
PH 500 Problem Set #7

Since there are very few realistic problems in quantum mechanics that can be
solved exactly, it is useful to develop approximate solutions to quantum mechanical
problems. Again, the things I want you to do are in bold.

1. Suppose we have a Hamiltonian

Ĥ = Ĥ0 + εĤ′ (1)

where H0 is a Hamiltonian we know how to solve, and εĤ′ is a modification to
that Hamiltonian, which in this context is usually called a perturbation. I’ve
put an explicit coefficient ε in front of Ĥ′ because will want to think of εĤ′
as a small correction to H0, so that we can find results as series expansions in
powers of ε around ε = 0.

We assumed we know how to solve H0. That is, we know how to find its eigen-
values {λ(0)

i } and the corresponding eigenstates {|λ(0)
i 〉}. The superscript zero

here indicates that these states are the solutions at order zero in the expansion
in ε around ε = 0, that is, the solutions when ε = 0 so we only have H0.

Now let’s turn to the full Hamiltonian. Formally, both the eigenvectors and
eigenvalues have a Taylor expansion around ε = 0:

λi =
∞∑
n=0

εnλni = λ
(0)
i + ελ

(1)
i + ε2λ

(2)
i + . . .

|λi〉 =
∞∑
n=0

εn|λni 〉 = |λ(0)
i 〉+ ε|λ(1)

i 〉+ ε2|λ(2)
i 〉+ . . . (2)

We know what λ
(0)
i and |λ(0)

i 〉 are, that Ĥ0|λ(0)
i 〉 = λ

(0)
i |λ

(0)
i 〉 and that Ĥ|λi〉 =

λi|λi〉. We won’t be able to solve for λi or |λi〉 exactly, but we can use this

information to find the first few terms in their expansions in ε, that is λ
(1)
i , λ

(2)
i ,

etc. and |λ(1)
i 〉, |λ

(2)
i 〉, etc. The result is an approximate expression for λi and

|λi〉, valid for small ε.

There is one more subtle thing that we also know. The full states are orthonor-
mal, 〈λi|λj〉 = δij. For this expansion to make sense, it must be orthonormal
at every step. To zeroth order, this simply means that we should start from
orthonormal states, 〈λ(0)

i |λ
(0)
j 〉 = δij. At first order, we have

δij =
(
〈λ(0)

i |+ ε〈λ(1)
i |
) (
|λ(0)
j 〉+ ε|λ(1)

j 〉
)

= 〈λ(0)
i |λ

(0)
j 〉+ ε〈λ(1)

i |λ
(0)
j 〉+ ε〈λ(0)

i |λ
(1)
j 〉

= δij + ε〈λ(1)
i |λ

(0)
j 〉+ ε〈λ(0)

i |λ
(1)
j 〉 (3)
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where we have dropped terms with ε2 and higher powers. Thus

〈λ(1)
i |λ

(0)
j 〉+ 〈λ(0)

i |λ
(1)
j 〉 = 0 (4)

Show that
λ

(1)
i = 〈λ(0)

i |Ĥ′|λ
(0)
i 〉 (5)

Note that finding the first–order correction to the energy only required knowing
the states to zeroth order.

Hint: Expand λi = 〈λi|Ĥ|λi〉 to first order.

2. Having found the leading correction to the energy, we would now like to find the
leading correction to the state. This is a vector, so writing it down explicitly
requires that we pick a basis. The natural choice is the basis of zeroth order
states, {|λ(0)

i 〉}. So we write

|λ(1)
i 〉 =

∑
j

c
(1)
ij |λ

(0)
j 〉 (6)

and we need to find the coefficients c
(1)
ij = 〈λ(0)

j |λ
(1)
i 〉.

Show that

|λ(1)
i 〉 =

∑
λ
(0)
j 6=λ(0)

i

|λ(0)
j 〉
〈λ(0)

j |Ĥ′|λ
(0)
i 〉

λ
(0)
i − λ

(0)
j

(7)

Hint: To find c
(1)
ij with i 6= j, consider the eigenvalue equation Ĥ|λi〉 = λi|λi〉 to

first order and act with 〈λ(0)
j | on the left. This should allow you to find c

(1)
ij for

all i 6= j, so you just have to find c
(1)
ii . Using Eq. (4) with i = j, we know that

it is purely imaginary. But we could always rescale |λ(0)
i 〉 by a phase to absorb

this term. Thus we can set it to zero.

Note that this formula only works if the original eigenvalues are nondegener-
ate — that is, no two eigenvalues are the same (otherwise the denominator
blows up). In practice, degeneracy is extremely rare unless there is a symme-
try guaranteeing the degeneracy. As we have seen, a symmetry corresponds to
an operator Â that commutes with the Hamiltonian. So in that case we can
diagonalize both operators at once and each eigenstate will be labelled by its
energy eigenvalue and its eignvalue of Â, and the states with the same energies
will have different eigenvalues of Â. Then we can show that the sum in Eq. (7)
need only run over states with the same eigenvalue of Â as the original state
(otherwise the matrix element in the numerator is zero), so the degeneracy can
be avoided.

In the rare case of an accidental degeneracy not associated with symmetry, there
is a slightly messier technique required to avoid this problem.
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3. Find the second–order correction to the energy. Hint: It should only
require the first–order states (which you now know from the previous problem).

Expand the eigenvector equation to second order and act with 〈λ(0)
i | on both

sides.

When you do the Taylor expansion, you will get second–order terms in the
states, but by extending Eq. (3) you can show they are zero.

4. Take a system of two spins with the Hamiltonian

Ĥ = Ĥ1 + Ĥ2 (8)

where

Ĥ1 = −γ(Ŝ1 ·B1 + Ŝ2 ·B2)
Ĥ2 = −g′Ŝ1 · Ŝ2 (9)

with B1 = (0, 0, B1) and B2 = (0, 0, B2).

(a) Treating Ĥ1 exactly and Ĥ2 as a perturbation, find the first–order
eigenvalues of Ĥ. Hint: work in the basis of eigenstates of Ŝ1z and Ŝ2z.

(b) Treating Ĥ2 exactly and Ĥ1 as a perturbation, find the first–order
eigenvalues of Ĥ. Hint: work in the basis of eigenstates of Ĵ2.

(c) Find the eigenvalues exactly. Check that you can recover your
results from each of the previous two parts by expanding this
result as a Taylor series to first order in the appropriate param-
eter.
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