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The problem of the diffraction of electromagnetic waves on the perfectly conducting

disk is severely under-researched. The diffraction through the circular opening in a

perfectly conducting, infinite plane lets us reduce the problem by means of a given

generalization in Babinet’s Principle
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1 Formulating the Diffraction
Problem

In the theory of electromagnetic wave diffraction ul-
timately lies the following problem. A given inci-
dent wave comes upon a barrier, a diffracting ob-
ject, and it is to seek an outgoing wave, which at
great distance acts as a spherical wave with distance-
dependent amplitude, and which adds to the incident
wave, which satisfies the boundary conditions. The
nature of these boundary conditions depends upon
which features the diffracting object has, whether it
is black and absorbs all radiation that lands on it, or
whether, for example, it is perfectly conducting, that
is to say, the radiation interacting with the object is
fully emitted and so forth.

We concern ourselves in the following with a pla-
nar screen of finite dilation, particularly with disks
as diffraction objects, by which we assume, that it is
infinitely thin and perfectly conducting. Physically
speaking, that its thickness is small compared to the
wavelength, but still large enough that the screen is
opaque. The requirement of perfect conductivity is
adequately met by the usual metals in the regions
of the actual electromagnetic waves (wavelength >
1mm), is as demonstrated by their reflection coeffi-
cient.

With this diffraction problem there is always the
complementary problem, namely the diffraction and
reflection of an electromagnetic wave through the
opening of a finite dilation in an infinite, perfectly
conducting plane. This follows from what has been
proved in the next section, Babinet’s general Princi-
ple.

In the case of planar screens, regarding the par-
ticular conditions of the electromagnetic waves, lies
something obverse to diffraction in a sphere, because
the edge of the screen causes a singularity of the elec-
tromagnetic fields. This occurs already in the static
limit of a perfectly conducting, planar screen in the
homogenous electric field phenomenon, if the screen
is not vertical to the force lines; there is in fact a
finite electric dipole moment induced in the screen,
but the influential charge density would be infinitely
high at the edges of the screen and as such also the
strength of the electric field.

With the scalar diffraction problem for planar
screens, as is in acoustics, the diffraction wave re-
mains finite on the edges. This fact is incurred in the

requirements and shows that the scalar diffraction
problem is distinctly solvable. The electromagnetic
diffraction problem, in contrast, substitutes and cir-
cumvents the claim of the finiteness of the diffraction
wave with another claim. It is actually required for
the sufficient enforcement of the unique resolvabil-
ity of the problem that its energy in each finite area
is finite. The electric and magnetic field strengths
around the borders of the screen may be infinitely
large, but only so that they are squarely integrable.
As this requirement is fulfilled, only the incident to
the screen energy of the emitted wave, and no ad-
ditional energy, is radiated; if it are not fulfilled,
then we do not have an absolute diffraction prob-
lem. Rather the electromagnetic field of the clean
diffraction is overlaid by additional radiation, which
takes place at the screen edges and can be viewed as
a kind of driven radiation.

The problem of the diffraction of an incident
electromagnetic wave Ei, Bi with the time depen-
dence ei ω t on the perfectly conducting, planar screen
of a finite dilation is thus formulated. There is a
diffracted wave Er, Br with a matching time com-
ponent and with the following conditions:

1. The field Er,Br, like Ei,Bi adhere to Maxwell’s
equations:

curl E = −iωµB; curl B = +iωεE (1)

At all space with the dielectric constant ε and per-
meability constant µ, which are both presumed to be
location-independent.

2. At large distance from the screen, the the
diffracted wave relates to an outgoing spherical wave
with directional amplitude; that is to say, it satisfies
the Sommerfeld radiation condition1.

3. On the diffracting screen (considering it is per-
fectly conducting):

(Ei + Er)tang = 0 (2)

4. On the edge of the diffracting screen, Br and
Bi would be infinite in such a way that their electro-
magnetic energy density is integrable.

Attempts to treat the diffracting electromagnetic
waves on a circular disk that have previously been
made yield a solution that fits conditions 1-3, but
not 42. In the following, a rigorous solution to this
problem will be developed.

1A. Sommerfeld, Jber. dtsch. Math. Ver. 21, 309 (1913)
2S. Anm. 5.
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2 Babinet’s General Principle

We compare the following:
1. The diffraction of an incident wave, not nec-

essarily planar, on a planar, perfectly conducting
screen F, which is everywhere finite;

2. The diffraction of an incident wave on a planar,
perfectly conducting screen F’, which complements
the screen F.

The screens F, F’ are complementary. The plane
in which they lie shall be the plane z = 0.

The initial conditions of perfect conductivity
claim, for the global field strengths E,B

Ex = Ey = 0,
∂Ez
∂z

= 0,

∂Bx

∂z
=
∂By

∂z
= 0, Bz = 0

(3)

They apply identically to all x, y of the perfectly con-
ductive area where z = 0. The first two are equiva-
lent to (2), the last four follow from Maxwell’s equa-
tions (1) from the first two. We now require the three
axioms:

1. If E and B with the arguments x, y, z a solu-
tion of the Maxwell’s equations (1), then through
the components Ex,Ey,−Ez,−Bx,−By,Bz, with
the arguments x, y, z an electromagnetic field that
is also a solution to Maxwell’s equations is given.

2. If E,B is the electromagnetic field of a pla-
nar electromagnetic wave radiation, then Ex,Ey,Bz

are symmetrical to the plane of the figure with
Ez,Bx,By, with opposite values.

3. If E,B a solution to Maxwell’s equations (1),
the following field is as well:

E′ = ±
√
µ

ε
B, B′ = ∓

√
ε

µ
E

The first is easy to demonstrate. The second ax-
iom is yielded when we calculate an arbitrary distri-
bution of electric charge density and current (from
which we deduce the electromagnetic field) and the
radiated field with the help of the electrodynamic
potential. The third is self-evident.

At the diffraction at the finite planar F, the inci-
dent, for all z defined waves (Index e) a diffracted
wave (index b) is superposed, whose behavior for
z ≥ 0 follows from the second axiom, and which
fulfills the radiation conditions. We write the elimi-
nation of the arguments x, y:

Ex = Eix(z) + Erx(z) or Eix(z) + Erx(−z)
Ey = Eiy(z) + Ery(z) or Eiy(z) + Ery(−z)
Ez = Eiz(z) + Erz(z) or Eiz(z)− Erz(−z)

Bx = Bi
x(z) + Br

x(z) or Bi
x(z)−Br

x(−z)
By = Bi

y(z) + Br
y(z) or Bi

y(z)−Br
y(−z)

Bz = Bi
z(z) + Br

z(z) or Bi
z(z) + Br

z(−z)

(4)

The boundary conditions applied to F, at length

Eix + Erx = 0, Eiy + Ery = 0, Bi
z + Br

z = 0

on F, (5)

∂

∂z
(Eiz + Erz) = 0,

∂

∂z
(Bi

x + Br
x) = 0,

∂

∂z
(Eiz + Erz) = 0

While for F’, the field representations for z 6= 0 and its derivatives must continuously cross over into each
other; that means:

Erz = 0, Br
x = 0, Br

y = 0,
∂Ery
∂z

= 0,
∂Br

z

∂z
= 0 on F’ (6)

Moreover, the diffracted wave must fulfill the requirement of integrable electromagnetic energy density.
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We claim that the electromagnetic field given by√
ε

µ
E′x = Bi

x(z)−Bi
x(−z) + Br

x(z) or + Br
x(−z)√

ε

µ
E′y = Bi

y(z)−Bi
y(−z) + Br

y(z) or + Br
y(−z)√

ε

µ
E′z = Bi

z(z) + Bi
z(−z) + Br

z(z) or −Br
z(−z)√

µ

ε
B′x = −Eix(z)− Eix(−z)− Erx(z) or + Erx(−z)√
µ

ε
B′y = −Eiy(z)− Eiy(−z)− Ery(z) or + Ery(−z)√
µ

ε
B′z = −Eiz(z) + Eiz(−z)− Erz(z) or − Erz(−z)

(7)

for z ≥ 0 or z ≤ 0 solves the given complementary
electromagnetic diffraction problem for an incident
wave with the electric field strength

√
µ
ε Bi and the

magnetic field strength −
√

ε
µ Ei. The proof can be

solved in a few lines.

1. For z ≥ 0, the electromagnetic field is a superpo-
sition of the incident wave, which reflects according
to the laws of wave reflection, and a diffracted wave,
whereas for z ≤ 0 there only exists a diffracted wave.
The diffracted wave meets the radiation conditions
for z 6= 0 , as these do not alter the substitution of
the third axiom.

2. All specified waves meet the first and third ax-
ioms by way of Maxwell’s equations.

3. On the diffracting screen, the boundary condi-
tions (3) apply due to (6).

4. In the opening F, the continuity conditions ap-
ply for the electromagnetic field strength and its
derivative due to (5).

5. If the electromagnetic field strengths in (4) on
the screen’s edge is quadratically integrable, we can
draw the same conclusion for (7).

Put together, we can say: if the diffracted
wave Er,Br is a solution for the diffraction prob-
lem for waves on the screen F with the inci-
dent wave Ei,Bi, then the waves +

√
µ
εB

r,−
√

ε
µE

r

and −
√

µ
εB

r,+
√

ε
µE

r with the incident wave

+
√

µ
εB

i,−
√

ε
µE

i are the solution for F’ for z ≥ 0

and z ≤ 0 respectively. The reversability of this
statement is easy to see.

3 The Debye potentials and
their Boundary Constraints

Debye3 showed, following on Mie’s4 research about
the diffraction of electromagnetic waves on the
sphere, that the electromagnetic field can be shown
to be traversing two scalar potentials Π1 and Π2,
from which the first is distinguish such that it’s ra-
dial component of the magnetic vectors disappears,
whereas for the second radial component, the radial
component of the electric vectors disappears. We
mentioned the Debye potentials. They are defined:

E =
1

ε
curl curl (rΠ1)− i k

√
εµ

curl (rΠ2) (8)

B = +
i k
√
εµ

curl (rΠ1) +
1

µ
curl curl (rΠ2) (9)

and satisfy both of the wave equations

∇2Πi + k2Πi = 0 (i = 1, 2), (10)

whereby the wavenumber k

k2 = ω2 ε µ (11)

is given and r stands for the radial vector.
The boundary constraints for E and B can be

conveniently converted, in the case of the diffract-
ing sphere at simple boundary constraints for the
Debye potentials, and the vectorial electromagnetic
diffraction problem can be plainly separated into two
independent diffraction problems for Π1 and Π2.

The two potentials can be successfuly described
when treating the electromagnetic wave diffraction

3P. Debye, Ann. Phys. (4) 30, 57 [1909].
4G. Mie, Ann. Phys (4) 25, 377 [1908].
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on a perfectly conductive planar screen, particularly
when applied to the circular disk and the circular di-
lation in the infinite plane. Indeed, the question of
the boundary constraints brings certian difficulties,
but let us resolve them.

The arbitrarily configured screen lies in the x− y
plane. Thus, Ex and Ey must disappear for the en-
tire region of the screen, that is to say by (8) it must
hold, as z = 0

1

ε

{
∂

∂x

[
Π1 + x

∂Π1

∂x
+ y

∂Π1

∂y

]
+ k2 x Π1

}
+

i k
√
ε µ

y
∂Π2

∂z
= 0,

(12)

1

ε

{
∂

∂y

[
Π1 + x

∂Π1

∂x
+ y

∂Π1

∂y

]
+ k2 y Π1

}
− i k
√
ε µ

x
∂Π2

∂z
= 0

(13)

These are two partial differential equations in x and y
for the functions Π1and∂Π2

∂z . They can be easily in-
tegrated through cylindrical coordinates:

x = % cosϕ, y = % sinϕ (14)

This yields

%Π1 = α (ϕ) ei k % + β (ϕ) e−i k % (15)

√
ε

µ
%2 ∂Π2

∂z
=
dα

dϕ
ei k % − dβ

dϕ
e−i k % (16)

for z = 0 and for all points %, ϕ on the screen. Here,
α (ϕ) and β (ϕ) are both functions which could not
determined by the boundary constraints (2); rather,
they are derived from the requirement that the elec-
tromagnetic energy density be integrable in the vicin-
ity of the screen’s edge5.

4 Formulating the Diffraction
Problem with the Debye po-
tentials

Let Πe
1 and Πe

2 be the Debye potentials of the inci-
dent planar wave. They can be represented by closed

expressions. The Debye potentials of the diffracting
wave shall be Πb

1 and Πb
2 . For these potentials we

propose the following conditions:
1. They obey all wave equations.
2. Πb

1 , Πb
2 can be described at large distance as

outgoing spherical waves.
3. They obey, on the screen, the boundary con-

straints

Πe
1 + Πb

1 = α (ϕ)
ei k ϕ

%
+ β (ϕ)

e−i k %

%
,√

ε

µ

(
∂Πe

2

∂z
+
∂Πb

2

∂z

)
=
dα

dϕ

ei k %

%2
− dβ

dϕ

e−i k %

%2

(17)

4. α (ϕ) and β (ϕ) are to be chosen such that the
electromagnetic energy density on the screen edges
is integrable.

5. Πb
1 , and Πb

2 create singularities at the origins of
the type described in greater detail in (15) and (16).

It is easy to show, as calculated from the Debye
potentials electric field, that this meets our require-
ments as described in section I. Conversely, it is not
difficult to see, that the above requirements for the
Debye potentials are essential. Particularly, the finite
nature of these potentials follows on the screen edge,
the one place where the singularity would be ex-
pected, from (15) and (16), provided that the screen
edge does not go through the origin. But this can be
avoided through suitable choice of constants.

In the following calculation, we shall show that
the potentials Πb

1 , and Πb
2 are true by the aforemen-

tioned requirements.

5 Requirements on the Edge in
spheroidal Coordinates

To handle diffraction on the disk we use spheroidal
coordinates. They are defined by

5Solutions of the wave equations which fulfill all requirements except for the one involving integrability can be more readily
found. One such solution was found by F. Mglich (Ann. Phys. [4] 83, 609, [1927]). One other, which fulfills the conditions

Π1 = 0 and ∂Π2
∂z

= 0 instead pf (15) and (16), was outlined by the author (Nachr. Akad. Wiss. Gttingen, math. -physik. Kl.
1946, 74). For the last one, Babinet’s principle also applies, as was shown also by the author (Z. Naturforschg. 1, 496 [1946]).
It is doubtful whether such solutions can be considered a physical reality without integrable energy density.
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x = c
√(

1 + ξ2
)(

1− η2
)

cos ϕ,

y = c
√(

1 + ξ2
)(

1− η2
)

sin ϕ, z = c ξ η
(18)

and have the variable range

0 ≤ ξ <∞, −1 ≤ η ≤ +1, 0 ≤ ϕ ≤ 2π
(19)

The coordinate surface ξ = 0 is a disk on the plane
z = 0, with a center at the origin and with radius
c. It may coincide with the diffracting object. The
coordinate surface η = 0 is the remaining part of the
plane z = 0.

The volume element in the coordinates ξ, η, ϕ is
given by

c3
(
ξ2 + η2) dξ dη dϕ (20)

From Π1, Π2 we may cautiously assume, that ξ =
η = 0 on the edge, so something like a power series
in ξ, η can be developed. However, the calculation
of the field strength components provides powers of(
ξ2 + η2

)−1
as factors. With that, the field strength

components on the edge become infinitely large.
This circumstance, however, cannot be avoided

and lies in the very nature of the subject. Yet the

requirement that the electromagnetic field must have
an integrable energy density in the area surround-
ing the edge confines the the order of infinity of the
field strength components. We calculate these limi-
tations, while we impose the requirements with the
Debye potentials

∂Π1

∂ξ
= 0,

∂Π1

∂η
= 0,

∂Π2

∂ξ
= 0,

∂Π2

∂η
= 0

for ξ = η = 0

(21)

Whereby in a development of Π1 and Π2 in powers
of ξ and η the linear elements in ξ and η cancel. The
proof of (21) can be conducted such that a general
power series can be calculated for Π1 and Π2, and
from it the electromagnetic field strength and where
all components that give rise to an infinite field en-
ergy go to zero.

6 The Spheroid Function

The wave equations can be separated in the coor-
dinates ξ, η, ϕ. We have to differentiate between
such separated wave functions, which are confined
throughout space and clearly behave as standing
waves, and such waves which behave as outgoing
spherical waves at infinity. We mark the first with:

Lm (1)
n (ξ, η, ϕ; i γ) =Sm (1)

n (−i ξ; γ) Spmn (η; i γ) eimϕ (22)

and the last with
Lm (4)
n (ξ, η, ϕ; i γ) =Sm (4)

n (−i ξ; γ) Spmn (η; i γ) eimϕ (23a)

or
Lm (3)
n (ξ, η, ϕ; i γ) =Sm (3)

n (−i ξ; γ) Spmn (η; i γ) eimϕ (23b)

where

γ = k c (24)

The functions Lmn are the Lamé wave functions. The functions S
m (i)
n and Spmn we present as spheroidal

functions. The functions Spmn (η; i γ) are generalizations of the spherical functions Pmn (η), in which γ = 0
is omitted; they obey the differential equation

d

dη

[
(1− η2)

dSp

dη

]
+

[
λ+ γ2 η2 − m2

1− η2

]
Sp (η; i γ) = 0. (25)

The functions S
m (i)
n (i = 1, 3, 4) solve, when considered as functions of −i ξ, the above differential equation.

For the separation of the wave equation in the coordinates ξ, η, ϕ we compare with Magnus and Oberhet-
tinger6. The theory and designation of the spheroid functions is drawn from the works of the author, which
may appear elsewhere.

6W. Magnus a. F. Oberhettinger, Form. and Theo. for spec. func. in Math. Phys. Berlin 1943
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In order that the wave functions (22) and (23) be unambiguous, m must be a whole number. The
separation parameter determines that Spmn (η; i γ) in η = ±1 remain finite. There is a sequence of such
values, which we mark with λm|m| (i γ), λm|m|+1 (i γ), λm|m|+2 (i γ)... or generally λmn (i γ). n is also a whole,
nonnegative number. For small γ

λm|m| (i γ) = n(n+ 1)− γ2 2n2 + 2n− 2m2 − 1

(2n+ 3) (2n− 1)
+O (γ4) (26)

For the spheroid functions, the following is established by Niven7:

Spmn (η; i γ) =
∑

r≥m−n

ir amn, r (i γ)Pmn+r (η) (27)

Sm (j)
n (−i ξ; i γ) = ξm (ξ2 + 1)

−m
2

∑
r≥m−n

ir amn, r (i γ)ψ
(i)
n+r

γ ξ

C
(1, 2)
n 0 (i γ

) (28)

where

ψ(1)
n (k r) =

√
π

2 k r
Jn (k r), ψ(3, 4)

n =

√
π

2 k r
H(1, 2)
n (k r) (29)

Jn is the Bessel function, H
(1, 2)
n the Hankel functions of the first or second degree. Cmn 0 (i γ) are defined

in (72). The coefficients amn,r (i γ) (r = slope) are solutions of a known trinomial recursion system. For
the following, it is enough to know the numerical values. Then the spheroid functions are also numerically
calculable. Advantageously, we normalize these coefficients such that∑

r≥m+n

2n+ 1

2n+ 2 r + 1
amn, 1 (i γ) a−mn, r (i γ) = 1 (30)

That has the result that the normalization integral for the spherical function Pmn and the spheroid function
Spmn has. The series (27) converges for all finite η, the series (28) for all finite ξ, if j = 1, in contrast only for
|ξ| > 1 if j = 3, 4; for |ξ| < 1, the value of the function can be calculated through other series representation
of the spheroid function. For large ξ

Sm (1)
n (−i ξ; i γ) ∼ 1

γ ξ
cos

(
γ ξ − n+ 1

2
π

)
(31)

Sm (3)
n (−i ξ; i γ) ∼ 1

γ ξ
e

+i

(
γ ξ−n+1

2 π

)
Sm (4)
n (−i ξ; i γ) ∼ 1

γ ξ
e

+i

(
γ ξ−n+1

2 π

)
(32)

Precisely as the spheroid function can be developed in the spherical coordinate system, so can the reverse
occur. We obtain (s = degree)

Pmn (η) =

∞∑
s≥|m|−n

is a−mn+s,−s (i γ)
2n+ 2 s+ 1

2n+ 1
Spmn+s (η; i γ) (33)

For those wave functions that are separated in spherical coordinates r, θ, ϕ we can likewise develop by way
of the wave function separated in ξ, η ϕ

ψ(j)
n (k r)Pmn (cos ϑ) eimϕ =

∞∑
s≥|m|−n

a−mn+s,−s (i γ)
2n+ 2 s+ 1

2n+ 1
L
m(j)
n+s (ξ, η, ϕ; i γ) (34)
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7 Developing the Debye potential of the planar Wave by way of
Lamé’s Wave Functions

The direction of propagation of the incident planar wave can be assumed, without significant loss of generality,
to be parallel to the x − z plane. The wavevector f indicates the direction from which the planar wave
originates; it includes the angle with the positive z−axis. Then

f = k { sin Θ, 0, cos Θ } r

r
= { sinϑ cosϕ, sinϑ sinϕ, cosϑ } (35)

Now we are to determine the two directions of polarization. We mark the field quantity with the index ⊥ if
the polarization plane of the incident wave is vertical to plane of incidence (here, the x− z plane), and with
the index ‖, if the polarization plane is parallel to the plane of incidence. We expect that the amplitude of
the electric vectors of the incident planar wave to E

E⊥ = {0, E, 0} ei k R+i ω t, B⊥ =

√
ε

µ
{E cos Θ, 0, −E sinΘ} ei k R+i ω t, (36)

E‖ = {−E cos Θ, 0, E sin Θ} ei k R+i ω t, B‖ =

√
ε

µ
{0, E, 0} ei k R+i ω t (37)

where

R = r (cosϑ cos Θ + sinϑ sin Θ cosϕ) (38)

Inserting (36) in (8) provides for the Debye potentials of the incident planar wave in the case that the incident
plane is vertical to the direction of oscillation of the differential equations

∂2 (rΠi
1⊥)

∂r2
+ k2 rΠi

1⊥ = E ε sinϑ sinϕ · ei k R+i ωt (39a)

1

r

∂2(rΠi
1⊥)

∂r∂ϑ
− i k

√
ε

µ

1

sinϑ

∂Πi
2⊥

∂ϕ
= E ε cos θ sinϕ · ei k R+i ω t (39b)

1

r sinϑ

∂2(rΠi
1⊥)

∂r∂ϕ
+ i k

√
ε

µ

∂Πi
2⊥

∂ϑ
= E ε cosϕ · ei k R+i ω t (39c)

The approach of a series separated wave functions in spherical coordinates for both potentials provides, then,
a calculation

Πi
1⊥ = − εE

k sin Θ

∞∑
n=1

n∑
m=−n

in
(2n+ 1)m

n (n+ 1)
(−1)m P−mn (cos Θ)ψmn (r, ϑ, ϕ) ei ω t (40)

Πi
2⊥ = +

√
ε µ

i k
E

∞∑
n=1

n∑
m=−n

in
(2n+ 1)

n (n+ 1)
(−1)m

dP−mn
dΘ

(cos Θ)ψmn (r, ϑ, ϕ) ei ω t (41)

Where being substituted for brevity

ψmn (r, ϑ, ϕ) = ψ(1)
n (k r)Pmn (cosϑ) eimϕ (42)

Corresponding differential equations to (39a, b, c) for Πi
1‖ and Πi

2‖ can be found by inserting (37) in (8).
From that we obtain

Πi
1‖ = −

√
ε

µ
Πi

2⊥, Πi
2‖ = +

√
µ

ε
Πi

1⊥ (43)
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The differential equations (10) are solved by these series for the Debye potentials, as each individual com-
ponent of the series fulfills the equation.

In order to develop the Debye potentials of the planar wave to get the Lamé wave equations, we develop
the wave functions separated in spherical coordinates according to (34) in series after the wave functions
separated in ξ, η, ϕ. Substituted in (40) and (41) yields

Πi
1⊥ = −E ε

k

∞∑
n=1

n∑
m=−n

(2n+ 1)min (−1)−m Lm (1)
n (ξ, η. ϕ; i γ)Um−n (Θ) ei ω t (44)

Πi
2⊥ = +E

√
ε µ

i k

∞∑
n=1

n∑
m=−n

(2n+ 1) in (−1)−m Lm (1)
n (ξ, η. ϕ; i γ)V mn (Θ) ei ω t (45)

Where being substituted for brevity

Umn (Θ) =

∞∑
r≥|m|−n

ir a−mn, r (i γ)

(n+ r) (n+ r + 1)
P−mn+r (cos Θ)

1

sin Θ
(46)

V mn (Θ) =
∞∑

r≥|m|−n

ir a−mn, r (i γ)

(n+ r) (n+ r + 1)

dP−mn+r (cos Θ)

dΘ
(47)

Particularly for Θ = 0, that is to say for a planar wave that runs parallel to the z-axis from positive to
negative z, the expressions simplify considerably. Then

Πi
1⊥ = E

i ε

k

∞∑
n=1

(2n+ 1) in

n (n+ 1)
C1
n 0 (i γ)S1 (1)

n (−i ξ; i γ)Sp1
n (η; i γ) sinϕ · ei ω t (48)

Πi
2⊥ = E i

√
ε µ

k

∞∑
n=1

(2n+ 1) in

n (n+ 1)
C1
n 0 (i γ)S1 (1)

n (−i ξ; i γ)Sp1
n (η; i γ) cosϕ · ei ω t (49)

This series development converges for all space.

8 Calculation of the first Part of the diffracting Wave

We decompose the Debye potentials into two parts

Πr
1 = Π

r

1 + Π
r

1, Πr
2 = Π

r

2 + Π
r

2 (50)

We determine the first part from the claim

Πi
1 + Π

r

1 = 0,
∂

∂z
(Πi

2 + Πr
2) = 0, for ξ = 0 (51)

Then, for the second part, it follows by (17)

%Π
r

1 = α (ϕ) ei k % + β (ϕ) e−i k %;

√
ε

µ
%2 ∂Π

r

2

∂z
=
dα

dϕ
ei k % − dβ

dϕ
e−i k % (52)

Both Π
r

1, Π
r

2 and Π
r

1, Π
r

2 depict outgoing waves and can be assembled additively from Lamé’s wave functions

L
m (4)
n (ξ, η, ϕ; i γ). It can be easily proven that the following statements fulfill (51) for Π

r

1, Π
r

2.

Π
r

1⊥ = +E
ε

k

∞∑
n=1

n∑
m=−n

(2n+ 1) inm (−1)m Lm (4)
n (ξ, η, ϕ; i γ)Umn (Θ)

S
m (1)
n (−i 0; i γ)

S
m (4)
n (−i 0; i γ)

ei ω t (53)

8
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Π
r

2⊥ = −E
√
ε µ

i k

∞∑
n=1

n∑
m=−n

(2n+ 1) in (−1)m Lm (4)
n (ξ, η, ϕ; i γ)V mn (Θ)

dS
m (1)
n (−i 0; i γ)/dξ

dS
m (4)
n (−i 0; i γ)/dξ

ei ω t (54)

Π
r

1‖ = +E
ε

i k

∞∑
n=1

n∑
m=−n

(2n+ 1) in (−1)m Lm (4)
n (ξ, η, ϕ; i γ)V mn (Θ)

S
m (1)
n (−i 0; i γ)

S
m (4)
n (−i 0; i γ)

ei ω t (55)

Π
r

2‖ = +E

√
ε µ

i k

∞∑
n=1

n∑
m=−n

(2n+ 1) inm (−1)m Lm (4)
n (ξ, η, ϕ; i γ)Umn (Θ)

dS
m (1)
n (−i 0; i γ)/dξ

dS
m (4)
n (−i 0; i γ)/dξ

ei ω t

(56)

It is remarkable that the components with odd differences n−m in (53) and (55) and those with even n−m
in (54) and (56) disappear due to the behavior of the first kind of spheroid functions and their derivative for
the zero argument. These four written functions satisfy all of the wave functions, behave at large distance
as outgoing spherical waves and are at all places finite.

for Θ = 0, there are again considerable simplifications; they are

Π
r

1⊥ = −E i ε

k

∞∑
n=1

2n+ 1

n (n+ 1)
in C1

n 0 (i γ)S1 (4)
n (−i ξ; i γ)Sp1 (1)

n (η; i γ) sinϕ
S

1 (1)
n (−i 0; i γ)

S
1 (4)
n (−i 0; i γ)

ei ω t (57)

Π
r

2⊥ = −E i
√
ε µ

k

∞∑
n=1

2n+ 1

n (n+ 1)
in C1

n 0 (i γ)S1 (4)
n (−i ξ; i γ)Sp1 (1)

n (η; i γ) cosϕ
dS

1 (1)
n (−i 0; i γ)/dξ

dS
1 (4)
n (−i 0; i γ)/dξ

ei ω t

(58)

These series also converge for all space. In the case Θ = 0, a separate calculation of Π
r

1‖ and Π
r

2‖ is
unnecessary, as the cases of parallel and perpendicular polarization planes differ in field strength only by a
phase of 90◦.

9 Calculation of the second Part of the Diffracting Wave

We think first of the still unknown functions α (ϕ) and β (ϕ) in (52) as a Fourier series

α (ϕ) =

∞∑
m=−∞

αm e
imϕ, β (ϕ) =

∞∑
m=−∞

βm e
imϕ (59)

For Π
r

1 and Π
r

2, the wave functions must describe to be outgoing spherical waves at large distance, and fulfill
the boundary constraints (52) for ξ = 0. We say

Π
r

1 =

∞∑
n=0

n∑
m=−n

Amn S
, (4)
n (−i ξ; , i γ)Spmn (η; i γ) eimϕ (60)

Π
r

2 =

∞∑
n=0

n∑
m=−n

Bmn S, (4)
n (−i ξ; , i γ)Spmn (η; i γ) eimϕ (61)

The boundary constraints (52) now provide, under consideration from (59)

∞∑
n=0

Amn S
(4)
n (−i 0; i γ)Spmn (η; i γ) = αm

ei γ
√

1−η2

c
√

1− η2
+ βm

e−i
√

1−η2

c
√

1− η2
(62)

9
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∞∑
n=0

Bmn

[ d
dξ

(
Sm (4)
n (−i ξ; i γ)

)]
ξ=0

Spmn (η; i γ) =

√
µ

ε

imη

c (1− η2)

[
αm e

i γ
√

1−η2 − βm e−i γ
√

1−η2
]

(63)

It is immediately noticeable, that

Amn = 0 for n−m = odd Bmn = 0 for n−m = even (64)

The orthogonality and normalization terms∫ 1

−1

Spmn (η; i γ)Sp−ml (η; i γ) dη =

{
0 for n 6= l

2
2n+1 for n = l

(65)

allow the coefficients Amn and Bmn to be expressed by αm and βm. The conditions

∂

∂η

(
Πi

1 + Π
r

1 + Π
r

1

)
= 0 and

∂

∂ξ

(
Πi

2 + Π
r

2 + Π
r

2

)
= 0 for ξ = η = 0 (66)

from (21) are fulfilled; because by (15) and (16), for η = 0, that is to say on the disk, Π1 and ∂Π2

∂z = 1
c η

∂Π2

∂ξ

are even functions in η; (66) hence applies for all η, if ξ = 0. The conditions

∂

∂ξ

(
Πi

1 + Π
r

1 + Π
r

1

)
= 0 and

∂

∂η

(
Πi

2 + Π
r

2 + Π
r

2

)
= 0 for ξ = η = 0 (67)

from (21) give just two equations for each pair of coefficients αm, βm. Thereby, the solution for the diffraction
problem is thoroughly certain.

The ratio of the incident wave may be omitted in (67), because the derivative with respect to ξ and η
disappears on the screen edge. Physically, this follows from the the finiteness of the incident wave, since
there can be no infinite field energy on the edge of the screen.

10 Calculation of the series Coefficients Am
n and Bm

n

The orthogonality and normalization terms (65) give

Amn S
m (4)
n (−i 0; i γ)

2

2n+ 1
=

1

c

∫ 1

−1

[
αm

ei γ
√

1−η2√
1− η2

+ βm
e−i γ

√
1−η2√

1− η2

]
Sp−mn (η; i γ) dη (68)

Bmn

[ d
dξ
Sm (4)
n (−i ξ; i γ)

]
ξ=0

2

2n+ 1

=
im

c

√
µ

ε

∫ 1

−1

η

1− η2

[
αm e

i γ
√

1−η2 − βm e−i γ
√

1−η2
]
Sp−mn (η; i γ) dη (69)

These integrals can be evaluated as closed integrals. However, we do without the calculation, which should
be successful in other contexts, and satisfies us with the statement of its value for m = +1. We only need
these, if we want to be confined, as occurs in the following for the case Θ = 0, that is to say perpendicular
incidence to the planar wave on the disk. Then

A1
n S

1 (4)
n (−i 0; i γ)

n (n+ 1)

2n+ 1
c =

[
+ C1

n 0 (i γ)− γ α1
n,−n−1 (i γ)S1 (3)

n (−i 0; i γ)
]
α1

+
[

+ C1
n 0 (i γ)− γ α1

n,−n−1 (i γ)S1 (4)
n (−i 0; i γ)

]
β1;

(n = odd)

(70)

10
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B1
n

[ d
dξ
S1 (4)
n (−i ξ; i γ)

]
ξ=0

n (n+ 1)

2n+ 1
c

√
ε

µ
= γ

[
− C1

n 0 (i γ) + α1
n,−n (i γ)

[ d
dξ
S1 (3)
n (−i ξ; i γ)

]
ξ=0

]
α1

+ γ
[
− C1

n 0 (i γ) + α1
n,−n (i γ)

[ d
dξ
S1 (3)
n (−i ξ; i γ)

]
ξ=0

]
β1

(n = even)

(71)

For brevity, we substitute

C1
n 0 (i γ) =

∞∑
r≥−n−1

in α1
n, r (i γ) (72)

As Πi
1, Π

i

1 remain proportional to sinϕ and Πi
2, Π

i

2 to cosϕ, then by (67) the same relations must hold for

Π
i

1 and Π
i

2. Therefore it suffices to calculate A1
n, B

1
n and to multiply the corresponding series components

in (60) and (61) by ei ϕ ∓ ei ϕ.
Hence, for the overall result, we get

Π1 = E
i ε

k

∞∑
n=1

2n+ 1

n (n+ 1)
in C1

n 0 (i γ)

[
S1 (1)
n (−i ξ; i γ)− S1 (4)

n (−i ξ; iγ)
S

1 (1)
n (−i 0; i γ)

S
1 (4)
n (−i 0; i γ)

]
Sp1

n (η; i γ)

· sinϕei ω t + 2 i sinϕ

∞∑
n=1

A1
n S

1 (4)
n (−i ξ; i γ)Sp1

n (η; i γ) ei ω t
(73)

Π2 = E
i
√
ε µ

k

∞∑
n=2

2n+ 1

n (n+ 1)
in C1

n 0 (i γ)

{
S1 (1)
n (−i ξ; i γ)− S1 (4)

n (−i ξ; iγ)

[
dS

1 (1)
n (−i 0; i γ)/dξ

dS
1 (4)
n (−i 0; i γ)/dξ

]
ξ=0

}

·Sp1
n (η; i γ) cosϕei ω t + 2 cosϕ

∞∑
n=2

B1
n S

1 (4)
n (−i ξ; i γ)Sp1

n (η; i γ) ei ω t

(74)

The hitherto unknown quantities α1 and β1 yield
that ∂Π1

∂ξ = 0 and ∂Π2

∂η = 0 for ξ = η = 0. This yields
two linear equations for α1 and β1.

11 Borderline Case of long
Wavelengths

If the wavelength is large compared to the ra-
dius of the disk, that is to say γ � 1, then the
spheroid functions become expressible in spherical
functions of the first or second kind if η and ξ re-

main finite. From the magnitudes S
1 (1)
n (−i ξ; i γ) =

O (γr), S
1 (3, 4)
n (−i ξ; i γ) = O (γ−n−1) follows that

in (73) and (74) only the first component remains
from the respective first series. For the second, all
components are to be considered. The differential
quotient of this second series in terms of ξ or η,
which is required to utilize the edge conditions (21),
is thus developed to be a divergent series (alternat-
ing series with the marginal component of the order

n1/2. These difficulties can be avoided, however, by
indeed differentiating term by term, and then by a
summation method (about the arithmetic mean), the
sum calculates. This is feasibly closed for long wave-
lengths and yields

α1 + β1 = E
ε i γ2

2 k2

(
1 +O (γ)

)
α1 − β1 = −E εγ3

9π k2

(
1 +O (γ)

) (75)

With these values for α1 and β1 we can calculate
the entire field. In the wave area where γ ξ � 1, as
the asymptotic representations (31) and (32) in ad-
dition to the above show, from all series in (73) and
(74) only the first component remain respectively,
and this gives as γ ξ ≈ k r for Πr

1

Πr
1 = E

4 γ3 ε

3π i k

e−i k r

r
P 1

1 (cosϕ) sinϕei ωt (76)

11
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The corresponding radiation (76) is that of an elec-
tric dipole with the moment

py = E
16

3
α3 ε ei ω t (77)

This is the dipole moment of the charge density that
would be induced in a disk if it finds itself in a uni-
form electric field E ei ω t (for γ �, that is to say
quasi-statistically calculated) parallel to the y− axis.

We forgo the calculation and interpretation of of
Πr

1, as it already is the first member of the series as
was neglected in Πr

1.

12 Remarks about the numeri-
cal Evaulation

The numerical evaluation of the formulas (73) and
(74) assumes the existence of panels of spheroid func-
tions. Such were calculated by Stratton and Mi-
tarbb8 but they have not yet the desired range. The
same goes for the ones by the author9 for the de-
velopments of αmn,r (i γ) for powers of γ, which for
small n is necessary only until γ = 1. The area
0 ≤ γ ≤ 10 and 1 ≤ n ≤ 12 would be important.
For such values of γ the number to be considered
the series component (namely, approximately until
n = 12) is bearable, moreover a good connection to
Kirchhoff’s approximation with γ = 10, as is also the

case for the scalar diffraction problem. The numer-
ical calculation of the required spheroidal functions
creates few difficulties of either theoretical or practi-
cal nature.

One difficult point is the already mentioned di-
vergence of the series, which is given when we dif-
ferentiate (73) and (74) with respect to ξ or η and
set them equal to zero. Because the application of
a summation technique, this consideration requires
many series components. A loophole, however, can
be found in the fact that the series components for
larger n converge rapidly compared with the equiva-
lent series components for the case γ = 0, for which
the sum of the divergent series can be closed and cal-
culated. Therefore the corresponding series for γ = 0
will be subtracted member-by-member from the se-
ries to be summed for γ 6= 0. Then develops conver-
gent series, whose summation is fundamentally eas-
ier.

The still-to-undertaken numerical evaluation of
the field of the diffracting wave, which we want to
describe in a later work, will be reached mainly for
the field at large distance and in the neighborhood
of the disk or the circular opening, with the goal
to obtain information about the polarization ratios.
The results gain interest through newer experimen-
tal research of the field in the vicinity of circular
opening by wavelengths in the order of magnitude of
the opening, which were conducted by Severin10 and
Andrews11 with wavelengths from 6 until 12.8 cm.

8J.A. Stratton, P.M. Morse, L.J. Chu, R.A. Hunter, Elliptic cylinder and spheroidal wave functions, including tables of
separation constants and coefficients. New York 1941

9J. Mexiner, Die Laméschen Wellenfunktionen des Dehellipsoids. Ber. Zentralle wiss. Berichterstatung Nr. 1952 [1944]
10H. Severin, Z. Naturforschg. 1, 487 [1946].
11C.L. Andrews, Physic. Rev. 71, 777 [1947]
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