
PH 500 Problem Set #1

In this problem set, you’ll review a variety of results from linear algebra, introducing the notation
and extension to complex numbers we’ll need in quantum mechanics.

I. VECTORSPACES IN DIRAC NOTATION

In a modern approach to quantum mechanics, the possible quantum states of a system are
described as vectors. They’re not ordinary three-component vectors, but that case will serve as
a useful analogy. So we’ll start by reviewing the basic rules for manipulating vectors. We’ll use
Dirac notation, which at first will seem bizarre and unfamiliar, but eventually will prove extremely
convenient. In this notation, we’ll write a quantum “state vector” as |ψ〉. The set of all quantum
states forms a vectorspace (“vector” and “state” are synonymous here; for some reason people don’t
usually use the term “statespace,” although it would be perfectly sensible).

A. Vectorspaces and Bases

A vectorspace is a set of states (vectors) |ψ〉 with the following properties:

• We can add states, |ψ1〉+ |ψ2〉, and obtain another state in the vectorspace.

• We can multiply states by a complex constant, c|ψ〉, and obtain another state in the vec-
torspace. (Technically, we are considering a vectorspace over the field of complex numbers.)

• These operations are associative, commutative, and distributive in the usual way.

• There is an additive identity |zero〉 such that |ψ〉 + |zero〉 = |ψ〉. (This state is usually just

written as 0, which is convenient but a bit sloppy, like writing ~v = 0 instead of ~v = ~0; it would
be more logical to to write this state as |0〉, but that notation is often reserved for the ground
state of a system, which is not the same thing.) There is also a multiplicative identity 1 such
that 1|ψ〉 = |ψ〉 and a multiplicative zero 0 such that 0|ψ〉 = |zero〉.

• Every |ψ〉 has an additive inverse −|ψ〉, such that |ψ〉 + (−|ψ〉) = |zero〉, and every c except
c = 0 has a multiplicative inverse 1/c such that c · (1/c) = 1.

Of course, these are just the usual manipulations you are accustomed to when working with vectors.
As you know, we usually describe vectors by their coordinates. In ordinary three-dimensional

space, this means writing an arbitrary vector v in terms of x̂, ŷ, and ẑ. We’d like to generalize this
idea to our vectorspace of quantum states. Let’s consider a subset of our vectorspace consisting
of the states {|e1〉, |e2〉, . . .}. I’m intentionally being a little vague about how many states are in
this subset, because in many cases we are interested in, there will will be infinitely many (instead
of three as in the usual case). We say that this subset is linearly independent if there is no way to
write any one element of the subset as a linear combination of the others. Equivalently, the subset
is linearly independent if the only way to satisfy the equation

0 = c1|e1〉+ c2|e2〉+ . . . (1)
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is for c1 = c2 = . . . = 0. (This definition is equivalent to the previous one because if it was possible
to satisfy this equation with nonzero coefficients, we could solve for one of the vectors with a nonzero
coefficient in terms of the others.) Roughly, a linearly independent subset of the vectorspace doesn’t
have “too many” vectors. On the other hand, we say that our subset spans the space if every vector
|ψ〉 can be written as a linear combination of elements of the subset,

ψ = c1|e1〉+ c2|e2〉+ . . . , (2)

for some choice of c1, c2, . . .. Roughly, a subset that spans the vectorspace has “enough” vectors.
If a subset is both linearly independent and spans the vectorspace, we call it a basis. The

dimension of the vectorspace is the number of elements in this subset. Although there can be
many different bases for the same vectorspace, one can prove that they all have the same number
of elements, so that the dimension is a property of the space, independent of the particular basis
we choose. (It is perfectly possible, however, for the dimension to be infinite; but then all bases
will have infinitely many elements.)

Since a basis spans the space, we can write any vector in the form of Eq. (2). Then c1, c2, . . .
are the coordinates of the state |ψ〉 in this basis. Because the basis is linearly independent, these
coordinates are unique — there is no other combination that would work. In more traditional

notation, the vector is represented by its coordinates as a column,

c1c2
...

. We won’t use that

notation here, because we want to avoid committing to a particular basis.

B. Linear Operators

We have seen how to form new states as linear combinations — sums and scalar products —
of other states. We will also be interested in operators, which are functions that take a state
and return another state. For an operator Â, we’ll write the result of this operation as Â|ψ〉. In
particular, in quantum mechanics we will almost exclusively be interested in linear operators, for
which Â(|ψ1〉 + |ψ2〉) = Â|ψ1〉 + Â|ψ2〉 and Â(c|ψ〉) = cÂ|ψ〉. Note that this is a very restrictive
definition. For example, we often refer to a function y = mx + b as “linear,” but our definition of
linear only admits the case b = 0 (for b 6= 0 it would be an “affine” function).

We can fully describe a linear operator by specifying how it acts on a basis, since by linearity we
can figure out what it does to any other state by taking linear combinations. Furthermore, we can
decompose the result of acting on a particular basis element — which is another state — in that
same basis. So we have

Â|e1〉 = A11|e1〉+ A21|e2〉+ . . .

Â|e2〉 = A12|e1〉+ A22|e2〉+ . . .
...

...
... (3)

and we can completely specify the linear operator by the complex numbers Aij. In traditional
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notation we would write these numbers as a matrix,

A11 A12 · · ·
A21 A22 · · ·

...
...

, but again, we generally

won’t use this notation, because we want to avoid committing to a particular basis.

C. Inner Product

The last operation we would like to define for our generalized vectorspace of quantum states is
the inner product, which is the generalization of the dot product of ordinary vectors. (We won’t
generalize the cross product, which in its usual form is specific to three dimensions.) Let’s review
the situation in that case. From two vectors we obtain a number, which gives us information about
how closely aligned the two vectors are. We start by writing two vectors in the standard basis,

v = vxx̂ + vyŷ + vzẑ and w = wxx̂ + wyŷ + wzẑ , (4)

or, more formally,

v =
3∑
j=1

vjej and w =
3∑
j=1

wjej (5)

where e1 = x̂, e2 = ŷ, and e3 = ẑ. Then their inner product is

v ·w = v∗xwx + v∗ywy + v∗zwz =
3∑
j=1

v∗jwj = |v||w| cos θ , (6)

where θ is the angle between the two vectors. This formula may not look exactly like the one you’re
familiar with, because of the conjugation symbol on vj. However, I claim it is the only sensible
definition when we are considering complex vectors (that is, vectors with complex coordinates).
Why? Well, for the special case when the two vectors are the same, we want the dot product to
give a definition of length:

v · v =
3∑
j=1

v∗j vj = |v|2 . (7)

With the conjugation, this is the sum of the magnitude squared (in the sense of complex numbers)
of the three coordinates, which is a sensible definition of the total magnitude squared (in the sense
of vectors). Without the conjugation, it could be negative or imaginary! Note, however, that this
change means that the inner product is no longer commutative: v ·w = (w · v)∗.

To implement the inner product for our more abstract quantum states, it is helpful to make one
more definition. For any state |ψ〉, we associate a “dual” state 〈ψ|. (The notation was designed
for this purpose!). We furthermore stipulate that for any complex coefficient c, the state c|ψ〉 is
associated with the dual state 〈ψ|c∗. The order here is not important (we can move a number
around however we want), but the conjugate is — it will allow us to keep track of the conjugates
introduced by the inner product. As we’d expect, the dual of the sum of two vectors is simply the
sum of their duals. In traditional coordinate notation, then, the dual state is a row vector, so the
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dual of

c1c2
...

 is
(
c∗1 c∗2 · · ·

)
, but again we won’t tend to use this notation because it commits us to

a particular basis.
We then define the inner product to pair a state with a dual state:

[inner product of φ and ψ] = 〈φ|ψ〉 , (8)

which will keep track of the conjugates automatically. Let’s see how this works in terms of coor-
dinates. First, let’s go back to the case of ordinary vectors. To be completely precise, we should
write

v ·w =

(
3∑
i=1

v∗i êi

)
·

(
3∑
j=1

wjêj

)
. (9)

We then use the fact that the êj are orthonormal : each êj is perpendicular to all the others and
has length 1, so that

êi · êj =

{
0 if i 6= j
1 if i = j .

(10)

Even though there’s nothing particularly complicated about the right-hand side of this expression,
it arises so commonly that physicists define it as the Kronecker δ symbol,

δij =

{
0 if i 6= j
1 if i = j .

(11)

So in our quantum state notation, suppose {|ej〉} is an orthonormal basis, meaning it is a basis
such that

〈ei|ej〉 = δij . (12)

If we express two states in this basis,

|ψ〉 = a1|e1〉+ a2|e2〉+ . . . =
∑
i

ai|ei〉

|φ〉 = b1|e1〉+ b2|e2〉+ . . . =
∑
j

bj|ej〉 , (13)

then to take their inner product we first find the dual of |φ〉,

〈φ| = 〈e1|b∗1 + 〈e2|b∗2 + . . . =
∑
j

〈ej|b∗j , (14)

and compute the inner product as

〈φ|ψ〉 =
∑
j

〈ej|b∗j
∑
i

ai|ei〉 =
∑
j

∑
i

b∗jai〈ej|ei〉 =
∑
j

∑
i

b∗jaiδij =
∑
j

b∗jaj , (15)
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which matches up with what we expect: We multiply the corresponding coordinates, conjugating one
of them, and then sum the result. Because of the conjugation, the inner product is not commutative,
but instead obeys

〈φ|ψ〉 = 〈ψ|φ〉∗ , (16)

as we discussed above. Importantly, while we have chosen a particular basis in which to carry out
the calculation of the inner product, the result is basis-independent (which is getting to be a familiar
refrain).

A useful feature of an orthonormal basis is that we can “pick out” a particular coordinate via
the inner product, just as you find the x-component of an ordinary vector by taking its dot product
with x̂. If we consider the expression for |ψ〉 in Eq. (13) and take the inner product of both sides
with 〈ej|, we obtain

〈ej|ψ〉 = aj , (17)

since the jth term in the sum gives an inner product of 1 and all the other inner products are zero.
Similarly, if Eq. (3) is given in an orthonormal basis we have

Aij = 〈ei|Â|ej〉 , (18)

and for this reason expressions of this form are often referred to as “matrix elements.”

D. Quantum States as Vectors

We will represent the state of a quantum system — that is, all the information about the system
at given moment in time — as a vector in some (potentially high- or even infinite-dimensional)
vectorspace. Physical quantities will then be associated with linear operators acting on that vec-
torspace.

In working with our quantum state vectors, a very useful tool will be the eigenstates and eigen-
values of a linear operator. An eigenstate (or eigenvector) of an operator Â is a state |λ〉 such
that

Â|λ〉 = cλ|λ〉 , (19)

where cλ is a number, which is the corresponding eigenvalue. Such a state is very special: when
you act with the operator, you get back to the same state, up to a constant. So the “direction” of
the state (or vector) has not changed — it has just been rescaled. (In general, the result of acting
with a linear operator would be a linear combination of an entire basis worth of states.)

Eigenstates and eigenvalues will be be crucial in understanding quantum measurements. First,
the result of a measurement is always an eigenvalue of the corresponding operator. This is what puts
the “quantum” in quantum mechanics: The reason there are discrete energy levels in the hydrogen
atom is that there only exist eigenstates of the energy operator (which we’ll define later) with
those eigenvalues; the energy operator has a discrete spectrum of possible eigenvalues, and there
doesn’t exist an eigenstate with an eigenvalue corresponding to the energies in between two of these
energy levels. Second, if your system is in a state |ψ〉, you can predict the probability of obtaining
a particular result for your measurement from the inner product of |ψ〉 with the corresponding
eigenstate,

Probability of measuring cλ for system in state |ψ〉 = |〈λ|ψ〉|2 . (20)

5



(For a continuous physical quantity like x, this becomes a probability density.) In general, then,
your probability of obtaining the result cλ depends on how closely your state |ψ〉 is aligned with
the corresponding eigenstate |λ〉. This definition assumes that the state |ψ〉 is normalized,

〈ψ|ψ〉 = 1 (21)

that is, its magnitude (squared) is 1. We have also assumed that the eigenstate |λ〉 is normalized
— in particular, it is an element of an orthonormal basis. These assumptions ensure that the total
probability of finding any outcome for our measurement is 1.

E. Hermitian Operators

Suppose we take a state |ψ〉, and act on it with a linear operator Â. The result is another state,
which we’ll call |γ〉,

|γ〉 = Â|ψ〉 . (22)

Consider the inner product of this result with another state 〈φ|,

〈φ|γ〉 = 〈φ|Â|ψ〉 . (23)

Now we would like to write a similar expression for 〈γ|φ〉. On the one hand, the inner product is
commutative up to conjugation, so for any two states

〈φ|γ〉 = 〈γ|φ〉∗ . (24)

To relate this expression back to ψ, however, we need to introduce a new operator Â†, which is
defined so that 〈γ| = 〈φ|Â†. Then we have

〈φ|Â|ψ〉∗ = 〈φ|γ〉∗ = 〈γ|φ〉 = 〈ψ|Â†|φ〉 . (25)

The operator Â† is called the Hermitian conjugate (or adjoint) of Â. We can get some insight
into this operator by looking at the case where |φ〉 and |ψ〉 are two elements of an orthonormal
basis, which we’ll call |ei〉 and |ej〉. Then we can define the “matrix elements,” the entries in the

representation of the operator Â in this basis,

Âij = 〈ei|Â|ej〉 . (26)

From the above, we find that the operator Â† is obtained from Â by switching i and j (that is,
taking the transpose of the matrix) and then conjugating,

Â†ij = 〈ej|Â|ei〉∗ =
(
Âji

)∗
. (27)

A Hermitian (or self-adjoint) operator is one for which Â = Â†. (In mathematics there is a
slight distinction between the terms Hermitian and self-adjoint, but for us they will be equivalent.)
Hermitian operators have several extremely useful properties, which we will now discuss (and which
you’ll prove in the problems):
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1. The eigenvalues of a Hermitian operator are real.

2. Eigenstates of a Hermitian operator corresponding to different eigenvalues are orthogonal.

Note that if we have several eigenstates of Â with the same eigenvalue, any linear combination
of those states is also an eigenstate of Â, also with the same eigenvalue. (This is not true for
a linear combination of eigenstates with different eigenvalues; in that case a nontrivial linear
combination will not be an eigenstate of Â.) So even if we have several independent states
with the same eigenvalue that are not orthogonal, we can always choose linear combinations
that will be orthogonal. This leads us to the next result:

3. For any Hermitian operator Â, there exists an orthonormal basis for the space of all quantum
states consisting of eigenstates of Â.

We have already seen that the eigenstates of Â can be made orthogonal, and by normalizing
them we obtain an orthonormal set. The one thing left to prove is that this orthonormal set
spans the space of states, that is, that every state can be written as a linear combination of
eigenstates of Â. A rigorous proof hinges on carefully describing the space of allowed states,
but for our purposes we will in effect take this set to be defined as the space spanned by our
eigenstates, and assume (correctly) that it is sufficient to describe the possible states of the
physical system.

F. Unitary Operators

We can think of Hermitian operators as the generalization of real numbers, which makes it
appropriate to associate them with physical quantities. We will also be interested in operators
where taking the Hermitian conjugate gives the inverse of the original operator, rather than the
operator itself. Such operators are called unitary, and obey

Û Û † = Û †Û = Î , (28)

where Î is the identity operator, which maps every state to itself. While Hermitian operators have
real eigenvalues, unitary operators have eigenvalues with magnitude 1, and we can think of unitary
operators as generalizations of complex numbers with unit magnitude, eiθ with θ real. Consistent

with this analogy, we will be able to express every unitary operator as eiĤ , where Ĥ is Hermitian
(we first will have to define what we mean by the exponential of an operator). As in the case of
Hermitian operators, for any unitary operator we will always be able to construct an orthonormal
basis consisting of its eigenstates.

G. Commutators

When we have two operators, we can compose them, meaning that we act with one and then the
other. So

ÂB̂|ψ〉 (29)
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means we should take |ψ〉 and then act with B̂ first, and then act on the result with Â. Crucially,
this is not necessarily the same thing as

B̂Â|ψ〉 , (30)

where we act with the operators in the other order. In the special case where ÂB̂|ψ〉 = B̂Â|ψ〉 for

all states |ψ〉, we say that Â and B̂ commute. Whether operators commute will be of such central
interest in quantum mechanics that we define a special symbol representing how much they fail to
commute, called the commutator:

[Â, B̂] = ÂB̂ − B̂Â . (31)

Then Â and B̂ commute if and only if [Â, B̂] = 0.
The commutator will show up all over the place, but at this point we’ll highlight one more

technical result that underlies its many roles. We know that for any Hermitian operator Â, we
can construct an orthonormal basis consisting entirely of eigenstates of Â. Now suppose we have
two operators, Â and B̂. Can we construct a single basis consisting entirely of states that are
eigenstates of both Â and B̂? (We don’t require that the corresponding eigenvalues be equal.) The

answer is yes, if and only if Â and B̂ commute. In that case we say that Â and B̂ are simultaneously
diagonalizable, since in such a basis of eigenstates, both operators would be represented as diagonal
matrices. If not, we say that Â and B̂ correspond to incompatible observables. That’s where things
get interesting: if we are considering the operators corresponding to two incompatible observables
we have a conflict: In general we can put the system in an eigenstate of one operator or the other,
but not both. But eigenstates are the only case where we know the result of a measurement with
certainty. So nonvanishing commutators lead to uncertainty, with one example being the famous
Heisenberg uncertainty principle.

H. Basis Independence

In quantum mechanics, it turns out to be very useful to work with a quantum state |ψ〉 in a way
that is independent of a particular representation as a wavefunction. The situation is analogous to
defining an ordinary 3-dimensional vector v in a way that is independent of a particular coordinate
system. The irony is that to actually work with a vector, we always need to choose a particular
coordinate system. This means choosing a set of basis vectors, like x̂, ŷ, and ẑ, in terms of which
we can represent any vector. However, physical laws will always depend on quantities that are
basis-independent, like the magnitude of a vector or the inner product of two vectors, or they will
give results that hold equally well for any coordinate system. So it is very valuable to formulate
laws of physics in a basis-independent way, whether we are dealing with quantum states or ordinary
vectors. (Mathematically, the only difference between these two cases is that the dimension of the
space of quantum states — the number of independent coordinates — is infinite for most common
systems.)

8



II. THE POSTULATES OF QUANTUM MECHANICS

Let’s begin by laying out the underlying assumptions of quantum mechanics, some of which we
have already seen. As usual in physics, we can’t derive our initial assumptions; we accept them
because they lead to correct predictions for what we observe experimentally.

1. The state of a quantum system is completely described by a normalized state vector |ψ〉 in
some complex Hilbert space. (“Hilbert space” is just the mathematician’s term for a possibly
infinite-dimensional vectorspace with an inner product. It is also required to be a complete
space, which means that the limit of any convergent sequence of points in the Hilbert space
is also in the space.) Note that by saying that the state is “completely” described by |ψ〉,
this postulate prevents us from introducing “hidden variables” that one might hope to use
to make quantum theory deterministic. In a theory with hidden variables, the outcome of a
measurement that looks probabilistic in quantum mechanics is actually governed by additional
information beyond the quantum state. It would seem hard to disprove such a claim, but it
turns out that under very reasonable assumptions (e.g., only allowing local interactions), it
can be shown that all hidden variable theories make predictions that are in conflict with
experiment.

2. To every measurable quantity, we associate a Hermitian operator Ô.

3. If we measure a particular physical quantity, the result is always an eigenvalue λ of the
associated operator Ô. Since the operator is Hermitian, this eigenvalue is always a real
number.

4. The probability of measuring the outcome λ for the physical quantity associated with the
operator Ô for a system in the state |ψ〉 is given by the equation Pλ = |〈λ|ψ〉|2, where |λ〉
is the normalized eigenvector of Ô with eigenvalue λ. Since Ô is Hermitian, its eigenvectors
form an orthonormal basis, and each probability Pλ is just the magnitude squared of the
coordinate of |ψ〉 corresponding to the basis vector |λ〉. Thus summing the probabilities over
all possible outcomes is the same as summing the magnitudes squared of all the coordinates
of |ψ〉 in this basis. Since |ψ〉 is normalized, the probabilities sum to one (as they should).

5. After performing a measurement whose outcome is λ, the system suddenly jumps into the state
|λ〉, meaning that a second measurement of the same physical quantity performed directly
after the first measurement will always yield the same result.

6. If we don’t perform any measurements but simply let time pass, the state of the system evolves
according to the Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 , (32)

where Ĥ, called the Hamiltonian, is the Hermitian operator corresponding to the energy of
the system.
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To make sense of these postulates, we’ll develop explicit examples to understand how they work
and what they mean. To start with, we’ll focus on the first four postulates, which concern the
description of a state and the results of a measurement of physical quantities. The second two, in
contrast, concern dynamics — what happens next. We’ll come back to those in due course.

III. EXPLICIT EXAMPLE: 2-DIMENSIONAL VECTORSPACE

To illustrate concretely the concepts we’ve discussed so far, let’s consider a 2-dimensional vec-
torspace, with basis

|+〉 =

(
1
0

)
and |−〉 =

(
0
1

)
(33)

so that a general column vector can be written as

|ψ〉 = a|+〉+ b|−〉 =

(
a
b

)
(34)

where a and b are complex numbers. The inner (dot) product of two vectors is denoted as

〈ψ2|ψ1〉 =
(
a∗2 b∗2

)(a1
b1

)
= a∗2a1 + b∗2b1 (35)

where we have defined the row vector
〈ψ| =

(
a∗ b∗

)
(36)

(for mathematical purists: this is an element of the dual vectorspace). Note that

〈ψ2|ψ1〉 = 〈ψ1|ψ2〉∗ (37)

We can let a linear operator act on our vector

|φ〉 = M̂ |ψ〉 =

(
A B
C D

)(
a
b

)
(38)

and the corresponding row vector is

〈φ| = 〈ψ|M̂ † =
(
a∗ b∗

)(A∗ C∗
B∗ D∗

)
(39)

where we have defined the adjoint M̂ †, which is the conjugate transpose of the matrix M̂ .
The inner product of a vector with itself is the norm of that vector squared. In the 2-dimensional

case,
〈ψ|ψ〉 = a∗a+ b∗b = ||ψ〉|2 (40)

A quantum state is represented by a normalized vector, so that

〈ψ|ψ〉 = 1 (41)
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A physical quantity will be represented by a Hermitian operator, which is an operator whose
adjoint is itself. For the 2 by 2 case,

Ô = Ô† =

(
A B
B∗ C

)
(42)

where A and C are real.
The eigenvalues and eigenvectors of Ô are the states |λi〉 such that

Ô|λi〉 = λi|λi〉 (43)

where λi is a number. (The confusing but standard convention is to label the eigenvectors by the
corresponding eigenvalues.) We will always choose to normalize the eigenvectors |λi〉 so that

〈λi|λi〉 = 1 (44)

1. Let Â and B̂ be two linear operators. The commutator of Â and B̂ is

[Â, B̂] = ÂB̂ − B̂Â (45)

Show that

(a) [Â, Â] = 0

(b) [Â, B̂] = −[B̂, Â]

(c) [Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ]

2. Consider a linear operator Â, and an eigenvector |v〉 with eigenvalue λ, so that

Â|v〉 = λ|v〉 (46)

(a) Show Ân|v〉 = λn|v〉.

(b) Let f(Â) =
∞∑
n=0

anÂ
n. Show f(Â)|v〉 = f(λ)|v〉.

3. Let |e1〉 and |e2〉 be an orthonormal basis for a vector space. Consider the linear operator Â
defined by

Â|e1〉 = |e2〉 Â|e2〉 = −|e1〉 (47)

(a) Represent Â by a matrix in this basis.

(b) Show that Â4 = Î where Î is the identity.

(c) Using (b) show that all the eigenvalues of Â are fourth roots of unity (that
is, they obey λ4 = 1).

(d) Find normalized eigenvectors |w1〉 and |w2〉 in terms of |e1〉 and |e2〉.
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(e) Represent Â by a matrix acting on the basis |w1〉 and |w2〉.

4. Suppose that we have [Â, B̂] = Î. Show that there is no vector that is simultaneously

an eigenvector of Â and B̂.

Note: By taking the trace of the above equation, you might conclude that such a situation is
impossible. However, it can occur for infinite-dimensional matrices.

5. Consider the matrices

L̂x =
1√
2

0 1 0
1 0 1
0 1 0

 L̂y =
1

i
√

2

 0 1 0
−1 0 1
0 −1 0

 L̂z =

1 0 0
0 0 0
0 0 −1

 (48)

(a) Find L̂2 = L̂2
x + L̂2

y + L̂2
z.

(b) For each of the operators L̂2, L̂x, L̂y, L̂z, L̂
2
x, L̂

2
y, and L̂2

z, find a complete set of
normalized eigenvectors and their eigenvalues.

(c) Show explicitly that each set of eigenvectors you found in (b) forms an or-
thonormal basis.

(d) Find the commutators [L̂x, L̂y], [L̂y, L̂z], [L̂z, L̂x], [L̂2, L̂x], [L̂2, L̂y], and [L̂2, L̂z].

6. We said that if Ô is Hermitian:

(a) λi will always be real.

(b) Different states |λi〉 corresponding to different λi will be orthogonal (that is, their inner
product is zero).

(c) The total number of eigenvectors will equal the dimension of the vectorspace (2 in our
example), meaning that the eigenvectors form a basis (since they’re orthogonal).

Prove these first two of these three statements. Your proofs should be general, not
specific to the 2-dimensional case.

7. The possible results of a measurement of the physical quantity are the eigenvalues of Ô.

For example, consider these three operators:

σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
(49)

(don’t worry about what they actually correspond to physically for now). For each of the
these three operators, find the possible results of a measurement.

8. The probability that a given state |ψ〉 results in the measurement of λi for the physical quantity

Ô is
Pi = |〈λi|ψ〉|2 (50)
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Remember that 〈λi|ψ〉 is simply the ith coordinate of |ψ〉 in the basis of eigenvectors {|λi〉}.
As a result, the norm squared of |ψ〉 is just the sum of all the magnitudes squared of its
coordinates, which is just the sum of all the Pi, and so normalizing |ψ〉 ensures that the
probabilities sum to one.

Start with the state

|ψ〉 =
1√
3
|+〉+ i

√
2

3
|−〉 (51)

For each of the operators above, you found the possible results of a measurement. For a
system in the state |ψ〉, find the probability of each of these results for each
operator.

9. The expectation value of the operator Ô in the state |ψ〉 is defined to be 〈ψ|Ô|ψ〉. In 2
dimensions, we have

〈ψ|Ô|ψ〉 =
(
a∗ b∗

)( A B
B∗ C

)(
a
b

)
(52)

Show that this quantity represents the average result of a measurement of Ô, by
which I mean the average of each possible result of a measurement weighted by
the probability of that result. Hint: Since the eigenvectors of Ô form a basis, you can
write

|ψ〉 =
∑
i

ci|λi〉 (53)

First find ci, and then see what happens when you plug this formula into Eq. (52). Again,
make your argument apply for arbitrary dimension.

10. For the state

|ψ〉 =
1√
3
|+〉+ i

√
2

3
|−〉 (54)

compute 〈ψ|σ̂x|ψ〉, 〈ψ|σ̂y|ψ〉, and 〈ψ|σ̂z|ψ〉, where

σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
(55)

Check that this result agrees with the average of the eigenvalues weighted by the
corresponding probabilities.

11. If Â, B̂ and Ĉ are Hermitian, find which of the following are also necessarily
Hermitian operators:

(a) Â+ B̂

(b) 1
2i

[Â, B̂] = 1
2i

(ÂB̂ − B̂Â)

(c) ÂB̂Ĉ − ĈB̂Â
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(d) Â2 + B̂2 + Ĉ2

(e) Â+ iB̂

12. Let Û be unitary, which means that Û †Û = 1̂.

(a) Show that if 〈ψ|ψ〉 = 1, then 〈γ|γ〉 = 1, where |γ〉 = Û |ψ〉.
(b) Suppose |ui〉 is a complete orthornormal set, so that we have

〈uj|ui〉 = δij (56)

where the Kronecker delta function is one if i = j and zero if i 6= j. Show that
|vi〉 = Û |ui〉 is also an orthonormal set.

(c) Suppose Û is written out as a matrix in an orthonormal basis. Show that its columns
form an orthonormal set. Show that its rows also constitute an orthonormal
set. Hint: Use the previous result, and also that Û is unitary if and only if Û † is unitary.

13. Consider the matrix L̂y from above. (You may use your previous results without rederiving
them.)

(a) Find the matrix L̂′y that represents L̂y in the basis where it is diagonal.

(b) Find the matrix Ŝ such that

L̂′y = ŜL̂yŜ
−1 (57)

(c) Show that Ŝ is unitary.
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