
PH 120 Project # 1: Smorgasbord

Due: Friday, January 9, 2004

0. Warm-up. Try out some simple calculations in Mathematica (e.g. start with
something like 3+4). Remember that you have to press Shift-Enter to evaluate
a cell.

Ordinarily, text you type into a Mathematica notebook cell is interpreted as
input to be evaluated. But you can also insert text for comments and explana-
tions. What you do is click the little bracket on the right-hand side correspond-
ing to the cell you would like to be text, and then under the Format menu,
choose Style and select Text. (You should see the little bracket change shape
slightly.) Then this cell will not be evaluated and can contain any (formatted)
text you want. Use this feature to put your name and a title on your notebook
for this assignment. Be sure to use this feature liberally throughout the course
to insert comments and explanations!

1. Some calculus. Consider the function f(x) = e−x2
. Use Mathematica to:

(a) Create a definition f[x ] for this function.

(b) Plot f(x) for a reasonable range of x (include both positive and negative
values), labeling the axes.

(c) Define a new function fderiv[x ] to be the derivative of f(x) (have Math-
ematica compute the derivative, don’t do it yourself).

(d) Plot the derivative of f as a function of x, labeling the axes.

Hint: there are a couple of ways to do this, but if you find you are getting
messages like

General::ivar: "-3.32153 is not a valid variable."

what is probably happening is the following: What Plot does it to re-
peatedly substitute numerical values for x and then evaluate the result
numerically. The problem is that if this substitution takes place before
you take the derivative, then it ends up trying to take the derivative with
respect to a numerical value like -3.2153 rather than the variable x. The
solution is to make sure the derivative gets evaluated before Plot can get
its hands on it, which you can do by using = instead of := in the definition
of the function. (This distinction is probably the single most confusing
aspect of Mathematica programming.)
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(e) Find
∫ ∞

−∞
f(x) dx.

(f) Define a new function fint[x ] to be an indefinite integral (antiderivative)∫
f(x) dx. (The result will probably not be a function you are familiar

with; that’s OK.) Plot this result as a function of x, labeling the axes.

2. Euler’s constant. In this problem we would like to compare

n∑
i=1

1

i
and

∫ n

1

1

x
dx

as functions of n.

(a) Start by plotting 1/x and 1/Floor[x] on the same graph. Explain what
this has to do with the comparison above. Which one is bigger?

Hint: Think about areas.

(b) Define diff[n ] to be the difference between the sum and the integral as
a function of the upper limit n. Plot this function and see what happens
as n → ∞. The result is a fundamental mathematical constant (like π
and e) called Euler’s constant. In Mathematica, it is called EulerGamma.
Check your result by using N to evaluate Euler’s constant.

(c) Repeat this same analysis, but now compare

n∑
i=1

1

x + 1
and

∫ n

1

1

x
dx

Find how your result in this case is related to EulerGamma, and explain
this result graphically.

3. Solving polynomial equations. Suppose we have a mass m1 at x = −a, another
mass m2 at x = a, and a third mass m sits on the x-axis in between. Recall
that the potential energy of the third mass is given as a function of its position

x by v(x) = −Gm
(

m1

a + x
+

m2

a− x

)
. (If we replace the masses with charges,

this could also be a model of the energy of an electron in a diatomic molecule.)

(a) Use Solve to find the extrema (possible minima or maximia) of v[x]. Note
that what Solve returns is a list of replacement rules, corresponding to
each possible solution. One of these will be spurious (because it is outside
the region where our formula is valid), so use Part (which is the same as
double angle brackets) to select the solution that is between −a and +a.
(It might help to use Simplify here.)
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(b) Use the substitution operator /. to substitute the x value of the extremum
into the second derivative v′′(x) to determine whether the extremum is a
minimum or maximum (it might help to apply FullSimplify). Also find
the value of v(x) at the extremum.

4. In this problem you will study a simple example of a fractal. Suppose you have
an equation like cos x = x that you would like to solve numerically. Mathe-
matica’s FindRoot function uses Newton’s method to search for an approximate
solution given a starting point.

What we would like to do is to take a simple equation, which we know how to
solve, but has more than one solution. Our goal is to describe which solution
Newton’s method finds as a function of the starting point. The equation we
will consider is

z3 = 1

where we allow the variable z to be complex.

(a) First, use Mathematica’s Solve function to find all three solutions to this
equation. As practice for what you will do next, define a function sol[j ]

that takes in an integer j from 1 to 3 and gives back the jth solution to
this equation. Note that doing so takes two steps: you have to select out
the jth solution and then apply the rule to z to get the result. So sol[1]

should return 1, not z -> 1.

(b) Use FindRoot, picking any starting point you want (other than one of the
roots!), and see that it finds one of the answers returned by Solve.

(c) Define a function startToRoot[z ] whose input is a complex number rep-
resenting the starting value for FindRoot, and whose output is the solution
that FindRoot converges to from this starting value. Evaluate your func-
tion for a few inputs to verify that it always returns one of the solutions you
found in part (a). Note that FindRoot returns a single replacement rule,
like {z -> 1.} (which is similar to Solve, except that Solve returned a
list of such rules). So you will need to create a function startToRoot[z ]

that calls FindRoot to get a replacement rule, and then applies this rule
to substitue the answer into z.

(d) Use Mathematica’s DensityPlot function to generate a picture of which
solution FindRoot converges to as a function of the starting point x + iy.
What we would like to see is a color-coded map where the color at a point
(x, y) corresponds to which of the three solutions FindRoot returns if you
tell it to start at z = x + iy. The function you are plotting should take on
one of three different real values, each corresponding to one of the three
different solutions that startToRoot can produce. But these solutions are
complex, so you will need to transform them into three distinct real values.
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(Will taking the magnitude of the complex number work? How about
taking the argument?)

There are several options you should use for DensityPlot:

• Set ColorFunction -> Hue because this plot will look a lot cooler in
color. Because of a bug in Version 5, in that version you also need to
set ColorFunctionScaling -> False.

• Use the PlotPoints option to increase the number of points Mathe-
matica uses to generate the plot — the default is much too small to
see the patterns.

• Set Mesh -> False because if you use a lot of plot points, Mathe-
matica will idiotically cover the entire plot with gridlines, so that you
can’t see the plot itself.

5. The Fiboncacci sequence is determined by the following rule: The first term is
F1 = 1. The second term is F2 = 1. Subsequent terms are give by the sum of
the previous two terms: Fj = Fj−1 + Fj−2 for j > 2.

(a) Create a Mathematica function fib[j ] that returns the jth term in the
Fibonacci sequence. Of course, you are not allowed to use Mathemat-
ica’s built-in Fibonacci function! (Although you may use it to check your
answer.)

Hint: you can either use Mathematica’s If statement or just use different
definitions for the special cases and the general case.

Hint: throughout this problem, you will use recursion — a function call-
ing itself repeatedly with a different argument. This approach is rather
inefficient (which is easily remedied), but don’t worry about that here.

(b) Use Table to create a list of the first 20 or so Fibonacci numbers, and then
use ListPlot to plot them as a function of j. At large j, you should find
the ratio Fj+1/Fj of each term to the previous term approaches a finite
limit φ. Use the techniques you have learned to find φ numerically.

(c) Because of what you found in the previous problem, at large N we can
approximate FN+1 = FNφ (and thus FN+2 = FN+1φ). Use this fact to find
a formula for φ and compare it to your numerical result. φ is called the
Golden Ratio.

(d) Show numerically that Fn =
1√
5

(φn − (1− φ)n). Extend your function

fib[j] such that if j is a positive integer it still uses the recursive definition
you implemented already, but for any other value of j it uses this formula.

(e) We can define a family of Fibonacci sequences by changing the values of
F1 and F2 to be something different from 1 (but the rule for the rest of
the terms is the same). Use Mathematica’s Function feature to define a
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function makefib[f1 ,f2 ] that, for given values of F1 and F2, returns a
function to compute the Fibonacci sequence with these initial values. In
other words, makefib[f1,f2][j] should be the jth term in the Fibonacci
sequence whose first two terms are f1 and f2. This is tricky! (You only
need to implement the ordinary definition, not the extension to noninte-
gers.)

Hint: Here you probably want to use an If statement rather than separate
definitions for the special cases.

(f) Pick a values for F1 and F2 and use your function to plot this Fibonacci
sequence. Find the ratio of successive terms at large N .

(g) Because of its use of recursion, this approach is rather inefficient. Here is
an easy way to speed it up. Go back to your original definition of fib[j]
and replace it by the following:

fib[j ] := (fib[j] = ....)

where you put your previous definition in where I’ve written “...”. You
should find that this change makes fib[j] run much faster. Explain how
it works.

Hint: You might find the output of evaluating ?fib helpful. To see what
? does, see Section 1.3.9 of the Mathematica Book (available within the
help system).
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