Recent Results and Open Problems on the Minimum Size of Saturated Graphs

John Schmitt

Middlebury College
joint work with
Ron Gould (Emory University)
Tomasz Łuczak (Adam Mickiewicz University and Emory University)
Oleg Pikhurko (Carnegie Mellon University)

September, 2006
University Colorado, Denver,
Discrete Mathematics Seminar
Definition
A graph G is F-saturated if;
$F \not\subseteq G$

$F \subset G + e$ for any $e \in E(\overline{G})$

Problem
Determine the minimum number of edges, $\text{sat}(n, F)$, of an F-saturated graph.
Theorem (Erdős, Hajnal, Moon - 1964)

\[\text{sat}(n, K^t) = (t - 2)(n - 1) - \binom{t - 2}{2} \]

Furthermore, the only \(K^t \)-saturated graph with this many edges is \(K^{t-2} + \overline{K}^{n-t+2} \).
Let $sat(n, F, \delta)$ equal *minimum* number of edges in a graph on n vertices and minimum degree δ that is F-saturated.

Theorem (Duffus, Hanson - '86)

$$sat(n, K_3, 2) = 2n - 5, \quad n \geq 5$$

$$sat(n, K_3, 3) = 3n - 15, \quad n \geq 10$$

Problem (Bollobás - '95)

Is it true that for every fixed $\delta \geq 1$ one has

$$sat(n, K_3, \delta) = \delta n - O(1)$$
Theorem (Ollmann - '72, Tuza - '86)

\[
sat(n, C_4) = \left\lfloor \frac{3n - 5}{2} \right\rfloor, \quad n \geq 5
\]
Theorem (Ollmann - '72, Tuza - '86)

\[sat(n, C_4) = \left\lfloor \frac{3n - 5}{2} \right\rfloor, \quad n \geq 5 \]
Theorem (Ollmann - '72, Tuza - '86)

\[
sat(n, C_4) = \left\lfloor \frac{3n - 5}{2} \right\rfloor, \quad n \geq 5
\]
Theorem (Fisher, Fraughnaugh, Langley - '97)

\[sat(n, P_3 - connected) = \left\lfloor \frac{3n - 5}{2} \right\rfloor \]

Theorem (Pikhurko, S.)

There exists a constant \(C \) such that for all \(n \geq 5 \),

\[2n - Cn^{3/4} \leq sat(n, K_{2,3}) \leq 2n - 3 \]
Theorem (Fisher, Fraughnaugh, Langley, -'95)

\[sat(n, C_5) \leq \left\lceil \frac{10n - 10}{7} \right\rceil, \ n \neq 4 \]

Theorem (Y.C. Chen)

\[sat(n, C_5) = \left\lceil \frac{10n - 10}{7} \right\rceil, \ n \geq 21 \]

Problem (FFL)

Determine \(sat(n, P_4 - \text{connected}) \).
Hamiltonian Cycles

Theorem

\[\text{sat}(n, C_n) = \left\lfloor \frac{3n + 1}{2} \right\rfloor, \quad n \geq 53 \]

Bondy (’72) showed the lower bound. Clark, Entringer, Crane and Shapiro (’83-’86) gave upper bound based on Isaacs’ flower snarks (girth 5, 6). L. Stacho (’96) gave further constructions based on the Coxeter graph (girth 7).

Problem (Horák, Širáň -’86)

Is there a maximally non-hamiltonian graph of girth at least 8?
Conjecture (Bollobás - ’78)

\[n + c_1 \frac{n}{l} \leq \text{sat}(n, C_l) \leq n + c_2 \frac{n}{l} \]

Theorem (Barefoot, Clark, Entringer, Porter, Székely, Tuza - ’96)

\[(1 + \frac{1}{2l + 8})n \leq \text{sat}(n, C_l) \]
Theorem (Barefoot et al. - ’96)

\[
sat(n, C_l) \leq (1 + \frac{6}{l-3})n + O(l^2) \text{ for } l \text{ odd, } l \geq 9
\]

\[
sat(n, C_l) \leq (1 + \frac{4}{l-2})n + O(l^3) \text{ for } l \text{ even, } l \geq 14
\]
Theorem (Barefoot et al. - ’96)

\[\text{sat}(n, C_l) \leq (1 + \frac{1}{3} \frac{6}{l-3})n + \frac{5l^2}{4} \text{ for } l \text{ odd, } l \geq 9, \ l \geq 17, \ n \geq 7l\]

\[\text{sat}(n, C_l) \leq (1 + \frac{1}{2} \frac{4}{l-2})n + \frac{5l^2}{4} \text{ for } l \text{ even } l \geq 14, \ l \geq 10, \ n \geq 3l\]

Theorem

\[\text{Gould, Łuczak, S. -’06} \] For \(l = 8, 9, 11, 13 \text{ or } 15 \) and \(n \geq 2l \)

\[
\text{sat}(n, C_l) \leq \left\lfloor \frac{3n + l^2 - 9l + 15}{2} \right\rfloor
\]

\[
< \left\lfloor \frac{3n}{2} \right\rfloor + \frac{l^2}{2}
\]
Our Inspiration

Lance Armstrong’s Trek Madone SSL proto, 12/06/2004. The complete special edition Bontrager front wheel with super-minimal 19mm tubulars.
Introduction
Cycles
Paths, Bipartite Graphs and General Bound
A few more questions

Both small and large
Our Result and Logic of Construction
Łuczak Wheel
Another Construction, $l \geq 5$
Cycle Summary
Introduction
Cycles
Paths, Bipartite Graphs and General Bound
A few more questions
Both small and large
Our Result and Logic of Construction
Łuczak Wheel
Another Construction, \(l \geq 5 \)
Cycle Summary

John Schmitt Recent Results and Open Problems on the Minimum Size of Saturated...
John Schmitt
Recent Results and Open Problems on the Minimum Size of Saturated...
The Even Łuczak Wheel, $l = 2k + 2 \geq 10$
The Even Łuczak Wheel, $l = 2k + 2 \geq 10$
The Even Łuczak Wheel, $l = 2k + 2 \geq 10$
The Even Łuczak Wheel, $l = 2k + 2 \geq 10$
Counting Edges of the Łuczak Wheel

For $l = 2k + 2$

$$|E(L - \text{Wheel})| = \underbrace{(n - k - a)}_{\text{Rim}} + \underbrace{\frac{n - k - a}{k}}_{\text{Spokes}} + \underbrace{a}_{\text{Flange}} + \underbrace{\binom{k}{2}}_{\text{Hub}}.$$

Theorem

For $k \geq 4$, $l = 2k + 2$, $n \equiv a \mod k$ and $n \geq 3l$,

$$\text{sat}(n, C_l) \leq n\left(1 + \frac{1}{k}\right) + \frac{k^2 - 3k - 2}{2} - \frac{a}{k} \leq n\left(1 + \frac{2}{l - 2}\right) + \frac{5l^2}{4}.$$
The Odd Łuczak Wheel, $l = 2k + 3 \geq 17$
Inspired by Fisher, Fraughnaugh and Langley

Present if $n - (2l - 3)$ is odd.
Recent Results and Open Problems on the Minimum Size of Saturated

John Schmitt
Recent Results and Open Problems on the Minimum Size of Saturated Cycles

Paths, Bipartite Graphs and General Bound

A few more questions

Both small and large

Our Result and Logic of Construction

Łuczak Wheel

Another Construction, \(l \geq 5 \)

Cycle Summary
Introduction
Cycles
Paths, Bipartite Graphs and General Bound
A few more questions

Our Result and Logic of Construction
Łuczak Wheel
Another Construction, \(l \geq 5 \)
Cycle Summary

Recent Results and Open Problems on the Minimum Size of Saturated...
<table>
<thead>
<tr>
<th>l</th>
<th>$\text{sat}(n, C_l)$</th>
<th>$n \geq$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$n - 1$</td>
<td>3</td>
<td>EHM</td>
</tr>
<tr>
<td>4</td>
<td>$\left\lfloor \frac{3n-5}{2} \right\rfloor$</td>
<td>5</td>
<td>Ollmann; Tuza</td>
</tr>
<tr>
<td>5</td>
<td>$\left\lceil \frac{10n-10}{7} \right\rceil$</td>
<td>21</td>
<td>FFL; Chen</td>
</tr>
<tr>
<td>6</td>
<td>$\leq \frac{3n}{2}$</td>
<td>11</td>
<td>Barefoot et al.</td>
</tr>
<tr>
<td>7</td>
<td>$\leq \frac{7n+12}{5}$</td>
<td>10</td>
<td>Barefoot et al.</td>
</tr>
<tr>
<td>8,9,11,13,15</td>
<td>$\leq \frac{3n}{2} + \frac{l^2}{2}$</td>
<td>21</td>
<td>GLS</td>
</tr>
<tr>
<td>≥ 10 and $\equiv 0 \mod 2$</td>
<td>$\leq (1 + \frac{2}{l-2})n + \frac{5l^2}{4}$</td>
<td>31</td>
<td>Łuczak wheel</td>
</tr>
<tr>
<td>≥ 17 and $\equiv 1 \mod 2$</td>
<td>$\leq (1 + \frac{2}{l-3})n + \frac{5l^2}{4}$</td>
<td>71</td>
<td>Łuczak wheel</td>
</tr>
<tr>
<td>n</td>
<td>$\left\lfloor \frac{3n+1}{2} \right\rfloor$</td>
<td>20</td>
<td>Bondy; CE, CES</td>
</tr>
</tbody>
</table>
Problem (Barefoot et al. - '96)

Determine the value of l *which minimizes* $\text{sat}(n, C_l)$ *for fixed* n.

Problem

Are any of these constructions optimal? Can one improve the lower bound?
Other Subgraphs

Other values of $sat(n, F)$ known for:

- **matchings** (Mader - '73),
- **paths and stars** (Kászonyi and Tuza - '86),
- **hamiltonian path, P_n** (Frick and Singleton, 05; Dudek, Katona, Wojda - '06)

$$sat(n, P_n) = \left\lceil \frac{3n - 2}{2} \right\rceil, n \geq 54$$

- **longest path = detour** (Beineke, Dunbar, Frick, '05)
Difficulties and Hereditary Properties Lacking

Quote from Erdős, Hajnal and Moon:
“One of the difficulties of proving these conjectures may be that the obvious extremal graphs are certainly not unique, which fact may make an induction proof difficult.”

- \(\text{sat}(n, F) \not\leq \text{sat}(n + 1, F) \)
- \(\mathcal{F}_1 \subset \mathcal{F}_2 \not\Rightarrow \text{sat}(n, \mathcal{F}_1) \geq \text{sat}(n, \mathcal{F}_2) \)
- \(F' \subset F \not\Rightarrow \text{sat}(n, F') \leq \text{sat}(n, F) \)
Theorem (Kászonyi L. and Tuza, Z.)

Let F be a graph. Set

$$u = |V(F)| - \alpha(F) - 1$$
$$s = \min\{e(F') : F' \subseteq F, \alpha(F') = \alpha(F), |V(F')| = \alpha(F) + 1\}.$$

Then

$$\text{sat}(n, F) \leq (u + \frac{s - 1}{2})n - \frac{u(s + u)}{2}.$$

They considered a clique on u vertices joined to an $(s - 1)$-regular graph.
Best Known Lower Bound

Problem

*For an arbitrary graph F, determine a non-trivial lower bound on $\text{sat}(n, F)$.***
Saturation for Bipartite Graphs, $K_{s,s}$
Theorem (S. - '05)

For \(n \geq 3s - 3 \),

\[
\text{sat}(n, K_{s,s}) \leq \left\lfloor \frac{(3s - 3)n - (2s - 1)(s - 1)}{2} \right\rfloor - (s - 1).
\]

Theorem (S. - '05)

For \(n \geq st + s - 3 \),

\[
\text{sat}(n, K_{s}^{t}) \leq \left\lfloor \frac{(2st - s - 3)n - s^{2}t^{2} + s^{2}t + 2st - s - 1}{2} \right\rfloor - (s - 1).
\]
Theorem (Gould, S. - 06+)

For integers $t \geq 3$, $n \geq 4t - 4$,

$$sat(n, K^t_2) \leq sat(n, K^t_2, 2t - 3) = \left\lceil \frac{(4t - 5)n - 4t^2 + 6t - 1}{2} \right\rceil.$$

Problem

Given a fixed graph F, for n sufficiently large determine if the function $sat(n, F, \delta)$ is monotonically increasing in δ.
And Ramsey Numbers

$F \to (F_1, \ldots, F_t)$ if any t coloring of $E(F)$ contains a monochromatic F_i-subgraph of color i for some $i \in [t]$.

Conjecture (Hanson and Toft, ’87)

Given $t \geq 2$ and numbers $m_i \geq 3, i \in [t]$, let

$$\mathcal{F} = \{ F : F \to (K_{m_1}, \ldots, K_{m_t}) \}.$$

Let $r = r(K_{m_1}, \ldots, K_{m_t})$ be the classical Ramsey number. Then

$$\text{sat}(n, \mathcal{F}) = (r - 2)(n - 1) - \binom{r - 2}{2}.$$

Problem (Pikhurko)

For even more problems see paper "Results and Open Problems on Minimum Saturated Hypergraphs", Ars Combin.

Talk and results are available online at:
http://community.middlebury.edu/~jschmitt/