes for the three candidates. Here is the code:

// Update votes and display vote counts for 3 candidates

public void onMouseClick(Location point) {
if (point.getX() < LEFT_SEP) { // clicked in left section

countA++;
infoA.setText("So far there are " + countA + " votes for A.");

}
else if (point.getX() < RIGHT_SEP) { // clicked in center

countB++;
infoB.setText("So far there are " + countB + " votes for B.");

}
else { // clicked in right section

countC++;
infoC.setText("So far there are " + countC + " votes for C.");

}
}

When determining whether the click was in the center section, why didn’t we have to check
that point.getX() was to the right of LEFT SEP? As with our earlier example, the reason is that
to even get to the second condition we know that the test point.getX() < LEFT SEP must have
failed (that is, it must have evaluated to false).

This same style solution works for determining whether clicks are in 4 or more vertical strips.
However, once we get to four candidates it might make sense to divide the screen both vertically
and horizontally rather than into 4 narrow, vertical strips. A picture is given in Figure 3.7.

Suppose we draw vertical and horizontal lines bisecting the canvas. We will count clicks in the
upper-left hand corner as votes for A, in the upper-right hand corner as votes for B, lower-left for
C, and lower-right for D. Thus to be a vote for A, the location where the user clicked must be both
above the horizontal line and to the left of the vertical line. How can we write this as a condition?

In Java we use the and operator, &&, between two boolean expressions to indicate that both
must be true for the entire expression to be true. For example, we can ensure that x is postive and
y is negative by writing x > 0 && y < 0.

The && is an example of a logical, or boolean, operator in Java. Just as the “+” operator on
ints takes two int values and returns an int value, boolean operators take two boolean values
and return a boolean value. && returns true exactly when both boolean values are true. Thus x
> 0 && y < 0 will be true only if both x is greater than 0 and y is less than 0.

In order to ensure that point is in the upper-left corner of the canvas we would need to write:

80 CHAPTER 3. MAKING CHOICES

Figure 3.7: Voting for four candidates.

3.5. MORE ON BOOLEAN EXPRESSIONS 81

if (point.getX() < MID_X && point.getY() < MID_Y) { // upper-left
...

}
The if-part is only executed if both point.getX() < MID X and point.getY() < MID Y. If either
one of those boolean expressions is false, then the entire condition evaluates to false and the if-part
is not executed.

Here is the complete code to assign votes to four candidates:

// Update votes and display vote counts
public void onMouseClick(Location point) {

if (point.getX() < MID_X && point.getY() < MID_Y) { // upper-left
countA++;
infoA.setText("So far there are " + countA + " votes for A.");

}
else if (point.getX() >= MID_X && point.getY() < MID_Y) { // upper-right

countB++;
infoB.setText("So far there are " + countB + " votes for B.");

}
else if (point.getX() < MID_X && point.getY() >= MID_Y) { // lower-left

countC++;
infoC.setText("So far there are " + countC + " votes for C.");

}
else { // lower-right

countD++;
infoD.setText("So far there are " + countD + " votes for D.");

}
}
Unfortunately computer programming languages do not usually allow us to combine two in-

equalities, as in the expression 1 <= x <= 10. Instead we must write it out as the combination of
the tests 1 <= x and x <= 10.

Just as Java uses && to represent the logical and operation, it uses || to represent the logical
or operator. Thus x < 5 || y > 20 will be true if x < 5 or y > 20. In general, if b1 and b1 are
boolean expressions, then b1 || b2 is true if one or both of b1 and b2 are true.

A good example illustrating the use of the or operation is determining whether someone playing
the game of craps has won or lost after his or her first roll of the dice. The “shooter” in craps
throws two dice. If the numbers on the face of the dice add up to 7 or 11, then the shooter wins.
A sum of 2, 3, or 12 results in an immediate loss. With any other result, play continues in a way
that will be described later in the chapter.

The if statement below has three branches that encode the relevant outcomes of the first roll
of the dice. The value of status is simply a Text object that, as usual, has been created in the
begin method of the program.

if (roll == 7 || roll == 11) { // 7 or 11 wins on first throw
status.setText("You win!");

}
else if (roll == 2 || roll == 3 || roll == 12) { // 2, 3, or 12 loses

status.setText("You lose!");

82 CHAPTER 3. MAKING CHOICES

operator meaning
&& and
|| or
! not
== equal
!= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal

Figure 3.8: A summary of the boolean and comparison operators in Java

}
else { // play must continue

status.setText("The game continues");
}

The if portion determines if the player has won by checking if the roll was 7 or 11. The else
if portion determines if the player has lost by checking if roll was 2, 3, or 12. Finally the else
portion is executed if further rolls of the dice will be required to determine whether the player wins
or loses.

The last boolean operator to be introduced here is !, which stands for “not”. For example, the
expression !box.contains(point) will be true exactly when box.contains(point) is false,
i.e., when box.contains(point) is not true.

Although we can use ! with equations and inequalities, it is usually clearer to rewrite the
statement using a different operator. For instance, !(x == y) is more simply written as x !=
y, and !(x < y) is simplified to x >= y. Similarly, !(x <= y) is equivalent to x > y, which
is much easier to read.

Figure 3.8 summarizes the most common operators in Java that give a boolean result.

Exercise 3.5.1 Suppose that the current value of x is 6, y is -2, and z is 13. For each of the
following conditions, determine whether they evaluate to true or false.

1. x - 6 < y && z == 2 * x + 1.

2. !(x - 6 < y && z == 2 * x + 1).

3. x - 6 < y || z == 2 * x + 1.

4. !(x - 6 < y || z == 2 * x + 1).

Before we move on, we should note a few last points about && and ||. The first is to be sure
and use the double version of each of the symbols & and | because the single versions represent
quite different operators. Unfortunately, your Java compiler is unlikely to warn you if you make
this mistake and will instead let you discover it (if you are lucky!) through nasty runtime errors.1

1Runtime errors are errors that occur while the program is executing. We prefer to have errors reported by the
compiler because they are much easier to find and fix than runtime errors. Runtime errors will frequently just cause
your program to crash with a poor explanation, if any, describing why it died, so be careful!

3.6. STYLE GUIDELINES FOR IF STATEMENTS 83

Second, both && and || in Java are implemented as “short circuit” operations. What this means
is that Java will cease evaluating an expression involving one of these operators as soon as it can
determine whether the entire expression is true or false.

For example, suppose a program includes a declaration of an int variable, x, and that it
contains the expression (x > 10) && (x <= 20). If the computer evaluates that expression when
x has value 3, it will only evaluate x > 10 without even considering x <= 20. Because x > 10 is
false, Java knows that the final value of the && expression must be false no matter what the value
of x <= 20. However, if x > 10 had been true the rest of the expression would have had to be
evaluated to determine whether the entire && expression evaluates to true or false.

The || expression behaves in exactly the opposite manner. If the left side evaluates to true then
Java knows that the entire || expression must evaluate to true, so it does not bother to evaluate
the right side. Conversely, if the left side is false then the right side must be evaluated in order to
determine the final value of the entire || expression.

At this point, the only impact of the “short circuit” evaluation of boolean expressions is that
your program may run a little faster. However, later we will see examples where short circuit
evaluation of conditional expressions can have important consequences on the correctness of your
program.

3.6 Style guidelines for if statements

In this section we provide some style guidelines for the most appropriate use of if statements. The
“bad” examples we illustrate are legal Java code. However, they can be replaced by much simpler
and easier to understand code.

It is extremely important to write clear and concise code not only for the sake of others who
might read it (including your professors!), but also for yourself. Programmers sometimes waste a
great deal of time trying to understand code that they wrote themselves months, weeks, or even
days earlier because they did not pay much attention to clarity and style. As a result we consider
it essential to learn and use good coding style.

Avoid empty if-parts. We mentioned earlier that an if statement can omit the else-part if it
is not needed. However, what if we need the else-part, but not the if-part of an if statement?
For example, suppose we want to increment variable counter exactly when point is not contained
in box, but do nothing otherwise. We could write:

if (box.contains(point)) {
// do nothing here

}
else {

counter++;
}

However, writing it that way is considered very bad style. We should instead rewrite it as:

if (!box.contains(point)) {
counter++;

}

84 CHAPTER 3. MAKING CHOICES

Here we have used ! to negate the value of the condition so the statement we wish to execute
now belongs in the if-part. Notice that this version of the statement is much shorter and simpler.
In general, we will be looking for short, clear ways of writing code in order to make it more
understandable to a reader.

Don’t be afraid to use boolean expressions in assignments. Recall the class WhatADrag
contained in Figure 3.5. In that program, box was a FilledRect, point was a Location, and
boxGrabbed was a boolean variable.

Many beginning programmers are more comfortable writing

if (box.contains(point)) {
boxGrabbed = true;

} else {
boxGrabbed = false;

}
rather than the code we actually wrote in that program

boxGrabbed = box.contains(point);

However, you should become comfortable enough with boolean variables, that this kind of assign-
ment makes sense to you. The assignment is simpler and easier to understand than the if-else
statement for an experienced Java programmer.

Don’t use true or false in conditions Again, let boxGrabbed be a boolean variable. Suppose
you want the program to do something exactly when boxGrabbed is true. Look at the following
code excerpt:

if (boxGrabbed == true) {
...

}
Can you determine why this code is considered bad style? The code can, and should, be written
more simply as:

if (boxGrabbed) {
...

}
Both code segments do exactly the same thing. However the first is overly verbose. It is like the
difference between saying “if it is true that it is raining then I will stay home” and “if it is raining
then I will stay home”. The second version is clearly preferable.

Similarly, rather than writing

if (boxGrabbed == false) {
...

}
or

3.6. STYLE GUIDELINES FOR IF STATEMENTS 85

if (boxGrabbed != true) {
...

}
we prefer

if (!boxGrabbed) {
...

}
Again, this is like someone saying “if it is false that it is raining then . . . ” or “if it is not true that
it is raining then . . . ” rather than “if it is not raining then . . . ”.

A good general rule is to avoid using either true or false in a condition, as their presence
represents verbose and redundant code. The literals true and false are most commonly used to
initialize boolean variables, and never in conditional expressions.

Warning about == versus =. One of the most common errors made by beginning Java
programmers (and even many experienced programmers) is to use “=” in a condition where “==”
is intended. Most of the time Java will produce a compile-time error message warning that the left-
hand side of the condition cannot be converted to a boolean. Recognize that when this happens
the most likely cause is that you have used an assignment operator, “=” rather than a comparison
operator “==”.

There is one case, however, where Java will not find your error! That is when you are comparing
two boolean expressions. For example, if you write:

if (boxGrabbed = true) { ... }
or

if (boxGrabbed = false) { ... }
Java will not give you an error message. In the first case, it will treat boxGrabbed = true as an
assignment statement, and it will set the value of boxGrabbed to be true. It will then check to
see if boxGrabbed is true, and of course it will be. Because boxGrabbed is true, the computer will
execute the then-part if the if statement. In the second case above, boxGrabbed will be assigned
the value false, and, because the value of boxGrabbed is false, it will always skip the else-part of
the if statement.

Thus in the first case, it will always execute the then-part of the if statement, while in the
second, it will alway skip the then-part. This was surely not what was intended, but Java will
not give you an error message because boxGrabbed is itself a boolean variable.

We do not want to go into all of the details here, but the root of the problem is that Java
allows assignment statements in the middle of expressions. The value obtained from an assignment
statement used in an expression is the value of the variable after the assignment. Thus, in each
of the two examples above, the value used as the condition in the if statement is the value of
boxGrabbed after the assignment.

Of course this is all extremely confusing, and virtually always represents an error. Fortunately,
if you follow the rule we suggested in never including true or false in a condition, then it is highly
unlikely that you will ever need to test boolean expressions for equality!

86 CHAPTER 3. MAKING CHOICES

3.7 Operator precedence with boolean expressions

In Section 2.4, we introduced precedence rules for arithmetic expressions. Recall that precedence
rules help us make sense out of complex expressions by telling us in which order operations should
be performed. In this section we extend the precedence rules to apply to boolean expressions and
to expressions involving both arithmetic and boolean operators.

Suppose a computer program contains the expression:

size < BOX RIGHT - BOX LEFT

Fortunately, the computer will always do the subtraction before the comparison using “<”. If this
were not the case, the computer would end up trying to subtract BOX LEFT from a boolean value,
the results of comparing size to BOX RIGHT. For example, if size is less than BOX RIGHT, it might
attempt to compute true - 5, clearly an error!

Recall from Section 2.4, the precedence rules that specify the order in which arithmetic expres-
sions should be evaluated.

1. First perform all unary minus operations (e.g., -x) from left to right.

2. Then perform all multiplications, divisions, and remainder operations from left to right.

3. Then perform all additions and subtractions from left to right.

Thus the expression

2 + 3 * 8 / 4

will be evaluated as follows:

1. First compute 3 * 8, yielding 24.

2. Divide this result (24), by 4, yielding 6.

3. Finally add 2 to that result (6), yielding 8.

Notice that if we simply (and incorrectly) performed all operations from left to right, we would
first add together 2 and 3, getting 5. Multiply that by 8, getting 40. Finally we would divide that
by 4, getting 10, a different and incorrect answer.

As noted earlier, these precedence rules for arithmetic expressions are essentially the same ones
commonly used in everyday mathematics, and, just as in mathematics, we can override them by
using parentheses. Thus in evaluating the expression

(2 + 3) * 8 / 4

we must add together 2 and 3 before multiplying it by 8 and then dividing by 4.
Now let us extend these rules to extend to expressions containing comparison operators and

boolean operators. Because Java allows a programmer to mix comparison, logical, and arithmetic
operations in the same expression, the precedence rules apply to all of these operators.

1. Unary operators, unary minus: -, and not: !.

2. Multiplication, division, and remainder operations: *, /, and %.

3. Addition and subtraction operators: + and -.

3.7. OPERATOR PRECEDENCE WITH BOOLEAN EXPRESSIONS 87

4. Comparison operators: <, <=, >, >=.

5. Equality and inequality: ==, !=

6. And: &&

7. Or: ||

8. Assignment operators: =.

As usual, parentheses can be used to change the order of operations. All operations of the same
precedence level are performed from left to right.

We can use these rules to understand the order in which the computer evaluates the following
expression:

size < BOX RIGHT - BOX LEFT

It first evaluates BOX RIGHT - BOX LEFT because arithmetic operators have higher precedence than
comparison operators. It then determines if that number is greater than the value of size.

Similarly, when the computer evaluates

point.getX() >= LEFT SEP && point.getX() <= RIGHT SEP

it first checks the two inequalities, because comparison operators have higher precedence than &&.
It then returns true only if both inequalities are true.

This detailed understanding of the way Java evaluates expressions helps explain why it does
not allow the following expression, as we discussed earlier:

1 <= x <= 10

Let us assume that the value of x is 6. To evaluate the above expression the computer would:

• Determine that 1 is less than or equal to x, yielding true. It evaluates this operation first
because it is the left-most of the two comparison operators, which have equal precedence.

• Attempt to determine if true is less than or equal to 10, resulting in an error, as comparing
two different types of values – a boolean and an int – is not allowed.

Thus the difficulty arises because comparing two integers results in a boolean value, and this
boolean value may not be compared with an integer.

The following diagram illustrates what happens during the computation:

1 <= x <= 10
⇓
true <= 10

⇓
??

Clearly the comparison between true and 10 makes no sense!
Fortunately, the compiler recognizes and reports this kind of error, as the problem would arise

no matter what the value of x is. The error message given will generally fail to suggest how to
rewrite the expression correctly, but we can see from the above example that all we would have to
do is to break the expression into two comparisons and to combine the results using &&:

88 CHAPTER 3. MAKING CHOICES

1 <= x && x <= 10

Sometimes even legal expressions are so complicated that determining the order of operations
can be difficult. A good rule of thumb is to use parentheses wherever there is a question regarding
the order of operations. The added parentheses will not only force the computer to evaluate the
expression in the order you want, but will also aid readability, making life much easier for readers
of your program.

3.8 DeMorgan’s rules and complex boolean expressions*

We have already seen a few cases where the condition in an if statement can be fairly complicated.
In order to ensure that the conditions in if statements mean what you want, it is worth taking a
small excursion into propositional logic to study DeMorgan’s laws. DeMorgan’s laws are rules for
understanding complicated boolean expressions by identifying logically equivalent expressions. Of
particular interest will be DeMorgan’s laws involving negations and && or ||.

Recall that if A and B are boolean expressions, then the expression A && B will be true exactly
when both A and B are true. We can illustrate this with a diagram called a truth table:

A B A && B

true true true
true false false
false true false
false false false

A truth table is similar to an addition or multiplication table in that it indicates the results of an
operation for given values of the operands.

The first column of the table shows possible values of A, the second column shows possible
values of B, while the third column shows the corresponding value of A && B for those values of A
and B. Thus the first row shows that if A and B are true then A && B is also true. The second row
shows that if A is true and B is false then A && B is false.

We can make similar truth tables for the boolean operator ||:

A B A || B

true true true
true false true
false true true
false false false

This table show that A || B is only false if both A and B are false.
The truth table for the boolean operator ! is shorter:

A !A

true false
false true

It simply shows that the negation of an expression is always the opposite of the original value.
The table for !A only has two rows because ! is a unary operator. That it, it only takes a single

operand. Because the single operand has only two possible values, true and false, only two rows
are necessary. The tables for binary operations && and || have four rows because each operation

3.8. DEMORGAN’S RULES AND COMPLEX BOOLEAN EXPRESSIONS* 89

has two operands and there are a total of four distinct combinations of boolean values for those
two operands.

We can build more complicated truth tables by adding extra columns to the tables. The
following table is formed by starting with the table for A && B and adding an extra column for the
negation, !(A && B)

A B A && B !(A && B)

true true true false
true false false true
false true false true
false false false true

The values for the last column are obtained by negating the values in the previous column – the
values of A && B.

Next we build the table for !A || !B. To build this table, we will need to compute the values
of !A and !B before we compute the or.

A B !A !B !A || !B

true true false false false
true false false true true
false true true false true
false false true true true

The columns for !A and !B are obtained by negating the values in the corresponding positions in
columns A and B. The values for column !A || !B are obtained from the values in the columns for
!A and !B. Because an or only fails when both operands are false, only the first row results in a
value of false for !A || !B.

It is interesting to observe that the column for !A || !B is exactly the same as for !(A && B).
This tells us that for all possible combinations of values of A and B, those two boolean expressions
have exactly the same resulting value. In other words those two boolean expressions are equivalent.
This equivalence is one of DeMorgan’s laws of logic.

This should make sense intuitively. Here is a simple example in English that is roughly equiv-
alent. Suppose I say that I had wanted to take both Math and Computer Science, but I failed.
Then it must be that I didn’t take Math or I didn’t take Computer Science.

Following the truth table, we see that the expression !(A && B) is true exactly when A && B
is false, and A && B is false exactly when one or more of A and B is false. Of course !A || !B is
true exactly when one or more of !A and !B is true, which is equivalent to having one or more of
A and B being false. Thus each is true exactly when one or more of A and B are false.

Below we write the truth tables for the expressions !(A || B) and !A && !B.

A B A || B !(A || B)

true true true false
true false true false
false true true false
false false false true

A B !A !B !A && !B

true true false false false
true false false true false
false true true false false
false false true true true

Because the final columns for each of these tables are the same, we know that the boolean
expressions !(A || B) and !A && !B are equivalent. This is another of DeMorgan’s laws.

90 CHAPTER 3. MAKING CHOICES

Exercise 3.8.1 Give an intuitive argument for the equivalence of !(A || B) and !A && !B.

We can use DeMorgan’s laws to simplify boolean expressions. For example, according to the
first equivalence above !(x > 0 && x <= 10) is equivalent to !(x > 0) || !(x <= 10). We can
simplify this further by remembering that the negations of inequalities can be simpified. Thus !(x
> 0) is equivalent to x <= 0 while !(x <= 10) is equivalent to x > 10. Thus, !(x > 0 && x <=
10) is equivalent to x <= 0 || x > 10, where the second expression is much easier to understand
than the first.

Exercise 3.8.2 Convince yourself of the above equivalence by drawing a number line and shading
in the regions represented by x > 0 && x <= 10 and x <= 0 || x > 10. The two regions do
not overlap and contains the entire number line between them. Hence !(x > 0 && x <= 10) is
equivalent to x <= 0 || x > 10.

Whenever possible we will use DeMorgan’s laws and the rules for simplifying the negations of
comparison operators to simplify complex boolean expressions.

Exercise 3.8.3 Use DeMorgan’s laws and the rules for simplifying the negations of comparison
operators to simplify the following boolean expression:

!(x = 0 || x >= 100)

3.9 Nested conditionals

Occasionally we run into problems with quite complicated logic, often requiring very complex
boolean conditions if they are handled using if-else if statements as we have seen them used
so far. Rather than constructing these very complex conditions, we will introduce alternative
structures for supporting the program logic. Happily, we don’t need to introduce any more syntax
in order to handle them; we just need to combine if statements in more complicated ways.

Suppose it is a summer weekend and you are trying to figure out what to do. Your choice of
recreation will depend on the weather and how much money you have to spend. The following
table lists the various options and choices, where the row headings represent your possible financial
situation and the column headings represent the weather possibilities.

sunny not sunny
rich outdoor concert indoor concert

not rich ultimate frisbee watch TV

The table entries represent the suggested recreational activity given the financial situation repre-
sented by the row and the weather as represented by the column. Thus if you are feeling rich and
it is not sunny, you might want to go to an indoor concert. If you are not feeling rich and it is
sunny, you might play some ultimate frisbee.

How can we represent these choices with an if statement? Let rich and sunny be variables of
type boolean, and let activityDisplay be a variable of type Text that will display the selected
activity. The if statement below uses else if clauses to represent the four choices.

if (sunny && rich) {
activityDisplay.setText("outdoor concert");

}

3.9. NESTED CONDITIONALS 91

else if (!sunny && rich) {
activityDisplay.setText("indoor concert");

}
else if (sunny && !rich) {

activityDisplay.setText("play ultimate");
}
else { // !sunny && !rich

activityDisplay.setText("watch TV");
}

Recall that because ! has higher precedence than &&, the condition !sunny && rich is evaluated
by first evaluating !sunny and then using the && operation to determine whether both !sunny and
rich are true.

This code correctly represents all four options, but is rather verbose and loses the nice structure
of the table. A related problem is that by the time we arrive at the last case the program has
evaluated 3 fairly complex boolean expressions.

We can write this so that only two evaluations of boolean variables are ever made, and those
without the added complication of negations or and operators. This is accomplished by nesting if
statements.

if (sunny) {
if (rich) {

activityDisplay.setText("outdoor concert");
}
else { // not rich

activityDisplay.setText("play ultimate");
}

}
else { // not sunny

if (rich) {
activityDisplay.setText("indoor concert");

}
else { // not rich

activityDisplay.setText("watch TV");
}

}
The organization of these nested if statements is actually quite similar to that of the table.

There is an outer if-else statement that determines whether or not sunny is true. This corresponds
to choosing either the first or second column of the table. Inside the outer if-part there is an if-else
statement that determines whether or not rich is true. This corresponds to figuring out which
row of the table applies. For example, if rich is false, the outcome should correspond to the first
column and second row of the table, and hence the activity should be “play ultimate”. The
else-part corresponding to it not being sunny is handled in a similar fashion.

Style Note: The nested if-else statements are indented from the outer ones in order to make
the code easier to read and understand. While Java compilers ignore the layout of code,2 human

2Java uses the term “whitespace” to refer to the spacing present between code elements. Java ignores all white
space, so you could theoretically write an entire program on one line, but this would lead to unreadable code.

92 CHAPTER 3. MAKING CHOICES

readers appreciate the cues of indenting to understand complex code like this.
Aside from the indenting, another thing that makes this code easy to understand is the inclusion

of comments. In particular, notice how each else clause includes comments indicating under which
conditions the else-part is executed. This has the advantage of making it absolutely clear to the
reader under what circumstances this code is executed. The more complex the conditional, the more
important these comments become. We strongly urge all programmers to include such comments.

Therefore, while using nested if-else statements yields code that is not quite as compact and
simple to understand as the table, it is much easier to see its correspondence to the table than
the version involving only else if clauses. Notice in particular that no matter what the values
of sunny and rich are, only two boolean variables are ever evaluated during the execution of this
code, so it is not only clearer but faster as well!

Exercise 3.9.1 Use nested conditionals to rewrite the onMouseClick method for tabulating votes
of four candidates from Section 3.5.

In Figure 3.9 we provide another example of complex choices being represented by nested if-else
statements. This class provides the code to simulate a complete game of craps. The rules of craps
are as follows:

The shooter rolls a pair of dice. If the shooter rolls a 7 or 11, it is a win. If the shooter
rolls a 2, 3, or 12, it is a loss. If the shooter rolls any other number, that number
becomes the “point”. The shooter then must roll the “point” value again before rolling
a 7. If the shooter rolls the “point” before a 7, it is a win. Otherwise it is a loss.

The program simulates a roll of the dice by using a random number generator every time the
user clicks the mouse. In order to implement the rules given above, we must organize the game
logic in a way that can be represented using if statements. Notice that the rules are quite different
depending on whether this is the player’s first throw or not. For instance, if it is the first throw
then rolling a 7 results in a win, but if it is a second or subsequent throw then 7 results in a loss.
Therefore we will organize the first level of conditional to lead to different nested conditionals based
on whether or not it is the first throw.

In order to make such a choice, the Craps class in Figure 3.9 declares a boolean variable,
newGame, to remember whether or not this is the first throw of a new game. This variable is
initialized to be true in its declaration because, by default, the user is starting a new game.

The outer if statement in the method onMouseClick has the following structure:

if (newGame) { // starting a new game

...
}
else { // continuing trying to make the point

...
}

The if-part of this code is a nested if statement with three branches, each of which encodes
the relevant actions to be taken based on the first roll of the dice. Recall that we saw a simplified
version of this example earlier in the chapter. The new code is reproduced below:

if (roll == 7 || roll == 11) { // 7 or 11 wins on first throw

status.setText("You win!");

3.9. NESTED CONDITIONALS 93

public class Craps extends WindowController {
// Generator for roll of a die
private RandomIntGenerator dieGenerator = new RandomIntGenerator(1,6);
private boolean newGame = true; // True if starting new game
private Text status, // Display status of game

message; // Display dice roll value
private int point; // number to roll for win

// Create status message on canvas
public void begin() {

status = new Text("", 10, 70, canvas);
}

// For each click, roll the dice and report the results
public void onMouseClick(Location pt) {

// get values for both dice and display sum
int roll = dieGenerator.nextValue() + dieGenerator.nextValue();
message.setText("You rolled a " + roll + "!");

if (newGame) { // starting a new game
if (roll == 7 || roll == 11) { // 7 or 11 wins on first throw

status.setText("You win!");
}
else if (roll == 2 || roll == 3 || roll == 12) { // 2, 3, or 12 loses

status.setText("You lose!");
}
else { // Set the roll to be the new point to be

made
status.setText("Try for your point!");
point = roll;
newGame = false; // no longer a new game

}
}
else { // continuing trying to make the point

if (roll == 7) { // 7 loses when trying for point
status.setText("You lose!");
newGame = true; // set to start new game

}
else if (roll == point) { // making the point wins!

status.setText("You win!");
newGame = true;

}
else { // keep trying

status.setText("Keep trying for " + point + " ...");
}

}
}

}

Figure 3.9: Craps class illustrating nested conditionals.

94 CHAPTER 3. MAKING CHOICES

}
else if (roll == 2 || roll == 3 || roll == 12) { // 2, 3, or 12 loses

status.setText("You lose!");
}
else { // Set the roll to be the new point to be made

status.setText("Try for your point!");
point = roll;
newGame = false; // no longer a new game

}
Rather than having a separate branch for each possible value of the roll of the dice, there are

only three. These branches correspond to winning, losing, and establishing a point to be made on
subsequent rolls. The variable newGame remains true in the first two branches, so it need not be
updated. Only the third branch requires setting newGame to false.

Let us now examine the else-part of the outer if statement. Like the if-part, this nested if
statement also has 3 branches, though the second and third conditions are quite different from
those that handle the first roll:

if (roll == 7) { // 7 loses when trying for point
status.setText("You lose!");
newGame = true; // set to start new game

}
else if (roll == point) { // making the point wins!

status.setText("You win!");
newGame = true;

}
else { // keep trying

status.setText("Keep trying for " + point + " ...");
}

In this statement, both of the first two choices result in setting newGame back to true because they
represent the end of a game with either a win or a loss. The third statement merely asks the player
to continue rolling.

Exercise 3.9.2 Try writing out this program using only a single if statement with many else
if clauses. It should become painfully clear why nested if statements are useful in situations with
complex logic.

3.10 Simplifying syntax in conditionals

You have probably noticed that many lines of code in this chapter have been taken up by curly
braces, which simply indicate the beginning and end of code blocks. Java allows the programmer
to drop these braces when a block includes only a single statement. For example, the first attempt
at coding the decision table for activities can be simplified as follows:

if (sunny && rich)
activityDisplay.setText("outdoor concert");

else if (!sunny && rich)

3.10. SIMPLIFYING SYNTAX IN CONDITIONALS 95

activityDisplay.setText("indoor concert");
else if (sunny && !rich)

activityDisplay.setText("play ultimate");
else // !sunny && !rich

activityDisplay.setText("watch TV");

Because each of the blocks contains only a single line of code, all of the curly braces can be dropped.
Similarly, the code for the same problem using nested if statements can be simplified to:

if (sunny)
if (rich)

activityDisplay.setText("outdoor concert");
else // not rich

activityDisplay.setText("play ultimate");
else // not sunny

if (rich)
activityDisplay.setText("indoor concert");

else // not rich

activityDisplay.setText("watch TV");

While it is easy to see why we can drop the curly braces around all of the invocations of
activityDisplay.setText(...), it may not be clear why we can drop the curly braces in the
second case. The reason we can drop them is that the if-part is a single nested if statement:

if (rich)
activityDisplay.setText("outdoor concert");

else // not rich

activityDisplay.setText("play ultimate");

While this statement looks complex, Java treats it as a single statement. As a result the curly
braces around it may be dropped. The same reasoning holds true for the lack of curly braces
around the else-part.

While dropping curly braces can result in more compact code, it does not always result in more
readable code, and the latter is certainly more important to anyone who might look at the code,
including the programmer! To see how removing curly braces can hurt readability, compare the
original nested if example and the more compact code above. The original has more white space,
making its structure more apparent.

Warning! Aside from hurting readability, dropping curly braces makes it easier for errors to
creep in when revising code. Suppose we begin with the following code:

if (score >= 60)
gradeDisplay.setText("Pass");

else
gradeDisplay.setText("Fail");

In this case it is fine and convenient to leave off the curly braces. However, suppose we now want
to add a new statement to the else clause to warn the student to work harder:

96 CHAPTER 3. MAKING CHOICES

if (score >= 60)
gradeDisplay.setText("Pass");

else
gradeDisplay.setText("Fail");
message.setText("You are now on academic probation!");

Although this looks perfectly fine, when it is executed the user is told that he or she is on academic
probation no matter what the score is!

The problem is that the Java compiler ignores the indenting of the program and instead merely
looks at the code. According to the rules stated above, if curly braces are not used, the blocks of
code associated with the if and else parts are taken to consist of only one line. Thus the above
code is equivalent to:

if (score >= 60) {
gradeDisplay.setText("Pass");

}
else {

gradeDisplay.setText("Fail");
}
message.setText("You are now on academic probation!");

rather than the intended code below:

if (score >= 60) {
gradeDisplay.setText("Pass");

}
else {

gradeDisplay.setText("Fail");
message.setText("You are now on academic probation!");

}
This mistake would be less likely to occur if the original version included the curly braces.

While this kind of error is easy to correct once it is discovered, detecting why your program does
not function properly is often very, very difficult in the first place. The loss of time in trying to
track down the error is usually significantly greater than any time saved in not inserting the curly
braces.

Yet another problem associated with leaving out curly braces arises when using nested if
statements. Suppose we write the following code:

if (sunny)
if (rich)

message.setText("Go to outdoor concert");
else

message.setText("Try something else");

From the indenting, it appears that the message “Try something else” should be displayed when
sunny is false. However, recall that Java compilers ignore indenting and all white space. Thus, to
the Java compiler, the above code is exactly the same as:

3.10. SIMPLIFYING SYNTAX IN CONDITIONALS 97

if (sunny)
if (rich)

message.setText("Go to outdoor concert");
else

message.setText("Try something else");

In this case, the indenting seems to indicate that the message “Try something else” is displayed
when sunny is true but rich is false.

Which of these is the correct interpretation? This problem is so common and confusing that it
has even been given a name, the dangling else problem. It occurs when there are two if clauses in
a row, followed by a single else clause.

The second indenting above represents the way Java will interpret the nested if statement.
The rule Java uses is that else-parts are always associated with the nearest possible if statement
unless, of course, curly braces indicate otherwise. Thus in this example the else is associated with
the second if.

Should you memorize this rule? We don’t think it is necessary. Instead, if you always use curly
braces to ensure that the code is interpreted the way that you want it, you will never experience
the dangling else problem. Thus to ensure the interpretation associated with the first indenting
above, you should write:

if (sunny) {
if (rich) {

message.setText("Go to outdoor concert");
}

}
else {

message.setText("Try something else");
}

To ensure the second interpretation, you should write:

if (sunny) {
if (rich) {

message.setText("Go to outdoor concert");
}
else { // not rich

message.setText("Try something else");
}

}
When you use curly braces, you are forced to write the statement in an unambiguous fashion

that the computer cannot misinterpret.
There is one time when it is very helpful to drop the curly braces. Suppose we have an if

statement nested within the else-part of another if statement as follows:

if (temperature >= 100) {
display.setText(‘‘Water is in a gaseous phase’’);

}
else {

98 CHAPTER 3. MAKING CHOICES

if (temperature >= 0) {
display.setText(‘‘Water is in a liquid phase’’);

}
else { // temperature < 0

display.setText(‘‘Water is in a solid phase’’);
}

}

If the temperature is above 100 degrees Celsius, water is in a gaseous phase. Otherwise another
if statement is used to determine whether or not the temperature is above 0 degrees to decide
whether water is liquid or solid.

With this structure we have an if-else nested in an else-part. Even the indenting gets complex
as each successive else-part is moved farther and farther to the right. Because the first else-part
consists of a single, albeit complex, if statement, we may drop the curly braces around it as follows:

if (temperature >= 100) {
display.setText(‘‘Water is in a gaseous phase’’);

}
else

if (temperature >= 0) {
display.setText(‘‘Water is in a liquid phase’’);

}
else { // temperature < 0

display.setText(‘‘Water is in a solid phase’’);
}

If we now move the if statement immediately following the else keyword up to be next to the
else and fix the indentations, we get:

if (temperature >= 100) {
display.setText(‘‘Water is in a gaseous phase’’);

}
else if (temperature >= 0) {

display.setText(‘‘Water is in a liquid phase’’);
}
else { // temperature < 0

display.setText(‘‘Water is in a solid phase’’);
}

These simplifications have given us the same else if structure that we saw in Section 3.4!
We see that there is really nothing special about the else if clause. It is simply obtained by

dropping the curly braces around a nested if statement that happens to be the only statement in
an else-part.

This is the only instance in which we recommend dropping the curly braces around an if or
else-part, as it is equivalent to creating a clearer, more concise else if clause. Otherwise we
strongly recommend that curly braces be used with all other if and else-parts, as it is far too easy
to make errors when they are omitted.

3.11. THE CONDITIONAL EXPRESSION AND SWITCH* 99

3.11 The conditional expression and switch*

Java contains two other conditional expressions and statements. One is a conditional expression of
the form

boolExp ? tVal : fVal.

It returns the value of either tVal or fVal, depending on whether boolExp evaluates to true or
false. It is hard to read and is used only rarely by Java programmers, so we encourage beginning
programmers not to use it.

The switch statement is much more useful, but unfortunately it has an error-prone syntax.
Thus we do not encourage our beginning students to use it until they are more comfortable with
Java syntax. For completeness, we include a brief introduction to switch in this section.

The switch statement is useful in situations where different actions are to be taken based on
the value of an expression. Here is a simple example that uses the value of an integer variable,
gradePoint, to display a message about the corresponding letter grade:

switch (gradePoint)
{

case 4:
letterGradeDisp.setText("You got an A.";
break;

case 3 :
letterGradeDisp.setText("You got a B.";
break;

case 2 :
letterGradeDisp.setText("You got a C.";
break;

case 1 :
letterGradeDisp.setText("You got a D.";
break;

case 0 :
letterGradeDisp.setText("You failed.";
break;

default:
letterGradeDisp.setText("Illegal value for gradePoint.";
break;

}
In the above example letterGrade is a variable of type char, while gradePoints is a variable of
type double. When this statement is executed, the value of letterGrade is obtained. If the value
of letterGrade is one of the values listed after the case keyword, then the statements after the
corresponding case up until the following break statement are executed. When the break statement
is executed, execution jumps to immediately after the closing brace for the switch statement. The
default clause indicates what should be done if the value of letterGrade does not correspond to
any of the values given after the case keywords.

There are a number of restrictions to the case statement that a programmer must be aware of.
First, the expression immediately after the switch keyword must have type either int or char. No
other possibilities for types are allowed, though the expression need not be a variable.

100 CHAPTER 3. MAKING CHOICES

Second, there may only be one value provided after each occurrence of case (and there may
not be any duplicates). If you wish to do the same thing with several distinct values of the switch
expression, you may stack up several case clauses. We included the following code in our initial
discussion of the craps example in Section 3.5

if (roll == 7 || roll == 11) { // 7 or 11 wins on first throw

status.setText("You win!");
}
else if (roll == 2 || roll == 3 || roll == 12) { // 2, 3, or 12 loses

status.setText("You lose!");
}
else { // play must continue

status.setText("The game continues");
}

We can rewrite this with a switch statement as follows:

switch (roll)
{

case 7:
case 11: // 7 or 11 wins on first throw

status.setText("You win!");
break;

case 2:
case 3:
case 12: // 2, 3, or 12 loses

status.setText("You lose!");
break;

default: // play must continue

status.setText("The game continues");
break;

}
Because there is no break between case 7 and case 11, if the value of roll is 7, it will begin
immediately after the case 7 and continue until it hits the first break, which is also the break for
case 11.

Finally, the most important restriction on switch statements is that the values after the case
keywords must be constants. That is, they either must be literals like ‘A’ and 17 or they must
be declared constants of type int or char (e.g., public static final int ...). In particular,
you may never put a relation in a case clause. Thus a clause like case x > 10 will generate a
compile-time error.

We caution students about using switch statements because it is easy to make errors in writing
these statements that the compiler will not report as errors. The most common error is to omit
the break statement at the end of a case. As illustrated in the example above, omitting the break
is sometimes desirable. However, if a break was omitted after the case for ‘A’ in the previous
example, the computer would blithely continue and assign the value of 3.0 to gradePoints, which
is certainly not what was wanted. Experience shows that this omission is very easy to make, so
programmers must be on guard for this.

3.12. SUMMARY 101

Another common error is to omit the default statement when it might catch an error. For
example, if the value of letterGrade was ‘G’ when the first switch statement executed, and the
default clause was omitted, then the erroneous value would not have been caught. In some cases,
(for example if the total number of values is incremented before the switch statement) this might
result in an incorrect value being computed (e.g., for a student’s gpa).

A switch statement is often used in a context where an if-else if compound statement
could also be used. If the decision on which block of statements to execute is based on equality
comparisons with constants, then a switch statement may be the best choice, both from the point
of view of readability and efficiency. (Though we do not discuss the reasons here, the switch
statement is often compiled to a form that is more efficient than an if-else if statement when
there are many cases to consider.)

However, we again caution the reader about the dangers of the switch statement syntax. The
idea of the switch statement is a good one, and other languages have similar constructs that
avoid the syntactic pitfalls of Java’s switch. However, we feel that the possibility of inadvertently
omitting the break without receiving an error message should make programmers very cautious
when using this contruct.

3.12 Summary

In this chapter we introduced conditional statements and the boolean data type. The major points
discussed were:

• The if-else statement is used when different code is to be executed depending on the value
of a condition.

• if statements without an else clause are used when extra code is to be executed in one case,
but nothing extra is needed in the other.

• if statements with else if clauses are used if there are more than two cases to be considered
in a choice. if statements with else if clauses may or may not be terminated with an
else-part, at the programmer’s option.

• Nested if statements can be used to represent complex logic.

• While curly braces can be omitted from if or else-parts that consist of only a single state-
ment, this practice is somewhat error prone. We strongly recommend keeping the curly braces
even when optional.

We have also discussed good and bad ways to write conditional statements. It is important to
remember that, although these constructs provide immense power and flexibility to programmers,
unless used intelligently they can produce confusing, unreadable code. If you follow the suggestions
we have made, however, you will almost never find yourself having this problem.

Here are the tips summarized for your convenience:

1. Don’t negate the result of evaluating a comparison operator – change the operator instead!
For example, replace !(a == b) by a != b, replace !(a > b) by a <= b, and replace !(a
<= b) by a > b. Use DeMorgan’s laws to simplify complex boolean expressions.

2. Never omit the if-part of a conditional. Negate the condition so what used to be in the
else-part now belongs in the if-part.

102 CHAPTER 3. MAKING CHOICES

3. Never use the boolean literals true or false in a condition.

Index

class, 23
instance, 25

instance, 25

parameter
formal, 27

variable
local, 37, 39

103

