Recent Results and Open Problems on the Minimum Size of Saturated Graphs

John Schmitt

Middlebury College joint work with Ron Gould (Emory University) Tomasz Łuczak (Adam Mickiewicz University and Emory University) Oleg Pikhurko (Carnegie Mellon University)

> September, 2006 University Colorado, Denver, Discrete Mathematics Seminar

▲御▶ ▲理▶ ★理▶

Introduction

Cycles Paths, Bipartite Graphs and General Bound A few more questions Definitions History

Definition A graph G is F-saturated if; $F \not\subset G$

$$F \subset G + e$$
 for any $e \in E(\overline{G})$

Problem Determine the minimum number of edges, sat(n, F), of an *F*-saturated graph.

・ロト ・同ト ・ヨト ・ヨト

Definitions History

Theorem (Erdős, Hajnal, Moon - 1964)

$$sat(n, K^{t}) = (t-2)(n-1) - {t-2 \choose 2}$$

Furthermore, the only K^t -saturated graph with this many edges is $K^{t-2} + \overline{K}^{n-t+2}$.

э

Definitions History

Let $sat(n, F, \delta)$ equal *minimum* number of edges in a graph on *n* vertices and minimum degree δ that is *F*-saturated.

Theorem (Duffus, Hanson - '86)

$$sat(n, K_3, 2) = 2n - 5, n \ge 5$$

 $sat(n, K_3, 3) = 3n - 15, n \ge 10$

Problem (Bollobás - '95)

Is it true that for every fixed $\delta \ge 1$ one has $sat(n, K_3, \delta) = \delta n - O(1)$

イロン イボン イヨン トヨ

Theorem (Ollmann - '72, Tuza - '86)

$$sat(n, C_4) = \lfloor \frac{3n-5}{2}
floor, \quad n \ge 5$$

Theorem (Ollmann - '72, Tuza - '86)

$$sat(n, C_4) = \lfloor rac{3n-5}{2}
floor, \quad n \geq 5$$

Theorem (Ollmann - '72, Tuza - '86)

$$sat(n, C_4) = \lfloor rac{3n-5}{2}
floor, \quad n \geq 5$$

 Introduction Cycles
 Both small and large

 Paths, Bipartite Graphs and General Bound A few more questions
 Our Result and Logic of Construction Łuczak Wheel Another Construction, l ≥ 5 Cycle Summary

Theorem (Fisher, Fraughnaugh, Langley - '97)

$$sat(n, P_3 - connected) = \lfloor \frac{3n-5}{2} \rfloor$$

Theorem (Pikhurko, S.)

There exists a constant C such that for all $n \ge 5$,

$$2n - Cn^{3/4} \le sat(n, K_{2,3}) \le 2n - 3$$

・ロン ・回と ・ヨン ・ヨン

-

 Introduction Cycles
 Both small and large

 Paths, Bipartite Graphs and General Bound A few more questions
 Our Result and Logic of Construction Łuczak Wheel Another Construction, / ≥ 5 Cycle Summary

Theorem (Fisher, Fraughnaugh, Langley, -'95)

$$\operatorname{sat}(n, C_5) \leq \lceil \frac{10n - 10}{7} \rceil, n \neq 4$$

Theorem (Y.C.Chen)

$$sat(n, C_5) = \lceil \frac{10n - 10}{7} \rceil, n \ge 21$$

Problem (FFL)

Determine $sat(n, P_4 - connected)$.

・ロン ・回と ・ヨン・

Hamiltonian Cycles

Theorem

$$sat(n, C_n) = \lfloor \frac{3n+1}{2} \rfloor, n \ge 53$$

Bondy ('72) showed the lower bound. Clark, Entringer, Crane and Shapiro ('83-'86) gave upper bound based on Isaacs' flower snarks (girth 5, 6). L. Stacho ('96) gave further constructions based on the Coxeter graph (girth 7).

Problem (Horák, Širáň -'86)

Is there a maximally non-hamiltonian graph of girth at least 8?

Both small and large Our Result and Logic of Construction Łuczak Wheel Another Construction, $l \ge 5$ Cycle Summary

(日) (同) (E) (E) (E)

Conjecture (Bollobás - '78)

$$n+c_1rac{n}{l}\leq sat(n,C_l)\leq n+c_2rac{n}{l}$$

 Theorem (Barefoot, Clark, Entringer, Porter, Székely, Tuza -'96)

$$(1+rac{1}{2l+8})n\leq sat(n,C_l)$$

・ロン ・回と ・ヨン・

 Introduction Cycles
 Both small and large

 Paths, Bipartite Graphs and General Bound A few more questions
 Our Result and Logic of Construction Łuczak Wheel

 Another Construction, l ≥ 5 Cycle Summary

Theorem (Barefoot et al. - '96)

$$egin{aligned} & ext{sat}(n, \mathit{C}_l) \leq (1 + rac{6}{l-3})n + O(l^2) ext{ for } l ext{ odd, } l \geq 9 \ & ext{sat}(n, \mathit{C}_l) \leq (1 + rac{4}{l-2})n + O(l^3) ext{ for } l ext{ even, } l \geq 14 \end{aligned}$$

イロン イヨン イヨン イヨン

-2

 Introduction Cycles
 Both small and large

 Paths, Bipartite Graphs and General Bound A few more questions
 Our Result and Logic of Construction Łuczak Wheel Another Construction, / ≥ 5 Cycle Summary

Theorem (Barefoot et al. - '96) [Gould, Luczak, S. -'06] $sat(n, C_l) \le (1 + \frac{1}{3} \frac{6}{l-3})n + \frac{5l^2}{4}$ for l odd, $l \ge 9, l \ge 17, n \ge 7l$

 $sat(n, C_l) \le (1 + \frac{1}{2}\frac{4}{l-2})n + \frac{5l^2}{4}$ for l even $l \ge 14$, $l \ge 10, n \ge 3l$

Theorem

[Gould, Łuczak, S. -'06] For l = 8, 9, 11, 13 or 15 and $n \ge 2l$

$$sat(n, C_l) \leq \left\lceil \frac{3n + l^2 - 9l + 15}{2} \right\rceil$$
$$< \left\lceil \frac{3n}{2} \right\rceil + \frac{l^2}{2}$$

イロト イポト イヨト イヨト 二日

Our Inspiration

Both small and large Our Result and Logic of Construction Łuczak Wheel Another Construction, $l \ge 5$ Cycle Summary

Lance Armstrong's Trek Madone SSL proto, 12/06/2004. The complete special edition Bontrager front wheel with super-minimal 19mm tubulars.

・ロン ・回と ・ヨン・

Both small and large Our Result and Logic of Construction Luczak Wheel Another Construction, $l \ge 5$ Cycle Summary

The Even Łuczak Wheel, $I = 2k + 2 \ge 10$

John Schmitt Recent Results and Open Problems on the Minimum Size of S

Both small and large Our Result and Logic of Construction Łuczak Wheel Another Construction, $l \ge 5$ Cycle Summary

The Even Łuczak Wheel, $I = 2k + 2 \ge 10$

John Schmitt Recent Results and Open Problems on the Minimum Size of S

Both small and large Our Result and Logic of Construction Luczak Wheel Another Construction, $l \ge 5$ Cycle Summary

The Even Łuczak Wheel, $I = 2k + 2 \ge 10$

Both small and large Our Result and Logic of Construction Luczak Wheel Another Construction, $l \ge 5$ Cycle Summary

The Even Łuczak Wheel, $I = 2k + 2 \ge 10$

Both small and large Our Result and Logic of Construction Luczak Wheel Another Construction, $l \ge 5$ Cycle Summary

Counting Edges of the Łuczak Wheel

For l = 2k + 2

$$|E(L - Wheel)| = (n - k - a) + \frac{Spokes}{k} + \frac{Flange}{a} + (k)$$

Theorem

For $k \ge 4$, l = 2k + 2, $n \equiv a \mod k$ and $n \ge 3l$,

$$sat(n, C_{l}) \leq n(1 + \frac{1}{k}) + \frac{k^{2} - 3k - 2}{2} - \frac{a}{k}$$
$$\leq n(1 + \frac{2}{l - 2}) + \frac{5l^{2}}{4}.$$

Both small and large Our Result and Logic of Construction Łuczak Wheel Another Construction, $l \ge 5$ Cycle Summary

The Odd Łuczak Wheel, $I = 2k + 3 \ge 17$

John Schmitt Recent Results and Open Problems on the Minimum Size of S

Introduction
CyclesBoth small and large
Our Result and Logic of Construction
Luczak Wheel
Another Construction, $l \ge 5$
Cycle Summary

Inspired by Fisher, Fraughnaugh and Langley

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

æ.,

 Introduction
 Both small and large

 Our Result and Logic of Construction
 Luczak Wheel

 Paths, Bipartite Graphs and General Bound
 A few more questions

< □ > < @ > < 注 > < 注 > □ ≥ □ = □

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

æ.,

Introduction Cycles Paths, Bipartite Graphs and General Bound A few more questions	Both small and large Our Result and Logic of Construction \pm uczak Wheel Another Construction, $l \ge 5$ Cycle Summary
---	--

C _l -saturated graphs of minimum size			
1	$sat(n, C_l)$	$n \ge$	Reference
3	= n - 1	3	EHM
4	$= \lfloor \frac{3n-5}{2} \rfloor$	5	Ollmann; Tuza
5	$= \left\lceil \frac{10n-10}{7} \right\rceil$	21	FFL; Chen
6	$\leq \frac{3n}{2}$	11	Barefoot et al.
7	$\leq \frac{7n+12}{5}$	10	Barefoot et al.
8,9,11,13,15	$\leq \frac{3n}{2} + \frac{l^2}{2}$	2/	GLS
\geq 10 and \equiv 0 mod 2	$\leq \left(1 + \frac{2}{l-2}\right)n + \frac{5l^2}{4}$	3/	Łuczak wheel
≥ 17 and $\equiv 1 \mod 2$	$\leq \left(1+rac{2}{l-3} ight)n+rac{5l^2}{4}$	71	Łuczak wheel
n	$\lfloor \frac{3n+1}{2} \rfloor$	20	Bondy; CE, CES

・ロ・・ (日・・ ヨ・ (日・・ ロ・

Introduction Cycles Paths, Bipartite Graphs and General Bound A few more questions	Both small and large Our Result and Logic of Construction Łuczak Wheel Another Construction, $l \ge 5$ Cycle Summary
---	--

Problem (Barefoot et al. - '96)

Determine the value of I which minimizes $sat(n, C_I)$ for fixed n.

Problem

Are any of these constructions optimal? Can one improve the lower bound?

向下 イヨト イヨト

Bipartite Graphs

Other Subgraphs

Other values of sat(n, F) known for:

- matchings (Mader '73),
- paths and stars (Kászonyi and Tuza '86),
- hamiltonian path, P_n (Frick and Singleton, 05; Dudek, Katona, Wojda - '06)

$$sat(n, P_n) = \lceil \frac{3n-2}{2} \rceil, n \ge 54$$

longest path = detour(Beineke, Dunbar, Frick, '05)

・ロト ・回ト ・ヨト ・ヨト 三星

Bipartite Graphs

Difficulties and Hereditary Properties Lacking

Quote from Erdős, Hajnal and Moon:

"One of the difficulties of proving these conjectures may be that the obvious extremal graphs are certainly not unique, which fact may make an induction proof difficult."

sat(n, F) ≤ sat(n + 1, F)
$$\mathcal{F}_1 \subset \mathcal{F}_2 \Rightarrow sat(n, \mathcal{F}_1) \ge sat(n, \mathcal{F}_2)$$
 $F' \subset F \Rightarrow sat(n, F') \le sat(n, F)$

(4月) (4日) (4日)

Bipartite Graphs

Best known upper bound

Theorem (Kászonyi L. and Tuza, Z.) Let F be a graph. Set

$$u = |V(F)| - \alpha(F) - 1$$

$$s = \min\{e(F') : F' \subseteq F, \alpha(F') = \alpha(F), |V(F')| = \alpha(F) + 1\}.$$
Then

$$sat(n,F) \leq (u+\frac{s-1}{2})n-\frac{u(s+u)}{2}.$$

They considered a clique on u vertices joined to an (s - 1)-regular graph.

イロン イボン イヨン トヨ

Bipartite Graphs

Best Known Lower Bound

????

Problem

For an arbitrary graph F, determine a non-trivial lower bound on sat(n, F).

Bipartite Graphs

Saturation for Bipartite Graphs, $K_{s,s}$

イロン イヨン イヨン イヨン

Bipartite Graphs

Saturation for Bipartite Graphs, $K_{s,s}$

イロン イヨン イヨン イヨン

Bipartite Graphs

Saturation for Bipartite Graphs, $K_{s,s}$

< □ > < □ > < □ > < Ξ > < Ξ > ...

Bipartite Graphs

Saturation for Bipartite Graphs, $K_{s,s}$

イロン イボン イヨン イヨン

Bipartite Graphs

Theorem (S. - '05) For $n \ge 3s - 3$,

$$\operatorname{sat}(n, K_{s,s}) \leq \lfloor \frac{(3s-3)n-(2s-1)(s-1)}{2} \rfloor - (s-1).$$

Theorem (S. - '05)
For
$$n \ge st + s - 3$$
,

$$sat(n, K_s^t) \leq \lfloor \frac{(2st-s-3)n-s^2t^2+s^2t+2st-s-1}{2} \rfloor -(s-1).$$

Bipartite Graphs

Theorem (Gould, S. - 06+) For integers $t \ge 3$, $n \ge 4t - 4$,

$$\operatorname{sat}(n, \mathcal{K}_2^t) \leq \operatorname{sat}(n, \mathcal{K}_2^t, 2t-3) = \lceil rac{(4t-5)n-4t^2+6t-1}{2}
ceil.$$

Problem

Given a fixed graph F, for n sufficiently large determine if the function sat (n, F, δ) is monotonically increasing in δ .

・ロン ・回と ・ヨン・

And Ramsey Numbers

 $F \rightarrow (F_1, \ldots, F_t)$ if any t coloring of E(F) contains a monochromatic F_i -subgraph of color i for some $i \in [t]$.

Conjecture (Hanson and Toft, '87)

Given $t \ge 2$ and numbers $m_i \ge 3, i \in [t]$, let

$$\mathcal{F} = \{F: F \to (K_{m_1}, \ldots, K_{m_t})\}.$$

Let $r = r(K_{m_1}, \ldots, K_{m_t})$ be the classical Ramsey number. Then

$$\mathsf{sat}(n,\mathcal{F})=(r-2)(n-1)-\binom{r-2}{2}.$$

Many Thanks!!

Problem (Pikhurko)

For even more problems see paper "Results and Open Problems on Minimum Saturated Hypergraphs", Ars Combin.

Talk and results are available online at: http://community.middlebury.edu/~jschmitt/

・ 同下 ・ ヨト ・ ヨト