
Chapter 2

Working with Numbers

In the preceding chapters, we have used numbers extensively to manipulate graphical objects. They
have been used to specify coodinates, dimensions and even colors. While we have used numbers
to describe what we wanted to to to various graphical objects, we have not done much of interest
with the numbers themselves. Numbers are of critial importance to Java and just as Java provides
operations to let us work with graphical objects it provides operations to let us work with numbers.
In this chapter we will explore some of these operations. We will see how to obtain numerical values
describing properties of existing objects, how to perform basic arithmetic computations, how to
work with numeric variables and how to display numeric values.

2.1 Introduction to Accessor Methods

When we perform a construction of the form

new Location(50, 150)

we combine two numbers to form a single Location object. What if we want to do the opposite?
That is, what if we have a Location object and we want to access the numerical values of the x and
y coordinates associated with that location? There are many situations where it would be useful
to have this ability.

Suppose, for example, that we decided to change the RisingSun program so that rather than
having to click the mouse to move the sun, the user could simply drag the mouse up and down
and the sun would follow it. The behavior we have in mind is similar to the way in which the
scrollbars found in many programs react to mouse movement. If you grab the scroll box displayed
in a vertical scrollbar you can move the scroll box up and down by moving the mouse, but you can
not move the scroll box to the left or right. Similarly, in the program we have in mind, even if the
mouse is dragged about in spirals, the circle that represent the sun should only move straight up
and down so that its y coordinate is always the same as the y coordinate of the mouse’s current
position.

In this new version of RisingSun, which we will name ScrollingSun, we will need to replace
the onMouseClick method from the previous version with an onMouseDrag method of the form:

public void onMouseDrag(Location mousePosition) {
sun.moveTo(...);

}

35

36 CHAPTER 2. WORKING WITH NUMBERS

import objectdraw.*;

import java.awt.*;

// A program that produces an animation of the sun rising and setting.

// The animation is driven by dragging the mouse.

public class ScrollingSun extends WindowController {
private FilledOval sun; // Circle that represents the sun

// Place the sun and some brief instructions on the screen

public void begin() {
sun = new FilledOval(50, 150, 100, 100, canvas);

new Text("Drag the mouse up or down", 20, 20, canvas);

}

// Move the sun to follow the mouse’s vertical motion

public void onMouseDrag(Location mousePosition) {
sun.moveTo(50, mousePosition.getY());

}

}

Figure 2.1: Program to make the sun scroll with the mouse

The question is what we should provide as parameter information to the moveTo method.

We want the sun to move to the position in the canvas whose x coordinate is the same as the
sun’s initial x coordinate, 50, and whose y coordinate is equal to the y coordinate of the mouse.
We can handle the x coordinate by simply typing 50 as the first parameter to the moveTo method.
The hard part is providing the y coordinate of the mouse’s position.

The Location object named mousePosition certainly contains enough information to deter-
mine the y coordinate of the mouse. Java lets us ask the Location object to provide this information
through a mechanism called an accessor method. Like the mutator methods discussed in the preced-
ing chapter, a small collection of accessor methods is associated with each class of objects. Objects
of the Location class supports two accessor methods named getX and getY.

To use an accessor method we write the name of the object that is the target of the request
followed by a period, the name of the method, and a parenthesized list of parameter values. So, to
position the sun appropriately in the onMouseDrag method we should say:

sun.moveTo(50, mousePosition.getY());

You should observer that this notation for using accessor methods is identical to the notation used
for mutator methods. In particular, in the case that no parameters are provided, you still need to
include a set of empty parentheses after the name of the method.

The complete text of the revised program is shown in Figure 2.1. With the exception of the
substitution of the onMouseDrag method for the onMouseClick method, the only difference between

2.2. ACCESSING NUMERICAL ATTRIBUTES OF THE CANVAS 37

Figure 2.2:

this program and the one shown in Figure 1.7 is that the instructions displayed by the begin method
have been modified.

Accessor methods are also associated with objects of the graphics classes introduced in the last
chapter. The location and dimensions of a graphical object can be accessed using methods named
getX, getY, getWidth and getHeight. Like the methods discussed above, these accessor methods
provide numeric information about an object. In addition, there are accessor methods associated
with graphical objects that provide other forms of information. There is a method named getColor

that returns the Color of a graphical object. Similarly, getLocation returns a Location object
describing an object’s current position.

2.2 Accessing Numerical Attributes of the Canvas

In the last chapter, to keep things simple, we assumed that we knew the size of the windows in
which our programs would run. For example, the DrawGrid program presented in Section ?? draws
a grid like the one shown in Figure 2.2. The bars in this grid are created by constructions of the
form:

new FilledRect(verticalCorner, 5, 200, canvas);

new FilledRect(horizontalCorner, 200, 5, canvas);

placed within the program’s onMouseClick method. The vertical rectangles created by these con-
structions are 200 pixels tall and the horizontal rectangles are 200 pixels wide. The resulting
drawing looks fine if the window is exactly 200 by 200, which is the window size we showed in the
all figures that illustrated the drawings the program would produce, but they would not look right
if the window was larger. If the window was wider, we would want the program to draw wider
horizontal rectangles. If the window was taller, we would want taller vertical rectangles.

When we write a program, we can not be certain of the size of the window in which it will run.
The size of the window is not determined by our Java code. For the types of programs discussed
in this text, the window size is determined by specifications written in a different language, HTML
or Hypertext Markup Language, the language used to describe the content of web pages.

Given that the canvas size is unpredictable, it would be best to write programs that determine
the actual size of the canvas while running and adjusts the objects they draw accordingly. We

38 CHAPTER 2. WORKING WITH NUMBERS

have seen that the canvas provides a mutator method named clear. It also supports two accessor
methods named getWidth and getHeight which allow a program to determine the dimensions of
the drawing area. Like the getX and getY methods associated with Locations, these methods do
not expect any parameter values. To produce a version of DrawGrid that would work correctly in
any size canvas, we would simply replace the occurrences of the number 200 in the constructors
shown above with appropriate uses of accessor methods to obtain the following code:

new FilledRect(verticalCorner, 5, canvas.getHeight(), canvas);

new FilledRect(horizontalCorner, canvas.getWidth(), 5, canvas);

We mentioned above that the actual window size used by our programs is determined by a
specification written in the language used to construct web pages, HTML. The programs we have
been writing are all examples of what are called applets. They are Java programs that can be
embedded within the contents of a web page. A fragment of HTML that could be used to include
our DrawGrid program in a web page is shown below:

<applet archive="JavaClasses.jar"

code="DrawGrid.class"

width=200 height=200>

</applet>

If a web browser was used to visit a web page whose HTML description contained this specification,
our DrawGrid program would be displayed in a 200 by 200 pixel rectangle within the larger web
browser window. If the person who constructed the web page had instead included the specification

<applet archive="JavaClasses.jar"

code="DrawGrid.class"

width=400 height=300>

</applet>

then the program would be displayed in a 400 by 300 pixel region. Even if the environment you use
to write Java programs does not use a web browser to run your programs, it probably does depend
on a file containing at least a fragment of HTML like the one shown above to decide how big the
window your program runs in should be. The key thing to note is that the individual who writes
the HTML gets to specify the width and height of the program’s canvas.

2.3 Expressions and Statements

It is important to observe that accessor methods serve a very different function than mutator
methods. A mutator method instructs an object to change in some way. An accessor method
requests some information about the object’s current state.

Simply asking an object for information is rarely worthwhile by itself. We also need to tell Java
what to do with the information requested. We would never write an instruction of the form:

mousePosition.getY();

Such an instruction would tell Java to ask the Location named mousePosition for some infor-
mation but make no use of the information. Instead, we use accessor methods in places within
a program where Java expects the programmer to describe an object or value. For example, an
accessor methods can be used on the right hand side of assignment statements to describe the value
that should be associated with the name on the left side of the equal sign as in the statement

2.3. EXPRESSIONS AND STATEMENTS 39

lastY = mousePosition.getY().

or to describe a parameter to a construction as in

new FilledOval(10, mousePosition.getY(), 2, 2, canvas);

or to describe the parameters for another method, like moveTo.
This notion of a phrase that describes an object or value is important enough to deserve a

name. Such phrases are called expressions. We have already seen several different sorts of phrases
that Java recognizes as examples of expressions: numeric literals, invocations of accessor methods,
constructions, and variable or parameter names.

Where numeric information is needed, we have often explicitly included the numbers to use by
typing numeric literals like “50” and “150” as the invocation

box.moveTo(50, 150);

In other situations, we have invoked accessor methods to describe numeric values as in

box.moveTo(50, point.getY());

Where non-numeric information was needed, we have either used a construction to create the needed
information as in

sun.setColor(new Color(200, 100, 0));

or provided a name that was associated with the desired object as in

sun.setColor(purple);

Thus, numeric constants, instance variable names, constructions, and invocations of accessor meth-
ods can all be used as expressions.

In any context where it is necessary to describe an object or value, Java will accept any of
the forms of expressions we have introduced. In a context where Java expects the programmer to
describe a Color, we can equally well use a name associated with a Color, a Color construction or
an invocation of the getColor accessor method. Java is, however, picky about the type of value
described by an expression. In a context where Java expects us to provide a Color, we can’t provide
an expression that describes a number or a Location instead.

The invocation of a mutator method such as:

sun.move(0,-5);

is an example of a phrase that might appear within a Java program that is not an expression. This
phrase contains subparts that are expressions, the numeric literals 0 and -1, but is not an expression
itself because it does not describe a value. Instead of describing a value, this phrase instructs Java
to perform an action. Such phrases are called instructions or statements. Statements instruct Java
to perform actions that either produces output visible to the user or alters the internal state for the
computer in a way that will affect the future behavior of the program. The body of each method
we define in a Java program must be a sequence of statements.

We have seen three types of statements at this point. The invocation of a mutator method, like
the example

sun.move(0,-5);

40 CHAPTER 2. WORKING WITH NUMBERS

shown above, is one type of statement. The second type of statement is the assignment statement.
It instructs the computer to perform the action of associating a name with an object or value. Note
that the phrase on the right side of an assignment must be an expression.

The third type of statement we have encountered is the construction. We have used instructions
like:

new Text("Pressed", mousePosition, canvas);

to place graphics on the canvas. We have already stated, however, that a construction is an
expression. Which is it? The answer is both. A construction like the one shown above describes
an object. Therefore it can be used in contexts where expressions are required. At the same time,
the construction of a graphical object involves the action of changing the contents of the display.
Accordingly, the construction by itself can be viewed as a statement.

There are constructions that merely describe an object without having an associated action
that affects any aspect of the state of the program. For example,

new Location(10, 20);

It does not make much sense to use such a construction as a command, because a program that
contained such a command would behave the same if the command were removed. Java, however,
does not prevent the programmer from writing such nonsense. In fact, Java will allow the pro-
grammer to use many kinds of expressions as if they were commands by simply placing semi-colons
after the expressions. In a sensible program, however, the only expressions we have introduced so
far that make sense as commands are constructions of graphical objects.

2.4 Arithmetic Expressions

Sometimes it is very useful to be able to describe a numeric value to Java by providing a formula
to compute the number. For example, to describe the x coordinate of a point slightly to the left of
the current mouse position we might say something like:

mousePosition.getX() - 10

Java allows the programmer to use such formulae and calls them arithmetic expressions. As an
example of the use of arithmetic expressions, we can make some additional improvements to our
ScrollingSun program.

Using arithmetic expressions involving the getWidth and getHeight methods of the canvas,
we can revise the RisingSun program so that it adjusts the size and position of the circle that
represents the sun based on the size of the canvas. To maintain the proportions used in the
original program:

• the diameter of the circle should be half the width of the canvas,

• the left edge of the circle should fall one quarter of the width of the canvas from the edge of
the canvas,

• initially, the top of the circle should be placed so that half the circle is visible above the
horizon. To do this, the top of the circle should be one half of its diameter above the bottom
of the canvas.

2.4. ARITHMETIC EXPRESSIONS 41

It would also be appropriate to center the text of the instructions horizontally on the canvas. The
indentation of the text from the left edge of the canvas should be equal to that on the right side.
So, it should be half of the difference between the width of the text and the width of the canvas.

Each of these verbal descriptions can be turned into a formula, which can then be used in the
program. The diameter of the circle, which is the value that should be specified as the width and
height in the FilledOval construction that creates it, would be decribed as

canvas.getWidth()/2

The x coordinate value for the left edge of the circle would be given by the formula

canvas.getWidth()/4

The y coordinate for the top of the circle would be described as

canvas.getHeight() - canvas.getWidth()/4

Finally, the x coordinate for the left edge of the instructions should be

(canvas.getWidth() - instructions.getWidth()) / 2

The complete ScrollingSun program using such formulae is shown in Figure 2.3. In most cases,
we have simply replaced a number used as an expression by the appropriate formula. The only
slight complication is the code to center the text. We can not use the getWidth method associated
with the Text object until it has been constructed. So, when we construct the Text we just use 0
as its x coordinate value. Then, once it exists we use the getWidth method to figure out how big
it is. Finally, we use moveTo to place the Text where it belongs.

The arithmetic expressions shown in the preceding examples use only two of the arithmetic
operations, subtraction and division. It is also possible to use multiplication and addition. The
symbols used to indicate addition, subtraction and division are the standard symbols from math-
ematics: +, -, and /. Multiplication is represented using an asterisk, *. Thus, to say “2 times the
width of the canvas” one would write

2 * canvas.getWidth()

The following table summarizes the most commonly used arithmetic operators in Java.

+ addition

- subtraction

* multiplication

/ division

2.4.1 Ordering of Arithmetic Operations

Two of the arithmetic expressions used in our revised version of the the rising sun program illustrate
an issue a programmer must be aware of when writing such expressions: the rules used to determine
the order in which operations are performed. The first of these is the expression

(canvas.getWidth()-instructions.getWidth())/2

which is used in the begin method to position the instructions. The second determines the initial
y coordinate for the top of the sun:

42 CHAPTER 2. WORKING WITH NUMBERS

// A program that produces an animation of the sun rising and setting.

// The animation is driven by dragging the mouse button.

public class ResizingSun extends WindowController {
private FilledOval sun; // Circle that represents the sun

private Text instructions; // Display of instructions

// Place the sun and some brief instructions on the screen

public void begin() {
sun = new FilledOval(canvas.getWidth()/4,

canvas.getHeight() - canvas.getWidth()/4,

canvas.getWidth()/2,

canvas.getWidth()/2, canvas);

instructions = new Text("Drag the mouse up or down",

0, 0, canvas);

instructions.moveTo((canvas.getWidth()-instructions.getWidth())/2, 20);

}

// Move the sun to follow the mouse’s vertical motion

public void onMouseDrag(Location mousePosition) {
sun.moveTo(canvas.getWidth()/4, mousePosition.getY());

instructions.hide();

}

// Move the sun back to its starting position and redisplay

// the instructions

public void onMouseExit(Location point) {
sun.moveTo(canvas.getWidth()/4, canvas.getHeight() - canvas.getWidth()/4

);

instructions.show();

}
}

Figure 2.3: Program to make the sun scroll with the mouse

2.4. ARITHMETIC EXPRESSIONS 43

canvas.getHeight() - canvas.getWidth()/4

Both involve a subtraction and a division. The first, however, uses parentheses to make it clear
that the subtraction should be performed first and that the result of the subtraction should be
divided by 2. The correct interpretation of the second expression isn’t as clear. In fact, Java will
first divide the width of the canvas by 4 and then subtract the result of this division from the height
of the canvas. In the absence of parentheses that dictate otherwise, Java always performs divisions
in an expression before subtractions. Thus, the second formula is equivalent to the formula:

canvas.getHeight() - (canvas.getWidth()/4)

The rule that division is performed before subtraction is an example of what is called a prece-

dence rule. When evaluating simple arithmetic expressions, Java follows two basic precedence
rules.

1. Perform divisions and multiplications before additions and subtractions. We therefore say
that division has higher precedence than addition but that division and multiplication are of
equal precedence. Similarly, addition and subtraction are of equal precedence.

2. When performing operations of equal precedence (i.e. additions and subtractions or divisions
and multiplications) perform the operations in order from left to right as written.

Parentheses can be used to override these precedence rules as seen in the first example above. Any
part of a formula enclosed in parentheses will be evaluated before its result can be used to perform
operations outside the parentheses.

These rules should not be new to you. The same rules are followed when interpreting formulae
written in standard mathematics. Remembering them is more important when programming,
however, because the way programs are written provides us with fewer means to make the intended
interpretation of a formula clear. If we are writing a formula on paper or using a good word
processor we can spread the formula over several lines to make things clear. For example, the two
formulae shown above could be written as:

width− height

2

and

height − width

4

The order in which the operations are to be performed in these expressions is clear even though no
parentheses are included. When we are forced to write all the symbols in a formula on one line, as
we are in Java and other programming langauges, it is much easier to accidentally write a formula
in which the order of evaluation dictated by the precedence rules is different from the order we had
in mind.

The good news is that Java does not mind if you use extra parentheses. Therefore, while you
should do your best to become familiar with the two precedence rules given above, whenever it will
make an expression’s meaning clearer, do not hesitate to use parentheses. For example, Java will
treat the expressions

canvas.getHeight() - canvas.getWidth()/4

and

44 CHAPTER 2. WORKING WITH NUMBERS

canvas.getHeight() - (canvas.getWidth()/4)

as equivalent. So, if you find yourself writing an expresison like the first example and are not quite
sure which operator will be evaluated first, feel free to add parentheses like those in the second
example to make your intent clear to the computer and to anyone who reads your code later.

2.5 Numeric Instance Variables

In the previous chapter, we saw that it is sometimes necessary to associate instance variable names
with Locations or other objects to enable one method to communicate information to commands
in another method. Unsurprisingly, it is often useful to associate names with numeric values in a
similar way. We can illustrate this by adding yet another feature to our RisingSun program.

As the real sun rises, the sky becomes brighter and brighter. Suppose we wanted to try to
simulate this in our program. For this example we will return to the original interface where the
user clicks repeatedly to make the sun rise. Now, when the sun is near the bottom of the screen, we
would like the background to be filled with a dark shade of gray. We can do this by constructing
a FilledRect as big as the canvas and setting its color to an approriate shade of gray. As the
user clicks, we can make the background become lighter by using setColor to replace the original
shade of gray with lighter and lighter shades until it is eventually white.

We have seen that each color is described by a triple of numbers describing the amounts of red,
green, and blue in the color. Shades of gray correspond to triples in which all three values are the
same. The bigger the number used, the brighter the shade. So,

new Color(0, 0, 0)

describes black,

new Color(50, 50, 50)

describes a dark shade of gray,

new Color(200, 200, 200)

would be a fairly light shade of gray and

new Color(255, 255, 255)

is white.

To control the brightness of the background, we would like to associate an instance variable
name with the number to be used to generate the shade of gray currently desired. We will use the
name brightness for this variable. This name can then be used to construct shades of gray for
the background by using the contruction:

new Color(brightness, brightness, brightness)

To use such a name, of course, we must first declare the name and then add assignment statements
to ensure that it is associated with the correct number at each point in time as the program executes.

In each instance variable declaration we must precede the name declared by the name of the type
of information with which it will be associated. Accordingly, to declare a variable like brightness,
we need to know the name Java associates with the collection of numeric values.

2.5. NUMERIC INSTANCE VARIABLES 45

One might expect Java to use a single name like Number or Numeric to describe the collection of
all numeric values. Instead, Java distinguishes between numbers that include fractional components
like 3.14 and .95, and integers like 17 and -45. It uses the name double to describe numbers with
fractional components and the name int to describe integers. In the next section, we will discuss
why Java distinguishes between integers and non-integers in this way. For now, we merely observe
that the values associated with brightness in our program will always be integers. Accordingly,
to declare the name brightness we could say

private int brightness;

In the begin method, we will associate the name brightness with a number corresponding to
a dark shade of gray by including an assignment statement of the form:

brightness = 50;

Each time the user clicks the mouse, we want to associate a larger number with brightness. We
can do this by including the assignment statement

brightness = brightness + 1;

in onMouseClick. This statement tells the computer to take the current value associated with the
name brightness, add one to it, and then associate the name brightness with the result. The first
time the mouse is clicked, brightness will be associated with the value 50 specified in the begin

method. The result of adding 1 to 50 is 51. So, after the assignment

brightness = brightness + 1;

is executed, brightness will be associated with the value 51. The next time the mouse is clicked,
Java will add 1 to the new value of brightness, 51, and set it equal to 52. Thus, each time the
mouse is clicked, the value of brightness will become one greater and the color generated by the
contruction

new Color(brightness, brightness, brightness)

will become a little bit brighter.

The action of increasing the value associated with a numerical variable by one as described by
the assignment

brightness = brightness + 1;

is so common in programs that Java provides a special shorthand notation that is equivalent to this
assignment. We can instruct Java to increase the value associated with a name by one by simply
following the name by a pair of adjacent plus signs as in:

brightness++;

The notation

brightness--;

can also be used to tell Java to reduce the value associated with a numeric variable by one.

With these details we can complete the program. The code is shown in Figure 2.4.

46 CHAPTER 2. WORKING WITH NUMBERS

// A program to simulate the brightening of the sky at sunrise

public class LightenUp extends WindowController {

private FilledRect sky; // background rectangle

private int brightness; // brightness of sky’s color

private FilledOval sun; // Circle that represents the sun

public void begin() {
// Create the sky and make it a dark gray

brightness = 50;

sky = new FilledRect(0, 0, canvas.getWidth(), canvas.getHeight(), canvas

);

sky.setColor(new Color(brightness, brightness, brightness));

// Place the sun and some brief instructions on the screen

sun = new FilledOval(50, 150, 100, 100, canvas);

new Text("Please click the mouse repeatedly", 20, 20, canvas);

}

// Brighten the sky and move the sun with each click

public void onMouseClick(Location point) {
brightness = brightness + 1;

sky.setColor(new Color(brightness, brightness, brightness));

sun.move(0,-5);

}
}

Figure 2.4: Using a numeric instance variable

2.6. INITIALIZERS 47

2.6 Initializers

In the preceding sections, we have seen that we must complete two steps before using a variable
name to refer to a number or any other type of information. We must include a declaration telling
Java that we plan to use the name and telling Java the type of information with which the name
will be associated during our program. We must also include an assignment statement associating
a particular meaning with the name before using it.

Although declaration and assignment are logically separate actions, it is often useful to combine
them. When we declare a variable, we often know what value we will assign to it first. Putting
a variable’s declaration and the assignment of its initial value together (and topping it off with a
comment describing the purpose of the variable being declared) can often improve the readability
of a program.

To make this possible, Java allows the programmer to include an initial value for a variable in
the variable’s declaration. The result looks like an assignment statement preceded by private and
the name of the type of the variable. It is, however, interpreted as a declaration by Java.

In the example considered in the preceding section, the initial value of the variable named
brightness is set to 50 in the begin method. Using Java’s notation for initialized variable dec-
larations, we could remove this assignment from the begin method and rewrite the variable’s
declaration as

private int brightness = 50; // brightness of sky’s color

Although initialized declarations are most often used with numeric variables, Java will allow
you to include an initializer in the declaration of a variable of any type. For example, if we wanted
to keep a name associated with the current color of the sky, we might declare this new variable as

private Color skyShade = new Color(brightness, brightness, brightness);

As this example suggests, Java will allow you to use expressions of many forms to describe the
initial value to be associated with a variable in its declaration. The main restriction is that any
names used in the expression must already be declared and associated with a value. For example,
the declaration shown for skyShade above would only be valid if preceded by a declaration of
brightness. Furthermore, it will only function as desired if brightness is assigned its initial
value in its declaration (as shown above) rather than in the begin method (as in the original
version of the program).

Warning! The predefined name canvas is not initialized until just before your begin method is
invoked. Java handles initialization expressions included in declarations of instance variables before
this happens. Therefore, it is generally not safe to use the name canvas in any initializer within
your WindowController class. In particular, you could not eliminate the assignments for sky and
sun that appear in the begin method of the program in Figure 2.4 by declaring these variables
with initializers because the expressions that are required to initialize the variables correctly (i.e.
the expressions included in the begin method) reference the canvas.

2.7 Why double?

In Section 2.5, we mentioned that Java distinguishes between at least two collections of numeric
values, ints and doubles. In this section we will discuss the reasons Java makes this distinction
and the impact the distinction has on a programmer when working with numbers.

48 CHAPTER 2. WORKING WITH NUMBERS

To understand why Java distinguishes integers from other numbers, consider the following two
problems. First, suppose you and two companions are stranded in a life boat. Among your supplies,
you have 55 gallons of water. You decide that this water should be divided equally among the three
of you. How much water does each person get to drink? (Go ahead. Take out your calculator.)

Now, suppose that you are the instructor of a programming course in which 55 students are
currently registered and you want to assign the students to 3 afternoon laboratory sections. How
many students should be assigned to each section?

With a bit of luck, your answer to the first question was 18 1/3 gallons. On the other hand,
even though the same numbers, 55 and 3, appear in the second problem, “18 1/3 students” would
probably not be considered an acceptable answer to the second problem (at least not by the student
who had to be chopped in thirds to even things out). A better answer would be that there should
be two labs of 18 students and a third lab with 19 students.

The point of this example is that there are problems in which fractional results are acceptable
and other problems where we know that only integers can be used. If we use a computer to help
us solve such problems, we need a way to inform the computer whether we want an integer result
or not.

In Java, we do this by choosing to use ints or doubles. For example, if we declare three instance
variables:

private double gallons;

private double survivors;

private double waterration;

and then execute the assignment statements

gallons = 55;

survivors = 3;

waterration = gallons/survivors;

the number associated with the name waterration will be 18.33333... On the other hand, if we
declare the variables

private int students;

private int labs;

private int labsize;

and then execute the assignments

students = 55;

labs = 3;

labsize = students/labs;

the number associated with labsize will be 18. In the first example, Java can see that we are
working with numbers identified as doubles, so when asked to do division, it gives the answer as a
double. In the second case, since Java notices we are using ints, it gives us just the integer part
of the quotient when asked to do the division.

Of course, the answer we obtain in the second case, 18, isn’t quite what we want. If all the labs
have exactly 18 students, there will be one student excluded. We would like do something about
such leftovers. Java provides an additional operator with this in mind. When you first learned
to perform division in school, you probably had not yet learned about decimal notation. So, you

2.7. WHY DOUBLE? 49

were taught that the result of dividing 55 by 3 was 18 with a remainder of 1. That is, you were
taught that the answer to a division problem had two parts, the quotient and the remainder. When
working with integers in Java, the “/” operator produces the quotient. The percent sign can be
used as an operator to produce the remainder. Thus, while 55/3 will yield 18 in Java, 55%3 will
yield 1. Used in this way the percent sign is called the mod or modulus operator. We could use
this operator to improve our solution to the problem of computing lab sizes by declaring an extra
variable

private int extraStudents;

and adding the assignment

extraStudents = students % labs;

2.7.1 Arithmetic with doubles and ints

The distinction between doubles and ints in Java is a feature intended to allow the programmer
to control the way in which arithmetic computations are performed more precisely. As a beginning
programmer, however, you should be warned that this feature may produce some strange surprises.

Suppose that we want to construct an oval whose width is three quarters of the width of the
canvas and we know that the width of the canvas is 300. According to the rules of normal arithmetic,
it should not matter whether we say

300*3/4

or

300*(3/4)

In Java, however, the first version will produced the expected result, 225, while the second version
will produce the number 0. In the first example, following its precedence rules leads Java to first
multiply 300 by 3 yielding 900 and then to divide by 4 obtaining 225. In the second example,
Java first divides 3 by 4. Since both of these numbers look like ints to Java, it decides the correct
answer is 0 with a remainder of 3 and returns the quotient, 0, as the result of the division. Then,
300 times the result of this division, 0, yields 0.

To avoid unexpected results like this, one must understand how Java decides when we desire
an integer result and when we would prefer to work with numbers with fractional components.

The first rule is simple. When we write numbers out explicitly, Java decides whether the number
is an int or a double based on whether it contains a decimal point. Therefore, 3 is an int but 3.0
is a double. This can make a big difference. If we rewrite the second example above as

300.0*(3.0/4.0)

it will produce 225.0 rather than 0 as its result.
Second, one must understand that while Java distinguishes ints and doubles, it recognizes that

they are related. In particular, in contexts where one should technically have to provide a double,
Java will allow you to use an int. This was already illustrated in the example above where we
declared an instance variable

private double gallons;

and then wrote the assignment

50 CHAPTER 2. WORKING WITH NUMBERS

gallons = 55;

The number 55 is identified by Java as an int. The variable is declared to be a double. If a variable
were declared to refer to a Location, Java would reject any assignment that attempted to associate
the variable with anything other than a Location. Java will, however, accept an assignment in
which an int is assigned to a variable that is supposed to refer to a double.

Java is willing to convert ints into doubles because it knows there is only one reasonable way to
convert an int into a double. It simply adds a “.0” to the end of the int. On the other hand, Java
knows that there are several ways to convert a double into an int. It could drop the fractional part
or it could round. It can not tell the correct technique to use without understanding the context
or purpose of the program. Java refuses to convert a double into an int unless explictly told
how to do so using mechanisms that we will discuss later. Therefore, given the instance variable
declaration

private int students;

Java would reject the assignment

students = 18.333;

as erroneous. It would also reject the assignment

students = 55.0;

Even if the only digit that appears after the decimal point in a numeric literal is 0, the presence of
the decimal point still makes Java think of the number as a double.

Java’s willingness to convert ints to doubles is also a factor in understanding how it decides
whether the result of an arithmetic operation should be an int or a double. If both operands of
an arithmetic operator are of the same numeric type, then Java will produce a result of this type.
Thus, adding two ints produces an int and dividing a double by another double yields a double.
The interesting question is what does Java do if one operand is an int and the other a double as
in

3/4.0

The answer is that when Java sees an operator with two operands of different types, it tries to
convert one of the operands to the other type. Since it likes to convert ints to doubles but not
the other way around, if an operation involves one int and one double, Java converts the int into
a double (by adding .0) and then performs the operation yielding a result that is also a double.
Accordingly, 3/4.0 would evaluate to 0.75.

The following table summarizes Java’s procedure for determining the type of result an operator
should produce given the types of its two operands. The type of the first operand determines the
row of the table that applies. The type of the second operand determines the column of the table
used. The contents of the cell where the appropriate row and column meet specifies the type of
the result. Note that the only case where the result produced is an int is when both operands are
integers.

int double

int int result double result

double double result double result

2.7. WHY DOUBLE? 51

This means that once you introduce a number which is a double into a computation, you are
likely to end up with a result that is a double. Even if the result has a fractional part that is 0,
Java will not automatically convert this double into an int. This can lead to unexpected errors
in your program. For example, several of the accessor methods associated with graphical objects
including getX, getY, getWidth, and getHeight return values that are doubles. Accordingly, the
expression in the assignment statement

midPointX = (currentPosition.getX() + previousPosition.getX()) / 2

which might be used to compute the x coordinate of the midpoint of the line between two points
on the canvas, would produce a double. This means that if you had defined the variable to hold
the result as

private int midPointX;

Java would reject the assignment as an error. Instead, the variable would have to be declared as

private double midPointX;

2.7.2 Selecting a numeric type

The examples and rules above suggest that a reasonable guideline for dealing with the difference
between ints and doubles is to use doubles whenever possible. Most of the surprising examples
you are likely to encounter involve integer division. In addition, Java will sometimes refuse to
accept an assignment of a value to an variable declared as an int, but will always allow you to
assign any numeric value to a variable declared as a double, even if it has to turn an int into a
double to make the assignment possible.

Of course, there are contexts where you will have to use ints. First, as suggested in the
introduction to this section, there are programming problems where the only acceptable results are
integers. You will have to use ints in such programs. Also, there are certain contexts where Java
will demand an int. The three numbers provided in a Color construction, for example, must be
ints.

2.7.3 Why are reals called double?

As a final topic in this section, we feel obliged to try to explain why Java chooses to call non-integers
doubles rather than something like real or rational. The explanation involves a bit of history
and electronics.

To allow us to manipulate numbers in a program, a computer’s hardware must encode the
numbers we use in some electronic device. In fact, for each digit of a number there must be a tiny
memory device to hold it. Each of these tiny memory devices costs some money and, not long ago,
they cost quite a bit more. So, if a program is only working with small numbers, the programmer
can reduce the hardware cost by telling the computer to only set aside a small number of memory
devices for each number. On the other hand, when working with larger numbers, more memory
devices should be used.

On many machines, the programmer is not free to pick any number of memory devices per
number. Instead only two options are available: the “standard” one, and another that provides
double the number of memory devices per number. The name of the Java type double derives
from such machines.

52 CHAPTER 2. WORKING WITH NUMBERS

While the cost of memory has decreased to the point where we don’t need to worry that using
doubles might increase the amount of hardware memory our program uses, the name does serve to
point up an important aspect of computer arithmetic. Since each number represented in a computer
is stored in physical devices, the total number of digits stored is always limited.

In the computer’s memory, numbers are stored in binary. Thirty one binary digits are used to
store the numeric value of each int. One additional digit is used to encode the sign. As a result,
the values that can be processed by Java as ints range in value from -2,147,483,648 (= −231) to
2,147,483,647 (= 231 − 1). If you try to assign a number outside this range to an int variable,
Java is likely to simply throw away some of the digits yielding an incorrect result. If you need to
write a program that works with very large integers, there is another type that is limited to integer
values but that can handle numbers with twice as many digits. This type is called long. There
is also a type named short that uses half as much memory as int to represent a number. The
examples in this text will not use long or short.

The range of numbers that can be stored as double values is significantly larger than even
the long type. The largest double value is approximately 1.8x10308 and the smallest double is
approximately −1.8x10308. This is because Java stores double values as you might write numbers
in scientific notation. It rewrites each number as a value, the mantissa, times 10 raised to an
appropriate exponent. For example, the number

$32,953,923,804,836,184,926,273,582,140,929.584,289$

might be written in scientific notation as

$3.295,392,380,483,618,492,627,358,214,092,958,428,9 x 10^31$

Java, however, does not always encode all the digits of the mantissa of a number stored as a
double. The amount of memory used to store a double enables java to record approximately 15
significant digits of each number. Thus, Java might actually record the number used as an example
above as

$3.295,392,380,483,618 x 10^31$

This means that if you use numbers with long or repeating sequences of digits, Java will actually
be working the approximations of the numbers you specified. As a result, the results produced will
also be slightly inaccurate. Luckily, for most purposes, 15 digits of precision is sufficient.

There is one final aspect of the range of double values that is limited. First, the smallest
number greater than 0 that can be represented as a double is approximately 5x10−324. Similarly,
the largest number less than 0 that can be represented as a double is approximately −5x10−324.

2.8 Displaying Numeric Information

We have seen how we can use the computer’s ability to work with numbers to produce better
drawings on the computer’s screen. Sometimes, however, it is the numbers themselves rather than
any drawing that we really want to see. The main purpose of many computer programs is to
perform numerical calculations. Such programs are used to determine your taxes, determine your
GPA, estimate the time required to travel from one point to another and solve many other kinds of
numerical problems. Such programs often display the numbers they compute rather than a drawing
on the screen. Even programs that are not primarily focused on numerical computations often need
to display numerical information. For example, a word processor might need to display the current

2.8. DISPLAYING NUMERIC INFORMATION 53

page number. With all these examples in mind, in this section we will describe two mechanisms in
Java that can be used to display numerical information.

As a very simple first example, let’s make the computer count. You probably don’t remember it,
but at some point in your early childhood you most likely impressed some adult by demonstrating
your remarkable ability to count to 10 or 20 or maybe even higher. To enable the computer to
produce an equally impressive demonstration of its counting abilities, we will describe a program
that will count. It will start at 1 and move on to the next number each time the mouse is clicked.
The current value will be displayed on the computer’s screen.

2.8.1 Displaying numbers as Text

We have already introduced one mechanism that can be used to display numbers on the screen.
We just didn’t mention that it could be used with numbers at the time. In the very first program
in Chapter 1, we used a construction of the form:

new Text("I’m Touched.", 40, 50, canvas);

and explained that the Text construction requires four parameters:

• the information to be displayed,

• x and y coordinate values specifying the upper left corner of the region in which the informa-
tion should be displayed, and

• the canvas.

In all the examples of Text constructions we have seen thus far, the first parameter has always been
a sequence of characters surrounded by quotes. In fact, however, Java will accept many different
types of information, including numerical information, for the first parameter of a Text construction
and will display whatever information is provided in textual form. “Tex” in Java is not just letters,
but any information that can be encoded using the symbols on a typical keyboard including the
digits and punctuation marks.

In particular, if we define a variable

private int theCount = 1;

with the intent of using it to count up from one, and then we execute a construction of the form:

new Text(theCount, 100, 100, canvas);

Java will display the current value of the variable theCount, 1, at the point (100,100) in the
program’s window as shown in Figure 2.5.

Of course, displaying the number 1 isn’t counting. The program we want to construct should
start by displaying 1, but the first time the user clicks the mouse, we want to replace 1 by 2. On
the next click, we want to replace 2 by 3 and so on.

In case you didn’t notice, one of the examples considered in this chapter already demonstrates
how to teach a computer to count. In the version of the rising sun program in which the background
became brighter as the sun rose, the operations we performed on the variable named brightness

essentially told the computer to count upwards starting at 50. The instruction that we used to
progress through the different values of brightness was

brightness = brightness + 1;

54 CHAPTER 2. WORKING WITH NUMBERS

Figure 2.5: A computer counting program takes its first step

A very similar assignments statement involving the variable theCount:

theCount = theCount + 1;

is what we need to complete the counting program described above.
Such a counting program is shown in Figure 2.6. The body of the onMouseClick method

shown in this figure uses the assignment statement shown above to associate the next counting
number with theCount each time the mouse is clicked and the setText method to update the
number displayed each time the value of theCount is changed. setText was described briefly in
the previous chapter, but this is the first time we have used it in an example. It expects a single
parameter, the new information to be displayed. Like the first parameter expected in a Text

construction, this information can be a quoted sequence of character or a numeric value or just
about any other form of information we might want to display in textual form. The statement

countDisplay.setText(theCount);

included in the onMouseClick method tells Java to change the information displayed by the Text

object named countDisplay that was created in the begin method.
An alternative to using setText that we could have used in this program is to clear the canvas

and then construct a new Text object displaying the new value of theCount. Construction of a new
object is a fairly time consuming process for the computer. When possible, it is better to reuse an
existing object rather than create a new one. Accordingly, in an example like this it is preferrable
to use setText.

2.8.2 Using System.out.println

In a program that mixes graphical output with numerical or other textual information, Text objects
and the setText method are the most appropriate tools for displaying textual information. In
programs that only display textual information, there is another tool is often simpler and more
appropriate, System.out.println.

All the Java output displayed by the Java programs we have considered so far appears in the
window associated with the name canvas. These programs can, however, display output in another
window provided by the Java system. There is no special name that can be used to refer to this
window from within your program. It is simply known as the console window.

The console window is more limited than the canvas in that it can only be used for text. On
the other hand, it is more convenient for the display of text than the canvas.

2.8. DISPLAYING NUMERIC INFORMATION 55

import objectdraw.*;

import java.awt.*;

// A program to count as high as you can click.

public class ICanCount extends WindowController {

private int theCount = 1; // how high we have counted

private Text countDisplay; // current screen display of count

// Create the Text to display the current count

public void begin() {
countDisplay = new Text(theCount, 100, 100, canvas);

}

// Increase the count with each click

public void onMouseClick(Location point) {
theCount = theCount + 1;

countDisplay.setText(theCount);

}
}

Figure 2.6: A simple counting program.

To tell Java to display information in the console window you use a method named System.out.println.
This method takes a single parameter specifying the information to be displayed. Anything that
could be used as a parameter to the setText method or as the first parameter of a Text constructor
can be used as a parameter to System.out.println. In particular, you can certainly use either a
quoted sequence of characters or a numeric value.

A revised version of our counting program that uses the Java console to display the values as it
counts is shown in Figure 2.7. The only text this version displays on the canvas is a message telling
the user to click in order to make the program count. This will be displayed instead of the number
1 when the program first starts. The first time the user clicks, 1 is placed in the Java console by
the System.out.println in the onMouseClick method. Each succeeding click will place another
value in the console window.

When System.out.println is used, you do not have to provide coordinates to specify where
the text should be displayed. The Java console window displays the information you provide to
System.out.println much as text might be displayed in a word processor’s window. Each time
your program executes a System.out.println, the text specified is placed after any text that had
been placed in the Java console earlier. Once the window fills up, the older text scrolls off the top
of the window leaving the newer lines visible. A scroll bar is provided so that a person running
your program can look at the older items if desired. Figure 2.8 shows how both the canvas and the
Java console window might look after this program is run and its user clicks 25 times.

2.8.3 Displaying doubles

We have hinted in the preceding discussion that the primitives we have used to display numerical
information on a computer’s screen are actually flexible enough to display information of many

56 CHAPTER 2. WORKING WITH NUMBERS

import objectdraw.*;

import java.awt.*;

// A program to count as high as you can click.

public class ICanCount extends WindowController {

private int theCount = 0; // how high we have counted

// Create the Text to display the current count

public void begin() {
new Text("Click to make me count", 40, 100, canvas);

}

// Increase the count with each click

public void onMouseClick(Location point) {
theCount = theCount + 1;

System.out.println(theCount);

}
}

Figure 2.7: Counting in the Java console

Figure 2.8: Counting using the Java console

2.8. DISPLAYING NUMERIC INFORMATION 57

types. At this point, however, we have only used them to display quoted strings of text and
integers. In this and the following section, we will explore some of the other possibilities.

First, and most simply, these primitives can be used to display numbers of the type double

just as they are used to display ints. For example, if we modify the last version of the counting
program by simply changing the declaration of theCount to read

private double theCount = 0; // how high we have counted

the program will still work. The only difference is that the values will include a decimal point.
Thus, the first value output will be “1.0” rather than “1”.

Things get a bit more interesting when large values of type double are displayed as Text or
using the System.out.println primitive. Suppose rather than having our program count by ones,
we have it list off the powers of 10. That is, on the first click the program will display 10. It will
display 100 on the second click, 1000 on the third click, 10000 on the fourth click and so on. The
changes required are quite simple. We will stick with the name theCount (even though thePower

might be more appropriate. The new declaration for this variable will be:

private double theCount = 1;

The only other change we will make is to replace the assignment statement in onMouseClick that
added 1 to theCount with the assignment

theCount = theCount * 10;

which will compute the next power of 10 by multiplying the last value by 10.
If we run this program and click 10 times, the following ouput will appear in the Java console

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

1.0E7

1.0E8

1.0E9

1.0E10

The first six lines are as you probably expected, but what does “1.0E7” or “1.0E8” mean.
The strange items Java has displayed are examples of Java’s version of scientific notation. Where

Java displays 1.0E7, you probably would have expected to see 10000000.0. This value is ten million
or 107. The “E7” in the output Java produce is short for “times ten raised to the power 7”. The
“E” stands for “exponent”. In general, to interpret a number output in this form you should raise
10 to the power found after the E and multiply the number before the E by the result. For example,
the table below shows some examples of numbers written in this notation and the standard forms
of the same values.

E-notation Standard Representation

1.0E8 100,000,000

1.86E5 186,000

4.9E-6 .0000049

58 CHAPTER 2. WORKING WITH NUMBERS

Not only does Java display large numbers using this notation when you use System.out.println
or Text objects, it also recognizes numbers typed in this format as part of a program. So, if you
really like scientific notation, you can include include a statement like

avogadro = 6.022E26;

in a Java program.

2.8.4 Mixing text and numbers

Often, a number displayed all by itself has little meaning. The difference between just displaying
“3” and displaying “Strike 3” or “3 P.M.” or “Line 3” can be quite significant. Accordingly, in many
programs rather than just displaying a number on the screen it is desirable to display a number
combined with additional text that clarifies the meaning of the number. Luckily, this can be done
easily in Java with both Text objects and System.out.println.

When specifying the information to be displayed in a Text object or on the Java console, we
can use the “+” operator to combine quoted text with numeric information. Suppose, for example,
that we wanted our counting program to display a message like “You have clicked 3 times” instead
of just displaying 3 on the third click. We could accomplish this by replacing the command

countDisplay.setText(theCount);

with the command

countDisplay.setText("You have clicked " + theCount + " times");

You have to be a bit careful when using this feature. Basically, Java has two different ways of
interpreting the “+” operator. When the operands to “+” are both numbers, Java performs normal,
arithmetic addition. If, however, either of the operands to a “+” are textual rather than numeric,
Java instead just sticks together the textual representations of both operands. This operation of
sticking text together is called concatenation.

When Java sticks together bits of text, it doesn’t think about things like words, it just sticks
the letters and digits it is given together. This means you have to be careful to include all the
characters you want displayed including any blanks. If you look carefully at the setText command
shown above, you will notice that there is a space between the word clicked and the quote that
follows it and another space between the word times and the quote that precedes it. If these were
not included, Java would display the text

You have clicked3times

instead of displaying

You have clicked 3 times

as desired.
It is also sometimes important to be aware of how Java decides when a “+” means addition

and when it means to simply stick pieces of text together. For example, if the value of theCount
is 10, then the command

countDisplay.setText("You have clicked " + (theCount + 1) + " times");

will display the message

2.9. NUMBERS ARE NOT OBJECTS 59

You have clicked 11 times

on the screen, while the command

countDisplay.setText("You have clicked " + theCount + 1 + " times");

will produce the message

You have clicked 101 times

This is because, in the version with parentheses around “theCount + 1” Java has to do the “+”
operation within these parentheses first. Both operands of this “+” operator are numbers, so Java
does addition yielding the number 11. Without the parentheses, Java processes the “+” operators
in order from left to right. The first operand to the first “+” is a quoted string, so Java performs
concatenation sticking the textual representation of the value of theCount, “10”, together with
the quoted text. The result of this first operation is then treated as the first operand of the next
“+” operation. Since this first operand is text, Java now interprets the second “+” as another
concatenation operator so it just sticks a “1” on the end of the text rather than performing a
numeric addition.

2.9 Numbers are not Objects

You may have noticed that there are many similarities between the use of numbers in Java and
the use of other pieces of information such as Locations, Colors, FilledRects or any of the other
graphical object types we have presented.

For example, the rules for associating and using a name to refer to a piece of information within
a program are identical whether the name involved refers to an int, a double, a Location or any
of the other types of information we have considered. Each name to be used must first be declared.
The forms of the declarations used for numeric and non-numeric variables are identical. The syntax
of the assignment statements used for numeric and non-numeric variables are also identical.

In other respects, however, there are significant differences between the way Java treats numbers
and the other types of information we have considered. One example is the means Java provides
to let us first introduce a specific piece of information in a program. For types other than int and
double, one uses constructions. To describe the Color light blue we might say:

new Color(255, 100, 100)

and to describe the origin of the coordinate system we might say:

new Location(0, 0)

For numeric types, on the other hand, Java provides the programmer with the ability to simply
write constants that directly describe the desired value. For example, a programmer would simply
write

3

rather than

new int(3)

60 CHAPTER 2. WORKING WITH NUMBERS

to describe the integer value 3 within a program.
This difference is partly a matter of convenience. Numbers are used so frequently in programs

that it is important for a programming language to provide as simple a means as possible to let
a programmer include numeric information. At the same time, this difference represents a more
fundamental aspect of the way Java views the numeric types. Numbers, in Java’s view, are in some
sense less transient than the other kinds of information we have considered. Java doesn’t let us say

new int(3)

because in Java’s view 3 already exists before you use it. It would make no sense to Java to talk
about making a new 3. How would the new 3 differ from the old 3?

In general, Java refers to pieces of information that we construct using new as objects and the
types composed of such items are called object types or classes. 1 Pieces of information that are
described using constants like “3” rather than constructions are called values and types composed
of values are called primitive types. The underlying distinction here is not just between numeric
and non-numeric types. In the next chapter, we will see another primitive type called boolean

whose values are not numeric. Like the numeric types, there are no constructions for booleans.
Instead, Java provides constants to refer to boolean values.

The notion that in Java’s view values are in some sense more permanent than objects becomes
even clearer when we consider another difference between the way Java handles values and objects:
the means Java provides to perform operations on values and objects.

When we want to apply an operation to an object, we use Java’s notation for method invocation.
For example, if someRect is a variable name associated with a FilledRec, we might say

someRect.setWidth(300);

to make the rectangle bigger. If Java wanted to make the handling of numbers and other values
consistent with the way objects are manipulated, we might similarly say

numVar.add(10)

to describe the number 10 bigger that the current value associated with an integer variable named
numVar. As we have seen, of course, this is not how we apply operations to numeric values. Instead,
to perform a numeric operation Java lets us write a formula using notation very similar to standard
mathematices. In particular, we use the operators +, -, * and /. For example, we could write the
formula:

numVar+10

to describe the number 10 bigger than the current value associated with numVar.
Clearly, the designers of Java were trying to be nice to future Java programmers when they de-

cided to make it possible to use familiar mathematical notation to describe operations on numbers.
The difference between how Java treats numbers and the other types we have considered, however,
represents more than a syntactic difference.

When we introduced method invocations, we distinguished between two types of methods:
mutator methods and accessor methods. Mutator methods change an object. The operators we
can apply to values, on the other hand, don’t change the values to which they are applied. Instead,
they produce distinct values.

We can appreciate this distinction better by considering a few examples. First, suppose that
we declare two variables to refer to filled rectangles

1In a few chapters, you will discover there is one major exception to this rule, the class of objects provided to

manipulate textual data, the class String.

2.9. NUMBERS ARE NOT OBJECTS 61

FilledRect firstVar;

FilledRect otherVar

and then assigned values to these variables as follows:

firstVar = new FilledRect(25, 25, 100, 100, canvas);

otherVar = firstVar;

After this is done, both variables refer to the same object, a 100 by 100 pixel filled rectangle
displayed near the upper left corner of the program’s canvas. Now suppose that we decide we want
to make this rectangle 50 pixels wider. We could say

firstVar.setWidth(150);

Doing so actually changes the already existing rectangle. It does not make a new rectangle. It just
makes the existing rectangle bigger. So, after telling Java to set the width of firstVar, if we ask
it to show us the width of the rectangle named otherVar by executing

new Text(otherVar.getWidth(), 50, 180, canvas);

the number 150 will appear on the screen. Even though we never told Java to change otherVar,
because the object it refers to was changed through another name associated with the same object,
the object associated with othervar will have changed.

By contrast, consider what happens if we perform as similar a sequence of operations as possible
using a pair of int variables instead of FilledRects. In particular, assume that in some other
program we declare

int firstVar;

int otherVar;

and execute the assignments

firstVar = 100;

otherVar = firstVar;

Now, if we want to increase the value associated with firstVar by 50 we could say

firstVar = firstVar + 50;

Before this assignment is executed, the name firstVar is associated with the value 100. Evaluating
the expression firstVar + 50 therefore produces the value 150, but it doesn’t change 100 or
firstVar into 150 in any sense. While the setWidth method modifies the object to which is is
applied, the additon operator produces a new value without in any way modifying its operands.
Java then completes the assignment command by associating the value the expression produced,
150, with the variable firstVar.

In the rectangle example, the change in the rectangle made by setWidth changed an object
refered to by both the variable names. So, after the assignment, the object associated with otherVar

had a new width. Because numbers are values rather than objects, the change made in the int
variable firstVar will have no effect on otherVar. otherVar will still refer to the same, unmodified
value with which it became associated when the assignment

otherVar = firstVar;

was executed, the number 100.
In general, changes made by an assignment to a numeric variable only effect the variable explitly

mentioned in the assignment. Changes made by applying a mutator method to an object, however,
will be visible through all names associated with the object modified.

62 CHAPTER 2. WORKING WITH NUMBERS

2.10 Naming numeric constants

In chapter 1, we introduced the comment. Comments are a rather interesting construct precisely
because they have no effect on how the programs that contains them actually behave. As far as
the computer is concerned, comments are useless. Nevertheless, a special notation is included in
Java (and in almost every other programming languages), to enable us to include these ”useless”
comments in our program. This reflects the fact that while it is clearly important that a computer
be able to understand any program you write, it is also very important that your programs be as
easy to understand as possible for human readers.

Comments are just one mechanism Java provides to help you improve the readability of your
programs. Another feature of Java that we have been using to maximize the readability of our
example code is the ability to add blanks and empty lines to a program without effecting its
interpretation by the computer. Careful indenting of code so that its physical appearance reflects its
logical organization can be an important aid to an individual trying too understand the instructions.

The appropriate use of comments, program layout and other aspects of programming that
influence the readability of its program more than its interpretation by a computer are aspects
of good programming style. To the beginner, the importance of good style may be difficult to
appreciate. Short example programs can generally be read and understood even if they are not
designed to be as readable as possible. As a programmer becomes more experienced and becomes
involved in the construction of larger programs the practice of good programming style becomes
more critical. It is very easy to produce a large program that is impossible for any human reader
(including its author!) to understand. Accordingly, it is best to begin the habit of always considering
how to make the code you write as clear as possible from the very beginning.

Unfortunately, there is one rule of good style that we have been violating in almost all of our
example programs. In this section, we will introduce a Java mechanism designed to support this
rule of good style, and then we will begin following the rule ourselves.

In nearly all the examples we have presented, we have specified coordinates and dimensions of
objects using numbers. We have also used numeric values to specify object colors and to determine
how far certain items should move in reaction to a user action.

In most of these examples, we have simply typed the values that specified the desired information
into the constructions and method invocations where they were needed. While this approach
certainly works, it is considered poor style. To appreciate why, just consider the instructions

new FilledOval(50, 150, 100, 100, canvas);

By now, you have seen this instruction often enough that you may recognize it and know what it
is for. It is the construction that creates the circle representing the sun in our rising sun example.
Suppose, however, that you encountered this construction while reading through a complex Java
program composed of thousands of lines of code. How would you guess the purpose of the program’s
author? How could you understand the significance of the number 50, 100 and 150 that appear in
the statement?

The preferred alternative to using numbers explicitly in program instructions is to instead
associate variable names with the numeric values you need to specify in your program and then
use the names in place of the numbers. For example, the above construction might be rewritten as

new FilledOval (sunCornerX, sunCornerY, sunSize, sunSize, canvas);

Of course, if we want to use names like this instead of typing the numbers themselves, we will
need to declare the names and initialize them. For example, we might say

2.11. HANDY SOURCES OF NUMERIC INFORMATION 63

// Constants that determine position and size of the sun

private int sunCornerX = 50;

private int sunCornerY = 150;

private int sunSize = 100;

There is one flaw with this alternative. If you are reading a large program and find a construction
like the one shown above, finding the declarations of the three names used in the construction would
not be enough to assure you that you knew what the actual values employed by the construction
must be. The probem is that there might be some other point in the program where values other
than 50, 150 and 100 were assigned to the variables changing their initial values. If the program
you were reading was large, it could be time consuming to search the program to make certain such
assignments did not occur.

To avoid this problem, Java provides a mechanism through wich the programmer can ensure the
reader that the initial value assigned to a variable in its declaration will not be changed anywhere
else in the program. To do this, the programmer simply adds the word ”final” to the declaration
after the word ”private”. The declaration above would then appear as

// Constants that determine position and size of the sun

private final int sunCornerX = 50;

private final int sunCornerY = 150;

private final int sunSize = 100;

Including the word ”final” in a declaration tells Java not to allow any assignment statement
that would change the value of the variable being declared. That is, if at some point in a program
containing the final declaration shown above, the assignment

sunSize = 200;

it would be reported as an error to the programmer and Java would refuse to run the program.
There are two conventions followed by most Java programmers when using final in declara-

tions. First, so that it is easy to identify names with fixed values when reading a program, such
names are usually composed of all upper case letters. Second, because doing so may in some cases
improve program efficiency it is customary to add the modifier static to declarations that contain
the modifier final. So, following these conventions, the declarations of our constants would be
rewritten as

// Constants that determine position and size of the sun

private final int SUNCORNERX = 50;

private final int SUNCORNERY = 150;

private final int SUNSIZE = 100;

Of course, the same use of upper case letter would have to appear in uses of these names like

new FilledOval (SUNCORNERX, SUNCORNERY, SUNSIZE, SUNSIZE, canvas);

2.11 Handy sources of numeric information

There are a number of features of the libraries provided by Java and the library provided with
this text that can be used to generate useful numerical information. Several of these features are
described in this section.

64 CHAPTER 2. WORKING WITH NUMBERS

2.11.1 Random number

“Pick a number. Any number. ...”

You might expect to hear this phrase from the hawker at a carnival game table. You might
not expect it to be a useful instruction to give a computer within a Java program, but just the
opposite is true. There are many programming contexts in which it is handy to be able to ask the
computer to pick a random number for you. Obvious examples are game programs. Programs that
deal cards, simulate the tossing of dice or even the spinning of a roulette wheel all need ways of
picking items randomly. The ability to pick random number can make it easy to perform any of
these random choices. In addition to game programs, there are many programs that simulate the
behavior of real systems for practical purposes that need ways to incorporate the randomness of
the real world in their calculations. With this in mind, Java and most other programming systems
include what are called random number generators.

In our library, we have incorporated two classes designed to make it quite easy to obtain a
sequence or random values in a program. One of our classes is designed for situations where you
need random integers and the other for random doubles.

Suppose that you wanted to write a program to simulate some board game in which at each
turn the player rolls two dice. Our class for generating random integers can be used to create a
Java object that behaves just like a single die.2 To illustrate the use of this class, we will construct
a simple program that simulate the rolling of a pair of dice each time the mouse is clicked.

In our library, the class of random integer generators is named RandomIntGenerator. Like
other objects, the first step in using one of our RandomIntGenerators is to define a variable name
that will refer to the object. So, in our program we would define a variable like

private RandomIntGenerator die;

When we want to construct a new RandomIntGenerator we must provide two int values as pa-
rameters. These values determine the range of values that might be produced by the RandomIntGenerator
created. Since a single die must show a number between 1 and 6 and we want our random number
generator to simulate a single die, we would say

new RandomIntGenerator(1, 6);

In general, the first parameter value determines the smallest value that should ever be produced by
the random number generator while the second number specifies the largest value. We could include
this construction in our program’s begin method or as an initializer in the variable declaration as
shown below

private RandomIntGenerator die = new RandomIntGenerator(1, 6);

Now, when the user clicks the mouse, we need to tell the object named die to pick a random
number for us. In fact, if we want to simulate the rolling of a pair of dice we will have to do this
twice. We can ask a RandomIntGenerator to pick a number by invoking its nextValue method.
That is, an expression like

die.nextValue()

will produce a (possibly different) random number each time it is evaluated.

The complete code of a simple program to simulate rolling two dice is shown in Figure 2.10.
A sample of the program’s output is shown in Figure 2.9. Note that even though the program

2.11. HANDY SOURCES OF NUMERIC INFORMATION 65

Figure 2.9: Sample messaged drawn by dice simulation program

simulates the rolling of two dice it only uses a single random number generator named die. As
long as we have a created a single random number generator that generates values in the desired
range, we can (and should) use it over and over again whenever we need a random number selected
from that range. In the example, we therefore use the nextValue method of die to determine the
values seen on the first die (roll1) and the second die (roll2).

As mentioned above, there is another randon number generator class provided for situations
where you need random values including fractional parts. This class is named RandomDoubleGenerator.
The class RandomDoubleGenerator behaves just like RandomIntGenerator except that

• the parameters used in a RandomDoubleGenerator construction to specify the range from
which numbers should be selected can be doubles.

• the values returned when the nextValue method of a RandomDoubleGenerator is invoked
will be doubles.

2.11.2 What time is it?

There are many signs that computers keep track of the time. Most likely, the computer you use
displays the current time of day somewhere on your screen as you work. Your computer can tell
you when each of your files was created and last modified. While your web browser downloads
large files, it probably displays an estimate of how much longer it will take before the process is
complete.

To support all the ways in which time is used in programs, Java provides a sophisticated
collection of primitives that allow your program to determine the hour, the year, the day of the
week or just about anything else you might imagine that is related to measuring time. These
mechanims provides more than you need at this point. Accordingly, we have included in our
library a simple operation named getTime which you can use to ask ”What time is it?”

Unfortunately, this question isn’t quite as simple as it seems. The getTime operation returns a
double telling you what time it is. For example, if you run a program containing the instruction

System.out.println("The time is now " + getTime());

Java might produce the following answer:

2A die is also nothing more than a single dice. That is, the English word for the cute little square things you roll

while playing many board games has a non-standard plural form. The plural form is dice. The singular form is die.

66 CHAPTER 2. WORKING WITH NUMBERS

import objectdraw.*;

import java.awt.*;

// A program to simulate the rolling of a pair of dice.

public class RollAnotherOne extends WindowController {

// Coordinates to determine positions of text displayed

private final int TEXTX = 30;

private final int PROMPTY = 30;

private final int RESULTY = 100;

// The object that represents a single die

private RandomIntGenerator die = new RandomIntGenerator(1, 6);

// A Text message updated to describe each simulated roll

private Text result;

// value of each die on a given roll

private int roll1;

private int roll2;

// Display a prompt and create the Text used to display the results

public void begin() {
new Text("Click to make me roll the dice",

TEXTX, PROMPTY, canvas);

result = new Text("", TEXTX, RESULTY, canvas);

}

// Roll the dice with each click

public void onMouseClick(Location point) {
roll1 = die.nextValue();

roll2 = die.nextValue();

result.setText("You rolled a " + roll1 + " and a " + roll2 +

" for a total of " + (roll1+roll2));

}
}

Figure 2.10: Simulating the rolling of a pair of dice

2.11. HANDY SOURCES OF NUMERIC INFORMATION 67

The time is now 1.012233623888E12

Even if Java displayed the strange number shown above without using scientific notation the result:

The time is now 1012233623888

would still be mysterious. Apparently, Java uses a different system for telling time than most of
us!

Whenever we use a number to answer the question ”What time is it?” we are using the number
to describe how long it has been since some fixed reference time. If you asked when this book was
written and we answered 1422, our answer would appear to be nonsense if you assumed we were
using the Gregorian calendar in which times are measured relative to the year in which Christ was
born (at least approximately). In fact, however, the number 1422 describes when our book was
written based on the Islamic calendar which measure time from the migration of the Prophet and
his followers from Mecca to Medina.

Java isn’t very religious about time, so it measures time from midnight on January 1, 1970.
Also, since Java sometimes needs to be very precise about what time it is, Java measure time in
milliseconds (i.e. thousandths of a second). The number shown above, 1012233623888, tells you
exactly how many milliseconds passed from midnight, January 1, 1970 until the moment at which
the Java instruction shown above produced the output

The time is now 1012233623888

The getTime operation would be very awkward to use if you wanted to display the current time
of day in a form a human could understand. Fortunately, it is a very appropriate tool for measuring
short intervals of time within a program. This is an ability we will need in many programs in the
following chapters. To use getTime to measure an interval, we simply ask Java for the time at the
beginning of the interval we need to measure and then again at the end. The length of the interval
can then be determined by subtracting the starting time from the ending time.

As an example of such a use of getTime, a program that will measure the duration of a click of
the mouse button is shown in Figure 2.11. The program first uses getTime in the onMousePress

method. It assigns the time returned to the variable startingTime so that it can use the value
later after the mouse has been releases. In onMouseRelease, the program computes the difference
between the time at which the mouse was pressed and released using subtraction. Then, in order
to display the result in units of seconds rather than milliseconds, it divides by 1000. A sample of
what the program’s output might look like is shown in Figure ??.

2.11.3 Sines and Wonders

If you review all the things you have learned to do with numbers in Java, you should be unimpressed
at best. Think about it. For just $10 you could go to almost any store that sells office or school
supplies and buy a pocket calculator that can compute trigonometric functions, take logarithms,
raise any number to any power and do many other complex operations. On the other hand, with
Java and a computer that probably costs 100 times as much as a calculator, all you have learned
to do so far is add, subtract, divide and multiply. In this section we will improve this situation by
introducing a collection of methods that provide the means to perform more advanced mathematical
calculations.

68 CHAPTER 2. WORKING WITH NUMBERS

// A program to measure the duration of mouse clicks.

public class ClickTimer extends WindowController {

// coordinates where messages should be displayed

private final static double TEXTTOP = 50;

private final static double TEXTLEFT = 30;

// When the mouse button was depressed

private double startingTime;

// Used to display length of click

private Text message;

// Create the Text to display the current count

public void begin() {
message = new Text("Please depress and release the mouse",

TEXTLEFT, TEXTTOP, canvas);

}

// Record the time that the button is pressed

public void onMousePress(Location point) {
startingTime = getTime();

}

// Display the duration of the latest click

public void onMouseRelease(Location point) {
message.setText("You held the button down for " +

(getTime() - startingTime)/1000 + " seconds");

}
}

Figure 2.11: Java program to measure mouse click duration.

Figure 2.12: Sample output of ClickTimer program shown in Figure 2.11.

2.11. HANDY SOURCES OF NUMERIC INFORMATION 69

Roots, logs and powers

A common arithmetic operation available on most calculators is the taking of a square root. In
Java, this is done using a method named Math.sqrt. Math is a class in which many interesting
mathematical methods have been collected. Math.sqrt is a method that takes any numeric value
as a parameter and returns a double approximating the number’s square root. Thus, if we created
a Text object named message and later executed the instruction

message.setText("The square root of 2 is " + Math.sqrt(2));

the message

The square root of 2 is 1.4142135623730951

would appear on the canvas.
Of course, the parameter to a method like Math.sqrt can be described using any expression

that produces a numeric result and the invocation of Math.sqrt can be used as a sub-part of a
larger arithmetic expression. For example, if the variable names a, b, and c were associated with
the coefficients of a quadratic polynomial, we could display a solution to the associated quadratic
equation by translating the quadratic formula (simplified to produce only the largest answer):

−b +
√

b2 − 4ac

2a

into Java. The result would look like:

(-b + Math.sqrt(b*b - 4*a*c)) / (2 * a)

Note that all the parentheses included in this Java fragement are required to ensure that the
operations specified are performed in the desired sequence.

Java provides several other methods for performing operations related to raising values to
powers:

Math.pow(a,b) raises the number a to the power b and returns the result,

Math.exp(b) raises the constant e (≈ 2.718) to the power b,

Math.ln(a) returns the natural logarithm (i.e. the logarithm base e) of the number a.

In addition, if you need to work with the number e and don’t feel like looking it up and typing
in enough digits to approximate it accurately, the name Math.E is already associated with a very
accurate approximation to e.

Trigonometric functions

Another important set of functions provided in Java through the Math class are the standard
trigonometric functions sine, cosine and tangent and their inverses. The Java names for these
functions are shown in the table below:

Java Function

Math.sin(x) returns the sine of x

Math.cos(x) returns the cosine of x

Math.tan(x) returns the tangent of x

Math.asin(x) returns the arc sine of x

Math.acos(x) returns the arc cosine of x

Math.atan(x) returns the arc tangent of x

70 CHAPTER 2. WORKING WITH NUMBERS

For all of these methods, Java assumes that the angles involved are measured in radians rather
than degres. The Math class contains features to make it a bit easier for those who prefer degrees
to work with radians. There are two methods named Math.toRadians and Math.toDegrees that
can be used to convert from one set of units to the other. Also, the name Math.PI is associated
with a very accurate approximation of the mathematical constant π. Thus, the cosine of a right
angle would be computed by saying:

Math.cos(Math.toRadians(90))

or

Math.cos(Math.PI / 2)

