
PH 500 Problem Set # 8

At this point, we’ve developed the formalism of quantum systems, described the possible results
of measurements, and described how fixed systems evolve in time. There is one last piece of
formalism to cover before we turn to calculational techniques appropriate to various situations,
which is to see what happens when the system changes with time. Up to now, the states have
evolved in a fixed system, for example spins in a fixed magnetic field. Now we let the magnetic
field vary with time as well. In other words, we wan to consider a Hamiltonian Ĥ(t) that depends
explicitly on time.

Again, the things I want you to do are in bold.

1. Let’s consider a system where the Hamiltonian Ĥ(t) varies with time. The Schrödinger equa-
tion still reads

ih̄
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 (1)

but it is now more complicated since both |ψ(t)〉 and Ĥ(t) depend on time. In particular,
the Hamiltonian at one time does not necessarily even commute with the Hamiltonian at
another time! And if [Ĥ(t1), Ĥ(t2)] 6= 0, it means that we can’t find states that are eigenstates
of the Hamiltonian at both times. This makes time-dependent problems considerably more
difficult, and the result is that usually the best we can do is to use some properties of the
time dependence of Ĥ (for example, it might be periodic or slowly varying) to construct an
approximate solution.

Formally, however, the solution is a snap: If we start in the state |ψ(t = 0)〉, the solution at
time t is

|ψ(t)〉 = T e−
i
h̄

∫ t

0
Ĥ(t′)dt′|ψ(t = 0)〉 (2)

For Ĥ constant, this just reduces to the equation we had before (ignoring the mysterious T
on the right–hand side for a moment). For the general case, we have to be more careful:

Remember that if [Â, B̂] 6= 0, eÂeB̂ 6= eÂ+B̂. When we write out the series for the exponential,
we get

e−
i
h̄

∫ t

0
Ĥ(t′)dt′ = 1− i

h̄

∫ t

0
Ĥ(t′)dt′ − 1

2h̄2

∫ t

0
Ĥ(t′)dt′

∫ t

0
Ĥ(t′′)dt′′

+
i

6h̄3

∫ t

0
Ĥ(t′)dt′

∫ t

0
Ĥ(t′′)dt′′

∫ t

0
Ĥ(t′′′)dt′′′ + . . .

= 1− i

h̄

∫ t

0
Ĥ(t′)dt′ − 1

2h̄2

∫ t

0
dt′
∫ t

0
dt′′Ĥ(t′)Ĥ(t′′)

+
i

6h̄3

∫ t

0
dt′
∫ t

0
dt′′

∫ t

0
dt′′′Ĥ(t′)Ĥ(t′′)Ĥ(t′′′) + . . . (3)

which is already a mess. The T introduces another twist: it instructs us to re-order the Ĥ(t′)
operators in the integrand so that the one with the latest time is on the left, the next–latest
second from the left, and so on. The result is known as a time-ordered exponential. Note that
this prescription is easy to describe in words, but quite difficult to implement in practice, since
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we have to re-order every one of the infinitely many terms in the expansion of the exponential,
and then re-sum the result. Our expression is now

T e−
i
h̄

∫ t

0
Ĥ(t′)dt′ = 1− i

h̄

∫ t

0
Ĥ(t′)dt′ − 1

h̄2

∫ t

0
dt′
∫ t′

0
dt′′Ĥ(t′)Ĥ(t′′)

+
i

h̄3

∫ t

0
dt′
∫ t′

0
dt′′

∫ t′′

0
dt′′′Ĥ(t′)Ĥ(t′′)Ĥ(t′′′) + . . . (4)

where in each term we have written just one of the n! equal contributions to the result,
and then cancelled the n! in the denominator to compensate. Show that as a formal

expression, |ψ(t)〉 = T e−
i
h̄

∫ t

0
Ĥ(t′)dt′ |ψ(t = 0)〉 provides a solution to the Schrödinger

equation. Note that such expressions are almost always impossible to compute exactly; the
most general approach involves assuming that the time–dependent part is small, in which case
we can separate out the time–independent piece and then do this sort of expansion for the
time–independent piece, and then only keep a finite number of terms in the expansion of the
exponential. This calculation is best done using Feynman diagrams, which we won’t get into
here.

2. There are a number of approximation schemes available for this purpose, whose applicability
depends on the nature of the time dependence of Ĥ. One example is the sudden approximation.
Suppose that at t = 0 we have the state

|ψ〉 = |+〉 (5)

and the Hamiltonian is Ĥ = γBŜy. Then, suddenly, at t = a, the Hamiltonian changes to

Ĥ = γBŜz. In the sudden approximation, we assume that the change happens so fast that
the state does not change at that moment. Its time evolution changes from being described
by the first Hamiltonian to the second (so we will likely have to change basis). Find |ψ(t)〉
for t > 0 in this example. To do so, you should time evolve with the first Hamiltonian up
to t = a, and then take the state at t = a and evolve it forward with the second Hamiltonian.

3. The adiabatic approximation is the opposite of the sudden approximation. In this approxima-
tion, we assume that although the Hamiltonian varies with time, it only varies very slowly.
What we do is imagine a plot of the eigenvalues of the Hamiltonian as a function of time.
That is, at each time, we find the eigenstates of the Hamiltonian (as if it was constant in
time) and plot their eigenvalues versus t. If the potential varies gradually, these plots should
be smooth lines — the eigenvalues won’t jump suddenly but will just vary slowly. In the
adiabatic approximation, we assume that if you start the system in a particular state, it will
just move along this line, always remaining in the eigenstate corresponding to this eigenvalue.
Roughly, this approximation is valid if the difference in energy between adjacent states times
the time scale over which the potential changes is large compared to h̄. (If the states ever
cross, so that the difference in energy goes to zero, we are out of luck, since we don’t know
which state the particle will come out in. Fortunately, this bascially never happens.) We will
just take this result on faith, though the approximate techniques of the previous problem set
can be extended to demonstrate it more rigorously.

2



As an example, suppose

B(t) = B0(x̂ sinα cosωt+ ŷ sinα sinωt+ ẑ cosα) (6)

where α and ω are constants and our Hamiltonian is

Ĥ = −γB · Ŝ (7)

This field can be obtained by starting from B = B0ẑ and rotating by an angle α around
the y-axis to obtain the t = 0 state, and then by rotating by an angle ωt around the z-axis.

For B = B0ẑ the eigenstates are |+〉 =
(

1
0

)
with eigenvalue −γB0h̄

2
and |−〉 =

(
0
1

)
with

eigenvalue γB0h̄
2

. Find the eigenstates of the general Ĥ(t) at time t by acting with
rotations on the states where B = B0ẑ.

4. (From Griffiths) Suppose the system starts with definite spin up along the direction of B(t =
0) as found in the last problem. The exact solution to the time–dependent Schrödinger
equation with this initial condition is

|ψ(t)〉 =

[cos λt
2

+ iω1+ω
λ

sin λt
2

]
cos α

2
e−

iωt
2[

cos λt
2

+ iω1−ω
λ

sin λt
2

]
sin α

2
e

iωt
2

 (8)

where
ω1 = γB0 and λ =

√
ω2 + ω2

1 + 2ωω1 cosα (9)

(a) Show that (up to an overall phase) this exact result reduces to the state you
found in the previous problem in the adiabatic limit. Find the expectation
values of Ŝx, Ŝy, and Ŝz as functions of time in the adiabatic limit.

Hint: First show that adiabatic limit is the same as the limit where ω � ω1.

(b) Compare the vectors 〈Ŝ〉ψ (which you found in the previous subpart) and B.
Explain what is happening in physical terms using the adiabatic theorem.

5. An interesting illustration of the subtleties of the adiabatic approximation is the calculation
of Berry’s phase. Surprisingly, this result was recognized only relatively recently (1984),
even though all the tools necessary to derive it had been around for sixty years. (Though
after Berry’s paper it was realized that the central ideas were already present in the work of
Pancharatnam in 1956.)

We said that in the adiabatic approximation, if we start the system in an energy eigenstate it
will stay in that eigenstate. However, while staying in that eigenstate it can pick up a time–
dependent phase. In general, this phase is not very interesting, since we can always absorb it
in the definition of the eigenfunctions at different times. But if we follow an adiabatic process
that ends up at the same place it started, we can compare the phase at the end to the phase
we started with — since we are talking about the same state, this comparison is meaningful.
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The phase factor we would expect to see is just eiθD where

θD = −1

h̄

∫ t

0
E(t′)dt′ (10)

where E(t′) is the energy eigenvalue at time t′. This term just generalizes (in the adiabatic

approximation) the phase e−
iEt
h̄ we would get for a constant Hamiltonian. We will call this

the dynamic phase. Clearly it depends on how fast we carry out the evolution (two different
values of the total time t will give different dynamic phases, even if they are both chosen such
that the adiabatic approximation is valid).

In Berry’s calculation, we would like to think of the dynamical phase as the boring part.
Suppose that over time t we adiabatically vary the Hamiltonian over a closed loop, so that it
comes back to where it started. The system will come back to the same state, up to a phase.
Subtract from that phase the dynamic phase, which we expected (for example, it shows up
even if we don’t change the Hamiltonian at all). What is left, called Berry’s phase, can be
nonzero in a wide class of problems, when it has some remarkable properties.

Consider the rotating magnetic field of the previous problem over one full cycle in
the adiabatic limit. Show that the Berry’s phase is equal to −Ω/2, where Ω is the
solid angle subtended by the loop the magnetic field took around the sphere. Note
that, amazingly, this result (which generalizes to any path) is purely geometrical, independent
of all the other properties of the system (as long as we are in the adiabatic limit).

Hint: You only need to show the result in the adiabatic limit, which you can show corresponds
to dropping terms that vanish as ω/ω1 → 0. Start from the full expression for the state and
then take advantage of expansions like

(1 + x)β = 1 + βx+O(x2) . (11)

Hint: If you find your answer is off by π or 2π, check that it goes to zero as α→ 0, which will
define for you the correct definition of the zero of the phase.
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