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Linearity and Nonlinearity

Most waves we encounter in physics are linear (or at least we treat

them that way): They obey superposition. So we can analyze the

behavior of each wave mode individually (Fourier).

For example:

∇ · E = 4πρ ∇ · B = 0

∇× E = −1

c

∂B

∂t
∇× B =

1

c

∂E

∂t
+

4π

c
J

Such waves generally disperse. Each wave follows its own path.

Nonlinear theories can be more interesting, but harder to describe:

• Waves interact, so we must consider all modes at once.

• We can get new structures due to these interactions: clumps of

waves held together by their own interactions.
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A scalar field

Consider a simpler system: scalar instead of vector field. Also go to

one space dimension. Example: waves on a string.

The equation of motion is (Here φ̇ =
∂φ

∂t
, φ′ =

∂φ

∂x
):

φ̈(x, t)
︸ ︷︷ ︸

acceleration

= φ′′(x, t)
︸ ︷︷ ︸

restoring force
due to stretching

− U ′(φ(x, t))
︸ ︷︷ ︸

force from
additional potential

The energy is

U =

∫

dx
( 1

2
(φ̇)2

︸ ︷︷ ︸

kinetic energy

+
1

2
(φ′)2

︸ ︷︷ ︸

potential energy
due to stretching

+ U(φ(x, t))
︸ ︷︷ ︸

additional potential energy

)

A quadratic term in the potential, Uquadratic =
1

2
m2φ2, still yields linear

equations of motion, with the dispersion relation ω =
√

k2 + m2. This

corresponds to a mass for our field.
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The kink

Consider the potential U(φ) =
m2

8

(

φ2 − 1
)2

:

This is a “double-well” potential

with minima at φ = ±1. The

(nonlinear) field equation is

φ̈(x, t) = φ′′(x, t) − U ′(φ(x, t))

−1  1
φ

U
(φ)

We will look for a static solution that goes from φ = −1 at x = −∞ to

φ = +1 at x = +∞. [Dashen, Hasslacher, and Neveu]
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Solving for the kink

We know how to solve φ′′(x) = U ′(φ(x)) in a different context: if x

were t and φ(x) were x(t), this would be ordinary Newtonian dynamics

of a particle of unit mass in the potential −U .

So the solution we are looking for

“rolls” from one maximum of −U

to the other. Throughout this

motion, its (conserved) “energy” is

equal to zero:

1

2
φ′(x)2 − U(φ) = 0.

So our kink (antikink) should have

φ′
kink(x) = ±

√

2U(φkink)

⇒ φkink(x) = ± tanh
mx
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Static localized solutions: Solitons

Many static solutions, like the kink, are the lowest energy

configurations in a particular topological class, and thus are

automatically stable against deformations. Other solitons are local

minima of the energy without topological structure.

Other topological solitons include: the magnetic monopole in SU(2)

gauge theory with an adjoint Higgs [’t Hooft, Polyakov] and magnetic flux

lines in superconductors [Abrikosov, Nielsen, Olesen].

Solitons typically carry such exotic charges and are of particular

interest in the early universe (also string theory, condensed matter).

But they don’t appear in every theory. For example, a scalar theory in

more than one space dimension has no static solitons — they lower

their energy by shrinking. [Derrick]
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Time-dependent localized solutions: Oscillons/Breathers

More importantly, the Standard Model of particle physics has no

known stable, localized, static classical solutions. (It does have

instanton processes, and unstable Z-string [Vachaspati], and an unstable

sphaleron [Manton and Klinkhamer].)

Solutions that are time-dependent but still localized evade Derrick’s

theorem and can exist in a wider variety of field theory models.

If solitons or oscillons form from a thermal background, they can

provide a mechanism for sustained departures from equilibrium, which

can be of particular interest in the early universe, especially

baryogenesis, the formation of protons and neutrons we see today.
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An integrable system

The “sine-Gordon” model is given by a slightly different potential,

U(φ) =
m2

2
(1 − cosφ), which similarly has static (anti)soliton

solutions: φ(x) = 4arctan e±mx.

This theory has an equivalent “dual” description in which the solitons

are fundamental (fermionic) particles. [Coleman]

It is also integrable, with an infinite set of conserved charges. So we

can solve its dynamics analytically. [Dashen, Hasslacher, and Neveu]

For example, collide a soliton and antisoliton. They pass right through

each other with only a phase shift:

φ(x, t) = 4arctan

(

sinh γmut

u cosh γmx

)

where u is the incident speed and γ =
1

√

1 − u2
.
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An integrable system II

Letting u = i/ε we obtain an exact breather:

φ(x, t) = 4arctan

(

ε sin γmt

cosh γεmx

)

where now γ =
1

√

1 + ε2

• Temporal frequency is ω = γm < m.

• Spatial width is
1

κ
=

1

mγε
.

• Amplitude is controlled by ε. For small ε, we can construct an

approximate solution of this form for any potential, based on the

leading nonlinear terms.

• At large distances, the field is small and a linear analysis holds:

φ ≈ 8εe−κ|x| sinωt with ω2 = m2 − κ2.
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Q-balls: Stability via conserved charge

Q-balls are time-dependent solutions requiring only a single conserved

charge, in a three-dimensional, nonintegrable scalar theory with no

static solitons. The field in this model is complex. [Coleman]

We have the equation of motion

ϕ̈(x, t) = ∇2ϕ(x, t) − U ′(ϕ(x, t))

where the potential is U(ϕ) =
1

2
M2|ϕ|2 − A|ϕ|3 + λ|ϕ|4.

There is a conserved charge

Q =
1

2i

∫

d3x
(

ϕ∗∂tϕ − ϕ∂tϕ
∗) .

We fix the charge Q by a Lagrange multiplier ω and obtain the Q-ball

as a local minimum of the energy

Eω[ϕ] =

∫

d3x

(
1

2
|∂tϕ − iωϕ|2 +

1

2
|∇ϕ|2 + Uω(|ϕ|)

)

+ ωQ

where Uω(|ϕ|) =
1

2
(M2 − ω2)|ϕ|2 − A|ϕ|3 + λ|ϕ|4
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Q-balls: Stability via conserved charge II

The Q-ball solution has simple time dependence: ϕ(x, t) = eiωtφ(x).

We thus obtain the energy function

Eω[φ] =

∫

d3x

(
1

2
(∇φ)2 +

1

2
Uω(φ)

)

+ ωQ

which is to be minimized over variations of φ and ω.

The equation for φ is

d2

dr2
φ(r) +

2

r

d

dr
φ(r) = U ′

ω(φ)

which is again analogous to ordinary

Newtonian mechanics, but now with

“time”-dependent friction.
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A simple overshoot/undershoot analysis shows that for a given ω, a

solution exists with φ → 0 as r → ∞. Then minimize this energy over ω
to find the exact, periodic Q-ball solution.
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Kink breathers: Forever = a very long time

Suppose we consider breathers, like we saw in the sine-Gordon model,

but now for the φ4 theory in 1 + 1 dimensions. This model has static

soliton solutions but does not have a useful conserved charge (we

always have φ = 1 at infinity), and is not integrable. So there are no

simple expressions for exact breathers.

But for the right ranges of initial velocities, numerical simulations

show breathers that live for an indefinitely long time.

[Campbell et. al.]

Breathers are stable to all orders in the multiple scale expansion.

[Dashen, Hasslacher, and Neveu]

After much debate, the current consensus is that in the continuum,

such configurations do decay, however, due to

exponentially-suppressed non-perturbative effects. [Segur and Kruskal]

For physical applications this distinction is generally irrelevant.
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φ4 oscillons in three dimensions

What about a real scalar φ4 theory in three dimensions? It is not

integrable, has no conserved charges, and no static solitons.

There are still

(approximate)

oscillons!

They live a long time,

then suddenly decay.

[Gleiser]
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Oscillon/breather heuristics

Q: Integrability, conserved charges, and the existence of static solitons

all help us find oscillons, but none is necessary for them to exist. What

is needed?

A: Nonlinearity and a frequency gap. The frequency of oscillation of

the oscillon/breather is always below the frequency of the lowest linear

mode, ω < m. (For linear modes, ω =
√

k2 + m2.)

The picture: nonlinearity allows oscillons/breathers to oscillate with a

characteristic frequency that is too small to couple to the free

dispersive waves in the system.

There are no outgoing modes available to dump their energy into.

[Campbell et. al.]
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Oscillon decay

Q: How does such a configuration decay?

A: By coupling to higher-frequency harmonics: 2ω, 3ω, etc.

If we cut off the high frequencies with a lattice such that

2ω >
√

m2 + 4/(∆x)2, then no such harmonics would exist, and the

oscillon would be absolutely stable.

Even without this limitation, however, oscillons can live for an

unnaturally long time.
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Almost the Standard Model

Apply these ideas to the weak interactions in the Standard Model. We

begin by ignoring fermions (matter), strong interactions, and

electromagnetism. (Later we will restore electromagnetism.)

We have: (σa = three generators of SU(2) algebra)

• The weak interactions gauge field is a vector, SU(2) adjoint:

Aµ = (A0 A1 A2 A3 ) where Aµ = Aa
µ
σa

2
.

Gives 3 real massive vector bosons (W± and Z0, degenerate for

us) with mW =
gv

2
(so linear waves have ω =

√

k2 + m2
W ).

It’s the analog of the electromagnetic field for weak interactions.

• The Higgs is a complex scalar, SU(2) fundamental: ϕ =

(

ϕ1

ϕ2

)

.

Gives 1 real massive scalar (Higgs boson) with mH = v
√

2λ.

They’re currently searching for this at CERN.
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Higgs and Gauge fields in the spherical ansatz

To make the problem tractable, we will write an ansatz for our field

configurations that is as close to spherically symmetric as possible: It

is invariant under simultaneous rotations of real space and isospin

space. [Dashen, Hasslacher, and Neveu]

Write ϕ as a 2 × 2 matrix: Φ =

(

ϕ∗
2 ϕ1

−ϕ∗
1 ϕ2

)

, so that Φ ·
(

0

1

)

= ϕ.

The ansatz is:

A(x, t) =
1

2g

(

a1(r, t)x̂(σ · x̂) +
α(r, t)

r
(σ − x̂(σ · x̂)) +

γ(r, t)

r
(x̂ × σ)

)

A0(x, t) =
1

2g
a0(r, t)σ · x̂ Φ(x, t) =

1

g
(µ(r, t) + iν(r, t)σ · x̂)

Ansatz is preserved under U(1) gauge transformations:

Aµ → Aµ − ig [∂µΩ(r, t)] (σ · x̂) Φ → exp [iΩ(r, t)σ · x̂]Φ
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Effective 1-d theory

Form reduced fields in 1 + 1 dimensions:

φ(r, t) = µ(r, t) + iν(r, t) Dµφ = (∂µ − i

2
aµ)φ

χ(r, t) = α(r, t) + i(γ(r, t) − 1) Dµχ = (∂µ − iaµ)χ

aµ = ( a0(r, t) a1(r, t) ) fµν = ∂µaν − ∂νaµ

where now µ, ν = 0,1.

A U(1) gauge theory! Mathematically similar to electromagnetism in

one dimension (r), but with a rich set of interactions inherited from

the full theory.

Gauge transformation:

aµ → aµ − i∂µΩ(r, t) φ → eiΩ(r,t)/2φ χ → eiΩ(r,t)χ

• φ has charge 1/2 and mass mH.

• χ has charge 1 and mass mW .
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Spherical ansatz results

We do find oscillons in the spherical ansatz, but (so far) only if

mH = 2mW .

In a further reduction of the spherical ansatz, this ratio can be

explained using a small amplitude expansion.

[Stowell, Farhi, Graham, Guth, Rosales]

The oscillon is stable for as long as we can run numerically, with a

“ringing” or “beat” pattern superimposed on the basic oscillations.
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Electromagnetism returns

Now restore electromagnetism.

• Breaks isospin symmetry, so we won’t stay in the spherical ansatz.

• Do a full 3-d simulation starting from spherical ansatz initial

conditions, with no rotational symmetry assumptions. (We could

also use an axially symmetric ansatz.)

• Z0 is now split in mass from W±.

• Massless photon a danger to oscillon stability.
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Electroweak results

Spherical ansatz oscillons are modified but remain stable for

mH = 2mW ! (Not stable for mH = 2mZ.) [Graham]

Dangerous photon is disarmed because fields settle into an electrically

neutral configuration.

“Beats” decay more rapidly with photon coupling included.

Observed solution has energy

E ≈ 30 TeV and size

r0 ≈ 0.05 fm.

(1 mass unit ≈ 114 GeV.)
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Conclusions

While solitons are easier to study, oscillons can appear in a wider

range of theories.

Conserved charges, integrability and existence of static solitons are

helpful for finding oscillons, but not necessary for oscillons to exist.

All oscillon solutions found

numerically are attractors, or we

never would have found them.

Oscillons have been shown to form

spontaneously from thermal initial

conditions in an expanding

universe.

[Farhi, Graham, Guth, Iqbal, Rosales,

Stamatopoulos]

Even if oscillons are not perfectly stable, those that decay over

“unnaturally” long time scales can be equally interesting.
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