Sedimentary Rocks (GEOL 321)
Spring 2010 syllabus

Instructor: Peter Ryan, 429 MBH, x2557, pryan@middlebury.edu
Office Hours: M-W 11-12, Th 1:30 – 2:30, or by appointment
Lecture: M-W-F 10:10 – 11:00, MBH 417
Lab: W 1:30 – 4:15, MBH 419

OBJECTIVES

“Sedimentary geology is probably the most practical and valuable course in the undergraduate geology curriculum”, or so say Prothero and Schwab (2004). In order to present the breadth of materials embodied in the field of sedimentary geology, this course is designed to cover the principles of sedimentary petrology and stratigraphy and the processes of sedimentation and diagenesis through lecture, seminar/discussion, and lab-and field-oriented exercises. We will begin with fundamental concepts and then apply this knowledge to specific topics and case studies throughout the course. Some examples of topics include chemical weathering and sediment production, classification of sedimentary rocks, the sedimentological, mineralogical and geochemical record of ancient climates, interpretation of tectonic environments from the sedimentary record, maturation of organic matter into hydrocarbons, the sedimentary and tectonic requirements for creating oil and gas reservoirs, hydrogeology of deep basinal groundwater and sedimentary diagenesis. Also, given that the sedimentary rock sequence provides a long-term record of surface processes, we will examine aspects of how the Earth’s surface has changed through time, both with respect to continental and marine environments.

In lab we will study sedimentary rocks in thin section (optical microscopy) and hand sample as well as in the field and by instrumental analysis (X-ray diffraction and inductively coupled argon plasma spectrometry). Field trips will take advantage of the excellent clastic and carbonate sedimentary rocks in the Champlain Valley.

<table>
<thead>
<tr>
<th>WEEK</th>
<th>LECTURE</th>
<th>LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 8-12</td>
<td>Intro, basic principles, weathering, sediment supply</td>
<td>Stratigraphic principles</td>
</tr>
<tr>
<td>Feb 15-19</td>
<td>Sediment transport, sed structures</td>
<td>Sed structures; textures, grain size and sedimentary environment</td>
</tr>
<tr>
<td>Feb 22-26</td>
<td>Siliciclastics: sandstones,</td>
<td>Clastic and carbonate petrology (optical microscopy)</td>
</tr>
<tr>
<td>Mar 1-5</td>
<td>Siliciclastics: mudstones,</td>
<td>Sandstone diagenesis. XRD.</td>
</tr>
<tr>
<td></td>
<td>clastic diagenesis, geochemistry</td>
<td></td>
</tr>
</tbody>
</table>
Mar 8-12 Continental environments
 Take-home exam due Fri 10AM
 Champl. Valley Stratigraphy I
 Cambrian to Beekmantown

Mar 15-19 NE GSA (no class MW)
 Champl. Valley Stratigraphy II
 Chazy, Black River, Trenton

Mar 22-26 BREAK

Mar 29- Marine environments, Carbonates:
 petrology, deposition, global CO2 cycles.
 Carbonates in the field: the Crown Point Section (Chazy Group)

Apr 5-9 Stratigraphy
 Term Paper 1st Draft Due (Fri 10AM)
 Monkton sandstone @ Salmon Hole
 Cambrian peritidal deposition

Apr 12-16 Stratigraphy (case studies)
 Poultney River section
 Cambrian slope and rise deposition

Apr 19-23 Geochronology
 K-bentonite, shale (field)
 Sed record of volcaniclastic activity

Apr 26-30 Sedimentary tectonics, regional
 stratigraphic records, Mars
 Term Paper Due (Fri 10AM)
 K-bentonite, shale (lab; XRD, ICP)

May 3-7 Term paper presentations
 Data synthesis, interpretation

Last day of finals **Final Exam Due (4 PM)**

ASSIGNMENTS/ASSESSMENT

Lab……………………………….. 25%
2 Exams………………………….. 35%
 (15%, 20%, take-home)
Term Paper and presentation…… 25%
 (10% 1st draft, 10% 2nd draft, 5% presentation)
Discussion, participation……….. 15%

Part of the lecture component of the course will be “lecture”, but a significant portion will also be seminar-style. Students will present classic and cutting-edge articles on thematic topics and all students will be expected to have read the articles and contribute to meaningful discussion.