
PH 120 Project # 2: Pendulum and chaos

Due: Friday, January 16, 2004

In PH109, you studied a simple pendulum, which is an effectively massless rod of
length ` that is fixed at one end with a small mass m at the other end. There are
two forces on the mass: the tension in the rod and gravity. But the tension in the
rod is radial, so it does not exert a torque around the pivot point where the rod is
fixed. The torque due to gravity is mg` sin θ, where g is the acceleration of gravity
and θ is the angle of the pendulum (taking the angle to be zero at the bottom). Thus
Newton’s Law τ = Iα becomes

−mg` sin θ(t) = I
d2θ(t)

dt2
= m`2d2θ(t)

dt2

where the moment of inertia I is just m`2 for a point mass. Defining ω =

√
g

`
, this

simplifies to
d2θ(t)

dt2
= −ω2 sin θ(t) .

To solve this equation, you assumed that θ(t) was always small, so that sin θ ≈ θ.
Then the equation becomes

d2θ(t)

dt2
= −ω2θ(t)

and we have simple harmonic motion with angular frequency ω. The general solution

is θ(t) = θ0 cos ωt +
ω0

ω
sin ωt, where θ0 is the angle at time t = 0 and ω0 is the

angular velocity
dθ

dt
at t = 0. (If you would like more details than I’ve provided in

this lightning review, see page 372-3 of Wolfson & Pasachoff.)
Of course, a real pendulum is not restricted to oscillate only through small angles.

Your job on this problems set will be to analyze the pendulum without making this
assumption.

1. The mathematical problem here is a differential equation. To remind you, a
differential equation is an equation for a function — in our case θ(t). Solving
a differential equation means taking a relationship between a function and its
derivatives and finding function (or a set of functions) that satisfy this rela-
tionship. Just as it can solve ordinary equations, Mathematica can also solve
differential equations. Before attempting the pendulum problem, let’s start
with some simpler examples.

(a) A simple example of a differential equation is

f ′(t) = −kf(t)

1

which describes the decay of radioactive isotopes like 14C — the rate at
which the isotope disappears is proportional to how much you have at a
given time.

Even if you know how to solve this equation, use Mathematica to find the
solution. Pick a value of k and an initial condition f [0] and generate a plot
of a particular solution as a function of t. Estimate graphically how long
it takes for half the material to disappear. Check your answer analytically.

Hint: Just as it did with Solve, when Mathematica solves a differential
equation, it generates a rule describing the solution (or solutions). So
you will need to apply this rule to substitute the result back into f[t].
Solutions to differential equations involve unknown constants (for example,
any solution to this equation can be multiplied by a constant to yield
another solution), which Mathematica represents as C[1], C[2], etc. In
this case, the constant represents how much radioactive material we started
with (to see this, evaluate the solution at t = 0).

(b) A slightly more complicated example is the system of differential equations

r′[t] = 1− w[t] w′[t] = r[t]− 1

describing populations of rabbits and wolves: Rabbits multiply, so their
population increases (the first term in the first equation), but wolves eat
them, reducing their population (the second term in the first equation).
When there are a lot of rabbits around the wolf population grows (the first
term in the second equation), but otherwise they die (the second term in
the second equation). Solve these differential equations with Mathematica.
Then pick some initial conditions and make a plot of both populations as
functions of t on the same graph.

(This is not actually a very realistic model, since values can go negative,
but it’s a simple starting point. To make it even plausible, the right-hand
side of the first equation should be multiplied by r(t) and the right-hand
side of the second equation should be multiplied by w(t), but we want to
start with the simplest system we can.)

Hint: You can use FullSimplify[] to make the result Mathematica re-
turns somewhat nicer.

(c) Continuing with the rabbits and wolves example, use ParametricPlot to
generate a graph in which the number of rabbits is on the x-axis, and
the number of wolves is on the y-axis, with time as the parameter of the
path in the xy-plane. Try several initial conditions and interpret what the
graphs are telling you about population dynamics in this model. Find the
period of any oscillatory behavior you find. Find the steady-state solution,
where the number of rabbits and wolves does not vary with time.

2. Next, we would like to analyze the textbook result for small angles and develop
some graphical tools to help us understand the solution.

2

(a) Use Mathematica’s DSolve function to solve the differential equation in the
small angle approximation. Note that in the result, the initial conditions
above are replaced by the unknown constants C[1] and C[2].

(b) Fix a particular value of ω (choose any reasonable value you want and keep
it fixed throughout this problem set), and plot θ(t) as a function of time
for a full cycle in the following cases:

i. Motion that starts at rest with θ(0) = θ0. (Pick some reasonable θ0.)

ii. Motion that starts at θ = 0 with an initial angular velocity ω0. (Pick
some reasonable ω0.)

(c) We have found a set of solutions, which are functions of t involving two
unknown constants. Reduce this to one constant by assuming that the
pendulum starts at θ = 0, and then form a function that takes in a value
for the initial angular velocity at ω0 and returns the corresponding function
of t. In other words motionFromZero[1.5] should return the solution as a
function of t in which the pendulum starts with θ(0) = 0 and θ′(0) = 1.5.

(d) A very useful tool for analyzing differential equations is a phase space plot.
This is a plot with position (in our case θ) on the x-axis and velocity (in
our case dθ/dt) on the y-axis. The motion of the system is described by
a path through the xy-plane parameterized by time. Define a function
that takes an initial angular velocity and creates a ParametricPlot in
the phase space of the pendulum’s motion of the solution starting from
θ(0) = 0 with that initial angular velocity.

(e) Use Show and Table to superimpose several of these plots on the same
graph. The result is a picture of the possible motions of the pendulum (in
the small angle approximation).

Hint: If you want to avoid displaying all the individual plots but still see
the final superposition of the results, set DisplayFunction -> Identity

for each individual plot and then override this with DisplayFunction ->

$DisplayFunction in the Show command.

(f) At any given time, the pendulum has kinetic energy
1

2
m`2

(
dθ(t)

dt

)2

and

potential energy mgh, where h = `(1− cos θ(t)) is the height of the mass
as compared to its position when θ = 0. In the small angle approximation,

cos θ ≈ 1− θ2

2
(as a check on this expression, note that it is consistent with

cos 0 = 1 and
d

dθ
cos θ = − sin θ in the small angle approximation). Thus

the potential energy becomes
1

2
mgθ(t)2 in the small angle approximation,

and the total energy becomes
m`2

2

(dθ(t)

dt

)2

+ ω2θ(t)2

. Choosing a

3

particular numerical value for I = m`2, take a particular trajectory and
plot the energy as a function of time. Does it behave as you expect?

(g) For the same value for the moment of inertia, consider a variety of different
initial conditions. Generate an ordinary plot showing the area enclosed by
a trajectory as a function of the energy on that trajectory. Use this plot
to guide you to an analytic formula relating these two quantities.

Hint: the area of an ellipse is πab, where a and b are the lengths of the
semimajor and semiminor axes respectively. (This makes sense since for a
circle, where a = b = r, it reduces to the familiar πr2.)

3. Next we would like to do the case without approximation.

(a) Use DSolve to find the solution to the full pendulum problem. It should
be able to solve the differential equation (ignore warnings about inverse
functions) but it will come back with a result that is rather obscure (unless
you know a lot more about elliptic integrals than I do).

(b) What you should find two possibilities involving the JacobiAmplitude

function, both with two unknown constants. Applying FullSimplify to
your result, you should find that one of the constants just shifts the time
t. We are free to set this to zero — this just corresponds to choosing what
time we call t = 0.

(c) Pick a value of the other initial condition and plot θ(t) and its derivative
as functions of t for both solutions. Make sure what you are seeing makes
sense physically.

(d) As you did before, generate phase space plots of both solutions for a variety
of initial conditions. Use the same type of approach as in the previous
problem to generate many curves at once. Identify the region where the
approximate picture is correct. You should see a second type of solution
as well — interpret physically what it is doing.

4. We can make the problem more realistic by adding friction (damping). For
example, this could be in the form of air resistance. The friction generates a
torque proportional to the velocity, and in the opposite direction: it always
slows the pendulum down, and the faster the pendulum is going, the stronger
this effect will be. Thus the torque is of the form τ = −µθ′(t), and our equation
becomes

−mg` sin θ(t)− µ
dθ(t)

dt
= I

d2θ(t)

dt2
= m`2d2θ(t)

dt2

Rescaling as before, The equation for θ(t) becomes

d2θ(t)

dt2
= −ω2 sin θ(t)− γ

dθ(t)

dt

4

where γ =
µ

m`2
. With this addition, the differential equation no longer has

a solution in terms of any of the special functions known by Mathematica (or
anyone else, for that matter), so we will have to proceed numerically. Pick
a reasonable numerical value for γ and perform the same sort of phase space
analysis of the previous problem numerically, using NDSolve (note that some of
the options are slightly different, since Mathematica needs extra data, such as
the range of t, to do the numerical calculation; nonetheless, the basic structure
of the command is the same as DSolve). Generate curves for several different
combinations of initial positions and velocities (you might need to do each one
on a separate plot to be able to see what is going on). Explain physically what
is happening in your pictures, and make sure you choose a wide enough variety
of initial conditions to see all the different kinds of behavior you would expect
physically (or based on what you found on the previous problem).

5. Finally, we can add one more possibility to this analysis: Suppose we drive the
pendulum with a periodic external torque of amplitude A and angular frequency
ωd, τ = A cos ωdt. Then the reduced equation becomes

d2θ

dt2
= −ω2 sin θ − γ

dθ

dt
+ f0 cos ωdt

where f0 = m`2A.

Note: In this problem you will get much nicer results in many places if you use
a lot of points, and let the pendulum run a long time. Start by getting your code
working with just a few points, but for the final version try to generate some
good pictures (suitable for submission to the Science is Art show!) by letting it
run for a while (overnight should be plenty). If you need computer time for this
purpose, please let me know.

(a) We now have a lot of different possibilities to explore. To narrow things
down, set γ = 1/2, ω = 1, and ωd = 2/3. Rather than varying the initial
conditions, in this problem, we will start by always taking θ(0) = π/2
and θ′(0) = 0. Instead, we would like to produce several separate phase
space plots, each with different values of the amplitude of the driving
force. We’d also like to make another modification: we will want to let
this system run a long time (to see chaotic behavior). In principle, if the
pendulum keeps spinning around in the same direction, θ will get bigger
and bigger. Physically, of course, it’s coming back to the same place:
θ = 5π/2 is the same as θ = π/2. To see the patterns, we’d like our phase
space plot to only cover the physical 2π range, which these two values
mapped onto the same point. So you should use Mod to restrict your plot
in this way. When you do so, however, you get a problem: When the
angle jumps by 2π, ParametricPlot will draw an ugly line across your
plot connecting the value near −π to the value near +π . So instead of

5

using ParametricPlot in this problem, you should generate a list of points
to plot and use ListPlot. Write a function phasePlot[f0] that takes in
a value for f and returns a phase space plot done this way. Investigate
in particular the values f0 = 0.9, f0 = 1.07, and f0 = 1.15, and describe
physically what is happening in each of these cases. Pick some other
values in between these and observe how one type of behavior changes into
another. Also try some other nearby values and see what kinds of behavior
you find. Be sure to let the graphs trace out a long enough time! You’ll
probably want to adjust the number of points that NDSolve uses in solving
the differential equation.

(b) A Poincaré section is another useful tool for analyzing dynamical systems.
It’s rather like viewing the pendulum with a strobe light synchronized to
the external force. Specifically, it’s a scatter plot: Every time the external
force goes through a complete cycle, we add a point in phase space rep-
resenting the pendulum’s current position and angular velocity. As in the
previous problem, the plot should map equivalent values of θ to the same
point. Also, since we are interested in describing the long-term behavior of
the system, (in particular, whether it is periodic), let the pendulum run for
a little while before you start recording points, so you don’t get confused
by transient features due to the initial conditions.

Define a function poincarePlot[f0] that generates the Poincaré section
for a given value of f0. Apply it to the cases you studied in the last problem.
Explain how the plots you see correspond to the motion you described in
the last problem. For the chaotic case, watch what happens as you add
more and more points — you should see fractal behavior!

(c) If we vary the initial conditions, we can study the basins of attraction.
(This is the only part of this problem in which you need to change the
initial conditions.) This procedure is like what you did on the first project
with FindRoot. For a particular value of f0, what we would like to have is
a DensityPlot in which each point is dark or light depending on whether
its velocity after a fixed time is positive or negative. What you should do is
to define a function basinPlot[f0] that generates such a plot for a given
value of f0. Generate a series of such plots and explain what is happening
as f0 approaches the chaotic point.

(d) The last of these tools is the bifurcation diagram. It just like a Poincaré
section, except that we now have f0 on the x-axis. In other words, for
each value of f0, you should let the pendulum run for a while, and then
gather a collection of values of θ′(t) values by sampling each time the
driving force returns to a particular point in its cycle. You place each on
of these points on the graph, at position (x = f0, y = θ′(tn)), and repeat
this process for a range of f0. Generate such a plot over the range of f0

we have been considering, paying particular attention to the behavior as
you approach the chaotic point. (You might find the Flatten command

6

useful in manipulating your lists for ListPlot. Explain how your graph
describes the onset of chaos.

7

6. (You don’t have to hand in anything now for this part.) Based on your responses
to the questionnaire, I’m setting up the third project in this course as a C++
project. Although I will present the salient features of C++ syntax that you
will need, it will help to start now just getting familiar with the mechanics.

If you prefer, you will also have the option to use Java instead — it also has all
the features of C++ that I will use. You will just have to translate what I present
into Java, but if you are comfortable with Java this should be straightforward.
If you are very uncomfortable with both, you may also use Mathematica (but
of course you will have to implement the algorithms we will study yourself, not
by calling built-in functions).

Assuming you are planning to use C++ or Java, make sure you can get started
programming. For example, see if you can write a program that prints the
numbers from 1 to 10, or something like that. I just want to make sure you’re
comfortable using a text editor, writing very basic syntax, calling the compiler,
and running your program. I am happy to help and provide references. In
the labs, we will use the gcc compiler, which comes with Linux and OS X,
and can be downloaded for free for Windows at http://www.cygwin.com. (The
default cygwin package provides you a command shell and a number of packages,
including gcc.) Any other standard compilers (Microsoft, Borland, etc.) you
might have access to are also fine. If you have any problem getting access to
computers to meet your needs, please don’t hesitate to ask me.

8

