
PH 401 Problem Set # 5

Due: Wednesday, October 29, 2003

In this problem set you will carry out the alternative analysis of the square well de-
scribed in footnote 27 on page 63 of Griffiths. Since parity commutes with the Hamil-
tonian (because the potential is symmetric), we should be able to simultaneously
diagonalize the Hamiltonian and parity, that is, find eigenstates of the Hamiltonian
that are also either even or odd functions. While we did this for the bound states, we
did not for the scattering states. One way to think about it is that in the presentation
in the book, there are two scattering solutions for a given energy: one is the wave
that comes in from the left and the other is the one that comes in from the right. The
parity eigenstates are linear combinations of these two cases: the even state comes
in with equal components from left and right, and the odd state comes in with equal
and opposite components from left and right.

In this process, you will learn about a very useful tool in quantum mechanics and
discover experimentally a fundamental theorem governing its behavior.

1. Start by doing Griffiths 2.28. Set up Mathematica (or your favorite graphing
program) so that if the width a and depth V0 are both specified numerically,
you can graphically estimate both the odd and even bound states (you’ll need

this later). To make life simpler, work in units of

√
2m

h̄
. In other words, set this

quantity to one everywhere in all of your numerical calculations, both in this
and subsequent problems. (Of course, in the analytic formulae you are asked
to calculate, you should keep it around.)

2. Now let’s find the scattering states that are also parity eigenstates. Let’s start
with the odd states. Outside the potential (that is, for |x| > a), we just have
the free Hamiltonian. As you found on a previous problem set, you can choose
eigenstates of the Hamiltonian with negative parity in the form of ψ(x) = sin kx
with k > 0. Because we are only looking at |x| > a, however, we have to be a
little more general. Consider a solution of the form

ψout(x) = sin (kx+ sgn(x)δA(k))

where δA(k) is a real number independent of x but possibly dependent on k,
called the phase shift. (The “A” indicates that we are dealing with the antisym-
metric case.) Here sgn(x) = x/|x| is just the sign of x, necessary to ensure that
the function is odd. Of course, this is not a solution to the free Hamiltonian
everywhere (unless δA(k) = 0), because at the origin it has a kink due to the
sgn(x), but in this case we never encounter that region.
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(a) Show that sin (kx+ sgn(x)δA(k)) solves the eigenvalue equation outside
the potential and find the relationship between k and E (which should
look familiar).

(b) Inside the potential (that is, for |x| < a), we have a solution of the form

ψin(x) = CA(k) sin qx

There can’t be a cos qx because it wouldn’t be odd, and there can’t be a
phase shift because there would be a kink at the origin. CA(k) is just a
normalization constant (which can depend on k). Find q in terms of k and
V0, and then match up ψ(x) and ψ′(x) at the boundary x = a to solve
for the two unknowns CA(k) and δA(k) in terms of k, V0 and a. (By the
symmetry of the problem, once you match up the boundary conditions at
x = a, they will automatically be satisfied at x = −a.)

(c) Repeat this analysis for the symmetric wavefunctions, which outside are
of the form

ψout(x) = cos (k|x|+ δS(k))

and inside are of the form

ψin(x) = CS(k) cos qx

(d) For some selected values of V0 and a, plot both phase shifts as functions
of k and use the graphical method to find the number of symmetric and
antisymmetric bound states. Be sure to consult the hints below before
carrying out your numerical calculation. Choose one of your examples
with V0 < 0; in that case we have a repulsive potential, which has no
bound states (but your formulae for the phase shifts are unchanged — just
plug in the negative value of V0). Do at least two cases with V0 > 0.

(e) There is a relationship, called Levinson’s theorem, between each phase shift
at k = 0 and the corresponding number of bound states. Find this relation-
ship experimentally from your numerical examples. Note that Levinson’s
theorem is slightly different between the symmetric and antisymmetric
cases.

Hint: Again, set

√
2m

h̄
= 1 in the numerical calculation.

Hint: Since the phase shift is a phase, we can always add multiples of 2π to it
without changing anything. In fact, if we add an odd multiple of π all we do
is change the sign of the wavefunction, so it’s really only defined up to adding
any multiple of π. You should see this in your calculation because the phase
shifts you found should be the arctangents or arccotangents of something, and
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we have to arbitrarily pick which of the infinite set of angles differing by π to
use.

However, for Levinson’s theorem to work, we will need to specify the phase shift
uniquely. Here is how to do it:

• Demand that the phase shift go to zero as k →∞.

• Demand that the phase shift be a continuous function of k.

Probably the phase shift you get out of Mathematica (or your favorite graphing
program) will not look like this — instead it will jump. Deal with this either
by sketching on the graph what the phase shift would look like if the different
segments were shifted by π to make it continuous, or else by tricking Mathe-
matica into giving you the form you want by using the fundamental theorem of
calculus:

δ(k) =
∫ k

∞
δ′(k′)dk′ (1)

where δ′(k) is the derivative of the phase shift with respect to k. In other
words, you compute δ′(k′) by hand from your formula for δ(k), and then get
Mathematica to give you back δ(k) using the above formula. By construction,
it will vanish at infinity and be continuous.

Here is a Mathematica snippet that might be helpful for implementing this
trick:

a = (your choice)

v0 = (your choice)

deltaA[k_] := (your result for the antisymmetric phase shift)

deltaS[k_] := (your result for the symmetric phase shift)

fixup[f_] := Function[k, NIntegrate[f’[p], {p, 50/a, k}]]

Plot[fixup[deltaA][k],{k,0,8/a}]

Plot[fixup[deltaS][k],{k,0,8/a}]

where 50/a is the “infinite” upper limit, which just needs to be much larger
than 1. (Mathematica allows you to specify the upper limit as Infinity, but this
is not always reliable numerically.) Note that the range of interesting values of
k goes like the inverse distance 1/a. Putting the h̄ back in, this means that the
interesting momenta p = h̄k are those such that p · a ≈ h̄.

Hint: Since the phase shift is a phase, it may help to divide it by π in order to
see what it is doing.

3. We can define the phase shift for any symmetric potential V (x) that vanishes
fast enough at large |x|, since if the potential is very small when we are far
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away, the solutions far away will be arbitrarily close to the form of our ψout(x)
functions above. However, it might not be practical to actually calculate the
phase shifts exactly in the general case. The Born approximation to the phase
shift is given by

δBorn
A (k) = −2m

h̄2 · 1

2k

∫ ∞

−∞
V (x) sin2 kx dx

in the antisymmetric channel and

δBorn
S (k) = −2m

h̄2 · 1

2k

∫ ∞

−∞
V (x) cos2 kx dx

in the symmetric channel. Evaluate the Born approximation for the square well
case. For one of your numerical examples, plot the Born approximation together
with the full phase shift in both channels. Where, as a function of k, does the
Born approximation work well?

Hint: Remember that the potential for the square well is V (x) = −V0 for |x| < a
and zero elsewhere — don’t forget the minus sign.

Hint: Once again, you should set

√
2m

h̄
= 1 in the numerical calculation (which

is why I’ve separated the square of this term out explicitly in the formulae
above).

4. Finally, let’s connect this calculation to the standard approach done in class
and in Griffiths. The ratio of the amplitude of the transmitted wave to the
amplitude of the incident wave is given by Eq. (2.150) as

t(k) =
e−2ika

cos 2qa− i sin 2qa
2qk

(k2 + q2)

and the ratio of the amplitude of the reflected wave to the amplitude of the
incident wave is given by Eq. (2.149) as

r(k) = i
sin 2qa

2qk
(q2 − k2)t(k)

Show that

r(k) =
1

2

(
e2iδS(k) − e2iδA(k)

)
and

t(k) =
1

2

(
e2iδS(k) + e2iδA(k)

)
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Hint:

arctanx =
1

2i
ln

1 + ix

1− ix
arccotx = arctan

1

x

Here is how to interpret this result (you don’t have to do anything with this infor-
mation except admire the beautiful interconnectedness of things). In the original
calculation, we can think of our basis as consisting of two states for a given energy:
the waves moving to the left and the waves moving to the right. The scattering can
be summarized by the S-matrix

S =
(
t(k) r(k)
r(k) t(k)

)

as follows: If we multiply this matrix by the vector
(

1
0

)
, representing an incoming

wave moving to the right, what comes out is the linear combination
(
t(k)
r(k)

)
. That

is, t(k) tells us the component still moving to the right (the transmitted wave), and
r(k) tells us how much of a component moving to the left we pick up (the reflected

wave). Similarly, a left-moving incident wave
(

0
1

)
turns into

(
r(k)
t(k)

)
. Again, t(k)

tells us how much continues to the left and r(k) tells us how much is reflected back
to the right (since the potential is symmetric, the transmission and reflection is the
same regardless of which way we come in from). Because |r(k)|2 + |t(k)|2 = 1, this
matrix is unitary, and thus the probability to go somewhere remains one.

The calculation you have just done corresponds to using a different orthonor-

mal basis for this two-dimensional subspace. The symmetric channel is
1√
2

(
1
1

)
,

an equal combination of left- and right-moving waves. The antisymmetric channel

is
1√
2

(
1
−1

)
, an equal and opposite combination of left- and right-moving waves.

These states are still eigenstates of the Hamiltonian (since they are just linear com-
binations of eigenstates with the same energy E), but they are also eigenstates of
parity. Since parity commutes with the Hamiltonian, it’s conserved and these states
can’t mix together under time evolution. Thus in this basis the S-matrix is diagonal.
In particular, the calculation you have just done shows that in this basis S becomes

S =
(
e2iδS(k) 0

0 e2iδA(k)

)
That is, each channel just picks up a phase given by twice the phase shift you found.

The S-matrix is described in more detail in section 2.7 of Griffiths, though he uses
arcane conventions in which r(k) goes on the diagonal and t(k) on the off-diagonal
(I’ve done it the other way around).
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