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Outline of this talk

1 Sudoku and Shidoku and the minimum number of clues problem
1 Brief facts
2 Redundancy in the rule set

2 Tools from the polynomial method
1 Alon’s Combinatorial Nullstellensatz
2 Schauz’s Coefficient Formula
3 Two quick corollaries to this formula

3 Apply the polynomial method to solve the minimum number of clues
Shidoku problem
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Basic Facts
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Figure : A 17-clue Sudoku puzzle

John Schmitt Approaching the minimum clues Sudoku problem via the polynomial method 3 / 37



Sudoku

Basic Facts

Felgenhauer and Jarvis computed that there are
6,670,903,752,021,072,936,960 completed Sudoku squares (i.e. about
6.671× 1021),

and taking into account symmetries and relabeling, there are
5,427,730,538 (i.e. about 5.428× 109).
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Sudoku

Conjecture

The fewest number of clues in a Sudoku puzzle with a unique completion
is 17.

Gordon Royle has a collection of 49,151 inequivalent Sudoku puzzles with
17 clues, see http://school.maths.uwa.edu.au/∼gordon/sudokumin.php.

On January 1, 2012, G. McGuire, B. Tugemann, G. Civario announced
that they proved the conjecture.

Using case reductions and clever search strategies, they reduced the
exhaustive computer search to...a year-long computation, with 7.1 million
core hours on an SGI Altic ICE 8200EX cluster with 320 nodes, each of
which consisted of two Intel Xeon E5650 hexcore processors with 24GB of
RAM.
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Sudoku

Description of method of McGuire et al.:

1 Make a catalogue of all 5,427,730,538 Sudoku squares.

2 Search within a square for puzzles with 16 clues whose solution is the
given square.

3 Run through the catalogue of all completed squares and apply
program to each square in turn.
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Sudoku The minimum clues Shidoku problem

1 2

1 3
Figure : A 4-clue Shidoku puzzle

There are 288 completed Shidoku squares.
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Sudoku The minimum clues Shidoku problem

Theorem

The fewest number of clues in a Shidoku puzzle with a unique completion
is 4.
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Sudoku The minimum clues Shidoku problem

The Shidoku board and its rule set lead naturally to a graph SUD2, which
has 16 vertices and 56 edges.

John Schmitt Approaching the minimum clues Sudoku problem via the polynomial method 9 / 37



Sudoku The minimum clues Shidoku problem

Figure : The 16-vertex 56-edge Shidoku graph

John Schmitt Approaching the minimum clues Sudoku problem via the polynomial method 10 / 37



Sudoku The minimum clues Shidoku problem

Figure : G1 is a subgraph of SUD2 containing a maximal set of redundant edges

Focus on top chute, i.e. top two rows (or top two boxes).

Fill top chute
with 8 numbers, with values from {1, 2, 3, 4}. Box constraints say there is
exactly one of each in each box, which means two of each in the chute.
Since second row is present, exactly one of each of these is in row 2. This
leaves exactly one of each in row 1. Repeat this argument three times:
bottom chute, left chute and right chute.
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Sudoku The minimum clues Shidoku problem

The eight redundancy graphs with 16 edges

Figure : G1, . . .G8, from left to right, top to bottom

B. Demoen and M.G. de la Banda (2012, 2013)
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Sudoku The minimum clues Shidoku problem

1 2
3
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Sudoku The minimum clues Shidoku problem

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 1 2
x11 x12 x13 3

Assign variables to unfilled cells.

Pick one of G1, . . . ,G8; here, we’ll pick
G7.
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Sudoku The minimum clues Shidoku problem

3

1 2

3

1 2

Figure : L-to-R: G7; and with clues; and more edges deleted

Delete the 19 edges contained in right-most graph from SUD2; obtain a
graph G with 56-19=37 edges.
Write down the graph polynomial fG of the resulting graph:

fG = fG (x1, . . . , x13) ∈ R[x1, . . . , x13].

fG =
(x1−x5)(x1−x9)(x1−x11)(x2−x6) . . . (x3−1) . . . (x4−2)(x4−3) . . . (x13−3)
That is, fG is the product of 37 linear factors, each of which is one of the
following forms: (xa − xb) or (xa − cb), where ca is the ‘color’ of vertex a.
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Sudoku The minimum clues Shidoku problem

fG =
(x1−x5)(x1−x9)(x1−x11)(x2−x6) . . . (x3−1) . . . (x4−2)(x4−3) . . . (x13−3)
When is fG equal to zero?

When any factor is (i.e. when a rule is violated)!
When is fG nonzero? When each factor is nonzero (i.e. when no rule is
violated)!
We seek nonzeros that belong to A1 × · · · × A13, where Ai = {1, 2, 3, 4}
for 1 ≤ i ≤ 13.
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The polynomial method

FUNdamental Theorem of Algebra

You know that a one variable polynomial over a field F can have at most
as many zeros as its degree.

Example: f (x) = x2 − 1 and the set A = {1,−1, 3}.
f (3) 6= 0

Lemma

Let F be an arbitrary field, and let f = f (x) be a polynomial in F[x ].
Suppose the degree of f is t (thus the x t coefficient of f is nonzero).
Then, if A is a subset of F with |A| > t, there is an a ∈ A so that

f (a) 6= 0.
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The polynomial method

Combinatorial Nullstellensatz

Example: f (x1, x2) = (x1 − 1)(x2 − 1) and the set
A1 = {1, 2},A2 = {1, 2}.

f (2, 2) 6= 0.

Theorem

[Combinatorial Nullstellensatz, N. Alon 1999] Let F be an arbitrary field,
and let f = f (x1, . . . , xn) be a polynomial in F[x1, . . . , xn]. Suppose the
degree deg(f ) of f is

∑n
i=1 ti , where each ti is a nonnegative integer, and

suppose the coefficient of
∏n

i=1 x
ti
i in f is nonzero. Then, if A1, . . . ,An are

subsets of F with |Ai | > ti , there are a1 ∈ A1, . . . , an ∈ An so that
f (a1, . . . , an) 6= 0.
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The polynomial method
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The polynomial method

Given a polynomial f ∈ F[x1, . . . , xn], define the support of f , Supp(f ), as
the set of all (α1, . . . , αn) such that the coefficient of xα1

1 . . . xαn
n in f is

nonzero. We say (α1, . . . , αn) ≥ (β1, . . . , βn) if αi ≥ βi for all i ; this gives
us a partial ordering of the elements of Supp(f ).
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The polynomial method

Schauz’s Coefficient Formula

Theorem

[Coefficient Formula, U. Schauz 2008]
Let f be a polynomial in F[x1, . . . , xn] and let fα1,...,αn denote the
coefficient of xα1

1 · · · xαn
n in f . Suppose that there is no greater element

than (α1, . . . , αn) in Supp(f). Then for any sets A1, . . . ,An in F such that
|Ai | = αi + 1 we have

fα1,...,αn =
∑

(a1,...,an)∈A1×···×An

f (a1, . . . , an)

N(a1, . . . , an)
, (1)

where N(a1, . . . , an) =
∏n

i=1

∏
b∈Ai\{ai}(ai − b).
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The polynomial method

Note that this is ‘backwards’ to how we usually think – here we find
coefficients from values, not values from the coefficients.
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The polynomial method

Corollary

[Schauz’s Non-uniqueness Theorem, U. Schauz 2008] If fα1,...,αn = 0, then
either f vanishes over A1 × · · · × An or f has at least two nonzero values
over A1 × · · · × An.

Proof: If f is nonzero for exactly one element
(a1, . . . , an) ∈ A× · · · × An, Equation 1 becomes fα1,...,αn = f (a1,...,an)

N(a1,...,an)
6= 0,

as all other terms in the sum are zero.2
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The polynomial method

Corollary

[U. Schauz 2008] Let F be an arbitrary field, and let f be a polynomial of
degree d in F[x1, . . . , xn]. Then for any subsets A1, . . . ,An of F satisfying∑n

i=1(|Ai | − 1) > d , f either vanishes over A1 × · · · × An or f has at least
two nonzero values over A1 × · · · × An.

Proof: Consider the monomial x
|A1|−1
1 · · · x |An|−1

n in f . This is a
monomial of degree greater than d , so its coefficient is zero. Applying the
Non-uniqueness Theorem the conclusion follows immediately.2
If the degree of the polynomial is small relative to the set we look over,
then there cannot be a unique nonzero value.
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Applying the method

Proof that one needs 4 clues in a Shidoku puzzle:
Only need to consider 3−clue puzzles with 3 distinct labels.

1 2
3

John Schmitt Approaching the minimum clues Sudoku problem via the polynomial method 24 / 37



Applying the method

Proof that one needs 4 clues in a Shidoku puzzle:
Only need to consider 3−clue puzzles with 3 distinct labels.

1 2
3

John Schmitt Approaching the minimum clues Sudoku problem via the polynomial method 24 / 37



Applying the method

Proof that one needs 4 clues in a Shidoku puzzle:
Only need to consider 3−clue puzzles with 3 distinct labels.

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 1 2
x11 x12 x13 3
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Applying the method

3

1 2

3

1 2

Figure : L-to-R: G7; and with clues; and more edges deleted

Consider, fG =
(x1−x5)(x1−x9)(x1−x11)(x2−x6) . . . (x3−1) . . . (x4−2)(x4−3) . . . (x13−3).
Since the degree of fG is small enough, i.e. 13 · 3 > 37, we apply the
second corollary. So, fG either vanishes over A1 × · · · × A13 or fG has at
least two nonzero values over A1 × · · · × A13. That is, we have no
completion or multiple completions!
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Applying the method

We argue similarly when there are three clues in the same box; three in the
same row/column; two in the same box or in the same row/column and
the third in the same column/row as one of the first two. (This case
corresponds to the existence of at least two edges “between” clues that
may be dropped.)
In each instance, we apply an appropriate symmetry of G7. For each
instance, there are at least two edges “between” clues that are not in the
model and may be dropped. We obtain a polynomial with 13 variables and
of degree at most 40− 2 = 38. We apply the second corollary and we are
done.
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Applying the method

There are five cases with three distinct clues with at most one edge
between them, up to isomorphism (and with an accompanying board)
these are:
(1) two clues in the same row/column and box, with third clue in same
chute as first two;

1
2

3
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Applying the method

(2) two clues in the same row/column and box, with third clue in a
different chute to the first two;

1
2

3
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Applying the method

(3) two clues in the same row/column, different box;

1

2
3
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Applying the method

(4) two clues in the same box, different row/column;

1
2

3
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Applying the method

and, (5) no two clues in the same row, column, or box.

1
2

3
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Applying the method

Case (2): we complete the first column uniquely and apply a 90-degree
clockwise-rotation of model G7.

1 x1 x2 x3

2 x4 x5 x6

4 x7 3 x8

3 x9 x10 x11
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Applying the method

3

1

2

4

3

3

1

2

4

3

3

1

2

4

3

Figure : L-to-R: G7 rotated 90-degrees clockwise; and with clues; and more edges
deleted; yet more edges deleted

Delete the 24 edges contained in right-most graph from SUD2; obtain a
graph G with 56-24=32 edges.

Write down the graph polynomial fG of the resulting graph:

fG = fG (x1, . . . , x11) ∈ R[x1, . . . , x11].

Since the degree of fG is small enough, i.e. 11 · 3 > 32, we apply the
second corollary. So, fG either vanishes over A1 × · · · × A11 or fG has at
least two nonzero values over A1 × · · · × A11.
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Applying the method
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Figure : L-to-R: G7 rotated 90-degrees clockwise; and with clues; and more edges
deleted; yet more edges deleted

Delete the 24 edges contained in right-most graph from SUD2; obtain a
graph G with 56-24=32 edges.
Write down the graph polynomial fG of the resulting graph:

fG = fG (x1, . . . , x11) ∈ R[x1, . . . , x11].

Since the degree of fG is small enough, i.e. 11 · 3 > 32, we apply the
second corollary. So, fG either vanishes over A1 × · · · × A11 or fG has at
least two nonzero values over A1 × · · · × A11.
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Applying the method

Case (5): we complete the second row, third column, and upper-right box
uniquely and apply a 180-degree clockwise rotation of model G2. We
delete 16 edges between the known clues, none of which are present in the
model. We now have 8 variables and 40− 16 = 24 edges. As the degree of
fG is 24, we know that there is no greater element than the 8-length
exponent vector of the form (3, 3, . . . , 3) in Supp(f). To show that the
coefficient of the monomial that corresponds to this exponent vector is
zero, we give a visual proof.

2 1
1 2 4 3

3
1
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Applying the method

1 4

1

2 1

3

3

2

3

1

41

12

2 3

3

1

41

1

2

2

3

Figure : From left to right: G2 rotated 180 degrees; and with the labeling; the
built graph; and desired orientations of built graph
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Applying the method

The polynomial method turns combinatorial problems into algebraic ones –
it is often useful in providing lower bounds concerning cardinalities of sets.

Question Might this approach allow for a computational approach that
takes less than a full year of highly parallelized computation?

Thanks!
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