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The degree sequence problem

Problem: Given an integer sequence d = (d1, . . . , dn) determine if
there exists a graph G with d as its sequence of degrees.

If such a G exists then d is said to be graphic, and G is called a
realization.
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An example

Is d = (3, 3, 3, 3, 3, 3) graphic?
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An example

Is d = (3, 3, 3, 3, 3, 3) graphic?

Havel (1955) and Hakimi (1962) gave an algorithm to decide.

(3, 3, 3, 3, 3, 3) → (2, 2, 2, 3, 3) = (3, 3, 2, 2, 2) → (2, 1, 1, 2) =
(2, 2, 1, 1) → (1, 0, 1) = (1, 1, 0) → (0, 0)
As (0, 0) is graphic, so is the given.
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An example

Is d = (3, 3, 3, 3, 3, 3) graphic?

Havel (1955) and Hakimi (1962) gave an algorithm to decide.

(3, 3, 3, 3, 3, 3) → (2, 2, 2, 3, 3) = (3, 3, 2, 2, 2) → (2, 1, 1, 2) =
(2, 2, 1, 1) → (1, 0, 1) = (1, 1, 0) → (0, 0)
As (0, 0) is graphic, so is the given.

To construct a realization, work backwards using simple edge
augmentations.
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Erdős-Gallai criterion

Theorem
[Erdős, Gallai (1960)]
A nonincreasing sequence of nonnegative integers d = (d1, . . . , dn)
(n ≥ 2) is graphic if, and only if,

∑n
i=1 di is even and for each

integer k, 1 ≤ k ≤ n − 1,

k
∑

i=1

di ≤ k(k − 1) +

n
∑

i=k+1

min{k, di}.
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Erdős-Gallai criterion

Theorem
[Erdős, Gallai (1960)]
A nonincreasing sequence of nonnegative integers d = (d1, . . . , dn)
(n ≥ 2) is graphic if, and only if,

∑n
i=1 di is even and for each

integer k, 1 ≤ k ≤ n − 1,

k
∑

i=1

di ≤ k(k − 1) +

n
∑

i=k+1

min{k, di}.

The degrees of the first k vertices are “absorbed” within k-subset
and the degrees of remaining vertices. A necessary condition which
is also sufficient!
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Theorem (Erdős, Gallai)

For a graphic d,
∑n

i=1 di ≥ 2(n − 1) if and only if there exists a
connected G realizing d.
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Theorem (Erdős, Gallai)

For a graphic d,
∑n

i=1 di ≥ 2(n − 1) if and only if there exists a
connected G realizing d.

Proof: (Sufficiency) If there exists a connected realization then G
contains a spanning tree. Thus G has n − 1 edges and so
∑n

i=1 di ≥ 2(n − 1).
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Theorem (Erdős, Gallai)

For a graphic d,
∑n

i=1 di ≥ 2(n − 1) if and only if there exists a
connected G realizing d.

Proof: (Sufficiency) If there exists a connected realization then G
contains a spanning tree. Thus G has n − 1 edges and so
∑n

i=1 di ≥ 2(n − 1).

(Necessity) Pick the realization of d with the fewest number of
components. If this number is 1, then we are done. Otherwise one
of the components contains a cycle. Performing a simple
edge-exchange allows us to move to a realization with fewer
components.�
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For a subgraph F , d is said to be potentially F -graphic if there
exists a realization of d containing F .

John Schmitt Generalizing the degree sequence problem



The degree sequence problem
Degree sequences with realizations containing F

Our Conjecture
Degree sequences and matrices

For a subgraph F , d is said to be potentially F -graphic if there
exists a realization of d containing F .

(2, 2, 2, 2, 2, 2) is potentially K 3-graphic.
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For a subgraph F , d is said to be potentially F -graphic if there
exists a realization of d containing F .
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For a subgraph F , d is said to be potentially F -graphic if there
exists a realization of d containing F .

(2, 2, 2, 2, 2, 2) is potentially K 3-graphic.
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Problem
Given a subgraph F , determine the least even integer m s.t.
Σdi ≥ m ⇒ d is potentially F -graphic.

Denote m by σ(F , n).
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Erdős, Jacobson, Lehel Conjecture

Conjecture

(EJL - 1991) For n sufficiently large,
σ(K t , n) = (t − 2)(2n − t + 1) + 2.

Lower bound arises from considering:

+

Kt�2 Kn�t+2+
d = ((n − 1)t−2, (t − 2)n−t+2)
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Erdős, Jacobson, Lehel Conjecture

Conjecture settled:

◮ t = 3 Erdős, Jacobson, & Lehel(1991),

◮ t = 4 Gould, Jacobson, & Lehel(1999), Li & Song(1998),

◮ t = 5 Li & Song(1998),

◮ t ≥ 6 Li, Song, & Luo(1998)

◮ t ≥ 3 S.(2005), Ferrara, Gould, S. (2009+) - purely
graph-theoretic proof.

Theorem
For n sufficiently large, σ(K t , n) = (t − 2)(2n − t + 1) + 2.
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Sketch of our proof

◮ Uses induction on t.

◮ Erdős-Gallai guarantees enough vertices of high degree.

◮ Uses notion of an edge-exhange.

◮ Edge-exchange allows us to place desired subgraph on vertices
of highest degree and “build” K t from smaller clique
guaranteed by inductive hypothesis.
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Extending the EJL-conjecture to an arbitrary graph F

Let F be a forbidden subgraph.
Let α(F ) denote the independence number of F and define:

u := u(F ) = |V (F )| − α(F ) − 1,

and

s := s(F ) = min{∆(H) : H ⊂ F , |H| = α(F ) + 1}.

Consider the following sequence,

π(F , n) = ((n − 1)u, (u + s − 1)n−u).
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A General Lower Bound

If F ′ is a subgraph of F then σ(F ′, n) ≤ σ(F , n) for every n. Let
σ(π) denote the sum of the terms of π.

Proposition (Ferrara, S. - 09)

Given a graph F and n sufficiently large then,

σ(F , n) ≥ max{σ(π(F ′, n)) + 2|F ′ ⊆ F} (1)

= max{n(2u(F ′) + s(F ′) − 1)|F ′ ⊆ F} (2)
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Proof of Lower Bound

Proof: Let F ′ ⊆ F be the subgraph which achieves the max.
Consider,

K
 u(F’)

An s(F’)−regular graph
on n−u(F’) vertices.

+

+

u(F ′) = |V (F ′)| − α(F ′) − 1
s(F ′) = min{∆(H) : H ⊂ F ′, |H| = α(F ′) + 1}
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A Stronger Lower Bound

Let vi(H) be the number of vertices of degree i in H. Let Mi(H)
denote the set of induced subgraphs on α + 1 vertices with
vi (H) > 0.

For all i , s ≤ i ≤ α − 1 define:

mi = minMi (H){vertices of degree at least i}

ns = ms − 1 and ni = min{mi − 1, ni−1}

Finally, set δα−1 = nα−1 and for all i , s ≤ i ≤ α − 2 define
δi = ni − ni+1 and

π∗(F , n) = ((n − 1)u, (u + α − 1)δα−1 , (u + α − 2)δα−2 , . . .

(u + s)δs , (u + s − 1)n−u−Σδi ).
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An Example

Let F = K6,6.

Then u(K6,6) = 12 − 6 − 1 = 5 and s(K6,6) = 4.

m4 = 3 and m5 = 2

n4 = m4 − 1 = 2 and n5 = min{m5 − 1, n4} = 1

δ5 = n5 = 1 and δ4 = n5 − n4 = 1

Thus,

π∗(K6,6, n) = ((n − 1)5, 10, 9, 8n−7)
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A Stronger Lower Bound

Theorem (Ferrara, S. - 09)

Given a graph F and n sufficiently large then,

σ(F , n) ≥ max{σ(π∗(F ′, n)) + 2|F ′ ⊆ F}
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When Does Equality Hold?

◮ cliques

◮ complete bipartite graphs Chen, Li, Yin ’04; Gould, Jacobson,

Lehel ’99; Li, Yin ’02

◮ complete multipartite graphs Chen, Yin ’08; G. Chen, Ferrara,

Gould, S. ’08; Ferrara, Gould, S. ’08

◮ matchings Gould, Jacobson, Lehel ’99

◮ cycles Lai ’04

◮ (generalized) friendship graph Ferrara, Gould, S. ’06, (Chen,

S., Yin ’08)

◮ clique minus an edge Lai ’01; Li, Mao, Yin ’05

◮ disjoint union of cliques Ferrara ’08
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Our Conjecture

Conjecture

Given a graph F and n sufficiently large then,

σ(F , n) = max{σ(π∗(F ′, n)) + 2|F ′ ⊆ F}

Conjecture

(weaker version) Given a graph F , let ǫ > 0. Then there exists an
n0 = n0(ǫ,F ) such that for any n > n0

σ(F , n) ≤ max{(n(2u(F ′) + d(F ′) − 1 + ǫ)|F ′ ⊆ F}.
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Our Conjecture

Conjecture

Given a graph F and n sufficiently large then,

σ(F , n) = max{σ(π∗(F ′, n)) + 2|F ′ ⊆ F}

Conjecture

(weaker version) Given a graph F , let ǫ > 0. Then there exists an
n0 = n0(ǫ,F ) such that for any n > n0

σ(F , n) ≤ max{(n(2u(F ′) + d(F ′) − 1 + ǫ)|F ′ ⊆ F}.

Conjecture (strong form) holds for graphs with independence
number 2 (Ferrara, S. - ’09)

John Schmitt Generalizing the degree sequence problem



The degree sequence problem
Degree sequences with realizations containing F

Our Conjecture
Degree sequences and matrices

An example of the generalized problem

Is the following graphic?

< V,d,D >=< {V1,V2}, (5
4, 38),

[

6 8
8 8

]

>
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An example of the generalized problem

Is the following graphic?

< V,d,D >=< {V1,V2}, (5
4, 38),

[

6 8
8 8

]

>

V
2

V1
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Let d = (dv1
1 , dv2

2 , . . . , dvk

k
) where vi = |Vi | and so Vi is the set of

vertices of degree di . Let V = {V1, . . . ,Vk}. Let D = (dij ) be a
k × k matrix, with dij denoting the number of edges between Vi

and Vj ; dii is the number of edges contained entirely within Vi .
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Let d = (dv1
1 , dv2

2 , . . . , dvk

k
) where vi = |Vi | and so Vi is the set of

vertices of degree di . Let V = {V1, . . . ,Vk}. Let D = (dij ) be a
k × k matrix, with dij denoting the number of edges between Vi

and Vj ; dii is the number of edges contained entirely within Vi .

Joint degree-matrix graphic realization problem
Given < V,d,D >, decide whether a simple graph G exists such
that, for all i , each vertex in Vi has degree di , and, for i 6= j , there
are exactly dij edges between Vi and Vj , while, for all i , there are
exactly dii edges contained in Vi .
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Amanatidis, Green and Mihail (AGM) have shown that the
following natural necessary conditions for a realization to exist are
also sufficient. The conditions are:

Degree feasibility: 2dii + Σj∈[k],j 6=idij = vidi , for all 1 ≤ i ≤ k, and

Matrix feasibility: D is a symmetric matrix with non-negative
integral entries, dij ≤ vivj , for all 1 ≤ i ≤ k, and dii ≤

(

vi

2

)

, for all
1 ≤ i ≤ k.
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AGM’s algorithmic proof

Algorithm rests on a balanced degree invariant. It starts with the
empty graph and adds one edge at a time while keeping the
difference between any two vertex degrees in a given Vi to at most
1.
While there exists some i , j such that dij is not satisfied the
algorithm adds an edge between Vi and Vj .
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AGM algorithm

j

p
G

V
i

V
j

M
 i

N
i

M
 j

N
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AGM algorithm

v

pG

V
i

V
j

M
 i

N
i

M
 j

N
j

u
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AGM algorithm

G p+1

vu

j
N

 j
M

i
N

 i
M

j
V

i
V
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AGM algorithm

x may equal y

p+1

vu

j
N

 j
M

i
N

 i
M

j
V

i
V

G

x y
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AGM algorithm

G p

vu

i
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 i
M
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v

p+1G

V
i

M
 i

N
i

u

John Schmitt Generalizing the degree sequence problem



The degree sequence problem
Degree sequences with realizations containing F

Our Conjecture
Degree sequences and matrices

AGM algorithm
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AGM algorithm

i

p+1

|=1iIf |N

v
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 i
M

i
V

G

N
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AGM algorithm

G p

i
If |N | > 1

v
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i

N

 i
M

i
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AGM algorithm

V
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AGM algorithm

v
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If |N |>1
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Theorem (Joint Degree-Matrix Realization Theorem - AGM)

Given < V,d,D >, if degree and matrix feasibility hold, then a
graph G exists that realizes < V,d,D >. Furthermore, such a
graph can be constructed in time polynomial in n.
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Can one prove our conjectures using the Joint Degree-Matrix
Theorem?
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Can we prove our conjectures using the AGM-result?

Is d = (106, 48) potentially K 6-graphic?
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Can we prove our conjectures using the AGM-result?

Is d = (106, 48) potentially K 6-graphic? If a realization of d exists
that contains a copy of K6, then, it is known, a realization exists in
which the copy of K 6 lies on the vertices of highest degree.
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Can we prove our conjectures using the AGM-result?

Is d = (106, 48) potentially K 6-graphic? If a realization of d exists
that contains a copy of K6, then, it is known, a realization exists in
which the copy of K 6 lies on the vertices of highest degree. So, by
Theorem of AGM, we must simply construct a D for which degree
and matrix feasibility hold and for which, in this example,
d11 =

(

6
2

)

= 15.
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Can we prove our conjectures using the AGM-result?

Is d = (106, 48) potentially K 6-graphic? If a realization of d exists
that contains a copy of K6, then, it is known, a realization exists in
which the copy of K 6 lies on the vertices of highest degree. So, by
Theorem of AGM, we must simply construct a D for which degree
and matrix feasibility hold and for which, in this example,
d11 =

(

6
2

)

= 15.
The value of d11 forces, by degree feasibility, d12 = d21 = 30. In
turn, by degree feasibility again, we get d22 = 1. It is now easy to
check that matrix feasibility holds. Thus, d has a realization
containing a copy of K 6.
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Summary

◮ Proved the EJL-conjecture

◮ Generalized the EJL-conjecture and proved a specific case

◮ Joint Degree-Matrix Theorem appears to be a useful tool.

◮ Can we use it to prove the generalized EJL-conjecture?
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Summary

◮ Proved the EJL-conjecture

◮ Generalized the EJL-conjecture and proved a specific case

◮ Joint Degree-Matrix Theorem appears to be a useful tool.

◮ Can we use it to prove the generalized EJL-conjecture?

Thank you!
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