PH 500 Problem Set \#7

Since there are very few realistic problems in quantum mechanics that can be solved exactly, it is useful to develop approximate solutions to quantum mechanical problems. Again, the things I want you to do are in bold.

1. Suppose we have a Hamiltonian

$$
\begin{equation*}
\hat{\mathcal{H}}=\hat{\mathcal{H}}_{0}+\epsilon \hat{\mathcal{H}}^{\prime} \tag{1}
\end{equation*}
$$

where \mathcal{H}_{0} is a Hamiltonian we know how to solve, and $\epsilon \hat{\mathcal{H}}^{\prime}$ is a modification to that Hamiltonian, which in this context is usually called a perturbation. I've put an explicit coefficient ϵ in front of $\hat{\mathcal{H}}^{\prime}$ because will want to think of $\epsilon \hat{\mathcal{H}}^{\prime}$ as a small correction to \mathcal{H}_{0}, so that we can find results as series expansions in powers of ϵ around $\epsilon=0$.
We assumed we know how to solve \mathcal{H}_{0}. That is, we know how to find its eigenvalues $\left\{\lambda_{i}^{(0)}\right\}$ and the corresponding eigenstates $\left\{\left|\lambda_{i}^{(0)}\right\rangle\right\}$. The superscript zero here indicates that these states are the solutions at order zero in the expansion in ϵ around $\epsilon=0$, that is, the solutions when $\epsilon=0$ so we only have \mathcal{H}_{0}.
Now let's turn to the full Hamiltonian. Formally, both the eigenvectors and eigenvalues have a Taylor expansion around $\epsilon=0$:

$$
\begin{align*}
\lambda_{i} & =\sum_{n=0}^{\infty} \epsilon^{n} \lambda_{i}^{n}=\lambda_{i}^{(0)}+\epsilon \lambda_{i}^{(1)}+\epsilon^{2} \lambda_{i}^{(2)}+\ldots \\
\left|\lambda_{i}\right\rangle & =\sum_{n=0}^{\infty} \epsilon^{n}\left|\lambda_{i}^{n}\right\rangle=\left|\lambda_{i}^{(0)}\right\rangle+\epsilon\left|\lambda_{i}^{(1)}\right\rangle+\epsilon^{2}\left|\lambda_{i}^{(2)}\right\rangle+\ldots \tag{2}
\end{align*}
$$

We know what $\lambda_{i}^{(0)}$ and $\left|\lambda_{i}^{(0)}\right\rangle$ are, that $\hat{\mathcal{H}}_{0}\left|\lambda_{i}^{(0)}\right\rangle=\lambda_{i}^{(0)}\left|\lambda_{i}^{(0)}\right\rangle$ and that $\hat{\mathcal{H}}\left|\lambda_{i}\right\rangle=$ $\lambda_{i}\left|\lambda_{i}\right\rangle$. We won't be able to solve for λ_{i} or $\left|\lambda_{i}\right\rangle$ exactly, but we can use this information to find the first few terms in their expansions in ϵ, that is $\lambda_{i}^{(1)}, \lambda_{i}^{(2)}$, etc. and $\left|\lambda_{i}^{(1)}\right\rangle,\left|\lambda_{i}^{(2)}\right\rangle$, etc. The result is an approximate expression for λ_{i} and $\left|\lambda_{i}\right\rangle$, valid for small ϵ.
There is one more subtle thing that we also know. The full states are orthonormal, $\left\langle\lambda_{i} \mid \lambda_{j}\right\rangle=\delta_{i j}$. For this expansion to make sense, it must be orthonormal at every step. To zeroth order, this simply means that we should start from orthonormal states, $\left\langle\lambda_{i}^{(0)} \mid \lambda_{j}^{(0)}\right\rangle=\delta_{i j}$. At first order, we have

$$
\begin{align*}
\delta_{i j} & =\left(\left\langle\lambda_{i}^{(0)}\right|+\epsilon\left\langle\lambda_{i}^{(1)}\right|\right)\left(\left|\lambda_{j}^{(0)}\right\rangle+\epsilon\left|\lambda_{j}^{(1)}\right\rangle\right) \\
& =\left\langle\lambda_{i}^{(0)} \mid \lambda_{j}^{(0)}\right\rangle+\epsilon\left\langle\lambda_{i}^{(1)} \mid \lambda_{j}^{(0)}\right\rangle+\epsilon\left\langle\lambda_{i}^{(0)} \mid \lambda_{j}^{(1)}\right\rangle \\
& =\delta_{i j}+\epsilon\left\langle\lambda_{i}^{(1)} \mid \lambda_{j}^{(0)}\right\rangle+\epsilon\left\langle\lambda_{i}^{(0)} \mid \lambda_{j}^{(1)}\right\rangle \tag{3}
\end{align*}
$$

where we have dropped terms with ϵ^{2} and higher powers. Thus

$$
\begin{equation*}
\left\langle\lambda_{i}^{(1)} \mid \lambda_{j}^{(0)}\right\rangle+\left\langle\lambda_{i}^{(0)} \mid \lambda_{j}^{(1)}\right\rangle=0 \tag{4}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\lambda_{i}^{(1)}=\left\langle\lambda_{i}^{(0)}\right| \hat{\mathcal{H}}^{\prime}\left|\lambda_{i}^{(0)}\right\rangle \tag{5}
\end{equation*}
$$

Note that finding the first-order correction to the energy only required knowing the states to zeroth order.
Hint: Expand $\lambda_{i}=\left\langle\lambda_{i}\right| \hat{\mathcal{H}}\left|\lambda_{i}\right\rangle$ to first order.
2. Having found the leading correction to the energy, we would now like to find the leading correction to the state. This is a vector, so writing it down explicitly requires that we pick a basis. The natural choice is the basis of zeroth order states, $\left\{\left|\lambda_{i}^{(0)}\right\rangle\right\}$. So we write

$$
\begin{equation*}
\left|\lambda_{i}^{(1)}\right\rangle=\sum_{j} c_{i j}^{(1)}\left|\lambda_{j}^{(0)}\right\rangle \tag{6}
\end{equation*}
$$

and we need to find the coefficients $c_{i j}^{(1)}=\left\langle\lambda_{j}^{(0)} \mid \lambda_{i}^{(1)}\right\rangle$.

Show that

$$
\begin{equation*}
\left|\lambda_{i}^{(1)}\right\rangle=\sum_{\lambda_{j}^{(0)} \neq \lambda_{i}^{(0)}}\left|\lambda_{j}^{(0)}\right\rangle \frac{\left\langle\lambda_{j}^{(0)}\right| \hat{\mathcal{H}}^{\prime}\left|\lambda_{i}^{(0)}\right\rangle}{\lambda_{i}^{(0)}-\lambda_{j}^{(0)}} \tag{7}
\end{equation*}
$$

Hint: To find $c_{i j}^{(1)}$ with $i \neq j$, consider the eigenvalue equation $\hat{\mathcal{H}}\left|\lambda_{i}\right\rangle=\lambda_{i}\left|\lambda_{i}\right\rangle$ to first order and act with $\left\langle\lambda_{j}^{(0)}\right|$ on the left. This should allow you to find $c_{i j}^{(1)}$ for all $i \neq j$, so you just have to find $c_{i i}^{(1)}$. Using Eq. (4) with $i=j$, we know that it is purely imaginary. But we could always rescale $\left|\lambda_{i}^{(0)}\right\rangle$ by a phase to absorb this term. Thus we can set it to zero.
Note that this formula only works if the original eigenvalues are nondegenerate - that is, no two eigenvalues are the same (otherwise the denominator blows up). In practice, degeneracy is extremely rare unless there is a symmetry guaranteeing the degeneracy. As we have seen, a symmetry corresponds to an operator $\hat{\mathcal{A}}$ that commutes with the Hamiltonian. So in that case we can diagonalize both operators at once and each eigenstate will be labelled by its energy eigenvalue and its eignvalue of $\hat{\mathcal{A}}$, and the states with the same energies will have different eigenvalues of $\hat{\mathcal{A}}$. Then we can show that the sum in Eq. (7) need only run over states with the same eigenvalue of $\hat{\mathcal{A}}$ as the original state (otherwise the matrix element in the numerator is zero), so the degeneracy can be avoided.

In the rare case of an accidental degeneracy not associated with symmetry, there is a slightly messier technique required to avoid this problem.
3. Find the second-order correction to the energy. Hint: It should only require the first-order states (which you now know from the previous problem). Expand the eigenvector equation to second order and act with $\left\langle\lambda_{i}^{(0)}\right|$ on both sides.

When you do the Taylor expansion, you will get second-order terms in the states, but by extending Eq. (3) you can show they are zero.
4. Take a system of two spins with the Hamiltonian

$$
\begin{equation*}
\hat{\mathcal{H}}=\hat{\mathcal{H}}_{1}+\hat{\mathcal{H}}_{2} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{\mathcal{H}}_{1}=-\gamma\left(\hat{\boldsymbol{S}}_{\mathbf{1}} \cdot \boldsymbol{B}_{\mathbf{1}}+\hat{\boldsymbol{S}}_{\mathbf{2}} \cdot \boldsymbol{B}_{\mathbf{2}}\right) \\
& \hat{\mathcal{H}}_{2}=-g^{\prime} \hat{\boldsymbol{S}}_{\mathbf{1}} \cdot \hat{\boldsymbol{S}}_{\mathbf{2}} \tag{9}
\end{align*}
$$

with $\boldsymbol{B}_{\mathbf{1}}=\left(0,0, B_{1}\right)$ and $\boldsymbol{B}_{\mathbf{2}}=\left(0,0, B_{2}\right)$.
(a) Treating $\hat{\mathcal{H}}_{1}$ exactly and $\hat{\mathcal{H}}_{2}$ as a perturbation, find the first-order eigenvalues of $\hat{\mathcal{H}}$. Hint: work in the basis of eigenstates of $\hat{S}_{1 z}$ and $\hat{S}_{2 z}$.
(b) Treating $\hat{\mathcal{H}}_{2}$ exactly and $\hat{\mathcal{H}}_{1}$ as a perturbation, find the first-order eigenvalues of $\hat{\mathcal{H}}$. Hint: work in the basis of eigenstates of \hat{J}^{2}.
(c) Find the eigenvalues exactly. Check that you can recover your results from each of the previous two parts by expanding this result as a Taylor series to first order in the appropriate parameter.

