How to beat your friends at the dots-and-boxes game!

John Schmitt
Middlebury College

Governor’s Institute in Mathematical Sciences
June 26, 2008
Combinatorial Games

Combinatorial games:

- are two-player games with alternating play and play continues until player whose turn it is to move has no legal move,
Combinatorial Games

Combinatorial games:

- are two-player games with alternating play and play continues until player whose turn it is to move has no legal move,
- have no chance involved (no dice, no spinners and no card deals),
Combinatorial Games

Combinatorial games:

- are two-player games with alternating play and play continues until player whose turn it is to move has no legal move,
- have no chance involved (no dice, no spinners and no card deals),
- and have no hidden information.
Combinatorial Games

Combinatorial games:

- are two-player games with alternating play and play continues until player whose turn it is to move has no legal move,
- have no chance involved (no dice, no spinners and no card deals),
- and have no hidden information.

Outcome is restricted to win-loss, tie-tie or draw-draw.
Combinatorial Games

Combinatorial games:

► are two-player games with alternating play and play continues until player whose turn it is to move has no legal move,
► have no chance involved (no dice, no spinners and no card deals),
► and have no hidden information.

Outcome is restricted to win-loss, tie-tie or draw-draw.

Examples: Go, Chess, Checkers, Tic-tac-toe, Brussel Sprouts, Clobber, Domineering, Hex, Nim, Snort and DOTS-AND-BOXES.
Combinatorial Games

Combinatorial games:

- are two-player games with alternating play and play continues until player whose turn it is to move has no legal move,
- have no chance involved (no dice, no spinners and no card deals),
- and have no hidden information.

Outcome is restricted to win-loss, tie-tie or draw-draw.

Examples: Go, Chess, Checkers, Tic-tac-toe, Brussel Sprouts, Clobber, Domineering, Hex, Nim, Snort and **DOTS-AND-BOXES**.

Not: Backgammon (has dice), Poker (has card deal), Stratego (has hidden information), Monopoly (has dice and > 2 players sometimes)
Dots-and-boxes - how to play

- Played on a rectangular grid with m rows, each containing n dots.
- A move consists of drawing a horizontal or vertical line connecting two dots.
- Upon completing a box, a player ‘claims’ it and moves again.
- Play ends when all possible lines are drawn.
- The winner is the person who has claimed the most boxes. If both players have the same number of boxes, then it is a tie.
Let’s play!

The 9-box game (4 × 4-game).

● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
Let’s play from here (49 moves and turns played) - player A plays odd numbered turns, player B plays even turns:
Let’s play from here (49 moves and turns played) - player A plays odd numbered turns, player B plays even turns:

What is the **greedy** approach?
Let's play from here (49 moves and turns played) - player A plays odd numbered turns, player B plays even turns:

Don’t take the greedy approach! Let’s make double-dealing moves. Your opponent will be double-crossed (forced to take two boxes with one pen-stroke).
How to beat your friends at the dots-and-boxes game!
How to beat your friends at the dots-and-boxes game!

Chain
How to beat your friends at the dots-and-boxes game!
How to beat your friends at the dots-and-boxes game!
Strategy

- Make sure there are long chains about and try to force your opponent to be first to ‘open’ one.
Strategy

- Make sure there are long chains about and try to force your opponent to be first to ‘open’ one.
- If you can force your opponent to ‘open’ a long chain, you have control...try to GET CONTROL, man!
Strategy

- Make sure there are long chains about and try to force your opponent to be first to ‘open’ one.
- If you can force your opponent to ‘open’ a long chain, you have control...try to GET CONTROL, man!
- Once you have control, KEEP CONTROL, dude, by (politely) declining 2 boxes of every long chain except the last. (So, you will be last to play.)
To get control

Player A tries to make \# of initial dots + \#double-crossed moves odd.
Player B tries to make \# of initial dots + \#double-crossed moves even.
To get control

Player A tries to make \# of initial dots + \#double-crossed moves odd.
Player B tries to make \# of initial dots + \#double-crossed moves even.
Generally, \# of double-crosses is one less than the \# of long chains.
To get control

Player A tries to make $\#$ of initial dots + $\#$ double-crossed moves odd.
Player B tries to make $\#$ of initial dots + $\#$ double-crossed moves even.
Generally, $\#$ of double-crosses is one less than the $\#$ of long chains.
LONG CHAIN RULE Try to make $\#$ of initial dots + $\#$ eventual long chains even if you are A, odd if you are B.
To get control

Player A tries to make \# of initial dots + \# double-crossed moves odd.
Player B tries to make \# of initial dots + \# double-crossed moves even.
Generally, \# of double-crosses is one less than the \# of long chains.

LONG CHAIN RULE Try to make \# of initial dots + \# eventual long chains even if you are A, odd if you are B.

WHY? \# of initial dots + \# of double-crosses = total \# of turns in game.
Proof of Long Chain Rule

Game board has m rows with n dots each.
Proof of Long Chain Rule

Game board has m rows with n dots each.

of dots = mn.
Proof of Long Chain Rule

Game board has m rows with n dots each.
\# of dots = mn.
\# of horizontal moves = $m(n - 1) = mn - m$.
Proof of Long Chain Rule

Game board has m rows with n dots each.

- # of dots $= mn$.
- # of horizontal moves $= m(n - 1) = mn - m$.
- # of vertical moves $= n(m - 1) = mn - n$.
Proof of Long Chain Rule

Game board has m rows with n dots each.

of dots = mn.

of horizontal moves = $m(n - 1) = mn - m$.

of vertical moves = $n(m - 1) = mn - n$.

of moves = # vertical + # horizontal = $2mn - m - n$.
Game board has m rows with n dots each.

of dots = mn.

of horizontal moves = $m(n - 1) = mn - m$.

of vertical moves = $n(m - 1) = mn - n$.

of moves = # vertical + # horizontal = $2mn - m - n$.

of boxes = $(m - 1)(n - 1) = mn - m - n + 1$.
Proof of Long Chain Rule

Game board has m rows with n dots each.

- # of dots = mn.
- # of horizontal moves = $m(n - 1) = mn - m$.
- # of vertical moves = $n(m - 1) = mn - n$.
- # of moves = # vertical + # horizontal = $2mn - m - n$.
- # of boxes = $(m - 1)(n - 1) = mn - m - n + 1$.
- # moves - # of boxes = $mn - 1$.

John Schmitt Middlebury College

How to beat your friends at the dots-and-boxes game!
Game board has m rows with n dots each.

- \# of dots = mn.
- \# of horizontal moves = $m(n - 1) = mn - m$.
- \# of vertical moves = $n(m - 1) = mn - n$.
- \# of moves = \# vertical + \# horizontal = $2mn - m - n$.
- \# of boxes = $(m - 1)(n - 1) = mn - m - n + 1$.
- \# moves − \# of boxes = $mn - 1$.
- \# of completed turns = \# of moves − \# of boxes + \# of double-crosses.
Proof of Long Chain Rule

Game board has m rows with n dots each.

of dots = mn.

of horizontal moves = $m(n - 1) = mn - m$.

of vertical moves = $n(m - 1) = mn - n$.

of moves = # vertical + # horizontal = $2mn - m - n$.

of boxes = $(m - 1)(n - 1) = mn - m - n + 1$.

moves - # of boxes = $mn - 1$.

of completed turns = # of moves - # of boxes + # of double-crosses.

of completed turns = $mn - 1 + # of double-crosses = # of dots - 1 + # of double-crosses$.
Game board has m rows with n dots each.

- # of dots = mn.
- # of horizontal moves = $m(n - 1) = mn - m$.
- # of vertical moves = $n(m - 1) = mn - n$.
- # of moves = # of vertical + # of horizontal = $2mn - m - n$.
- # of boxes = $(m - 1)(n - 1) = mn - m - n + 1$.
- # of completed turns = # of moves - # of boxes + # of double-crosses.

- # of completed turns = $mn - 1 + $ # of double-crosses = # of dots -1 + # of double-crosses.

Last move of game must complete a box, so final turn is incomplete. Adding this turn to total:
Game board has m rows with n dots each.

of dots = mn.
of horizontal moves = $m(n-1) = mn - m$.
of vertical moves = $n(m-1) = mn - n$.
of moves = # vertical + # horizontal = $2mn - m - n$.
of boxes = $(m-1)(n-1) = mn - m - n + 1$.
moves -# of boxes = $mn - 1$.
of completed turns = # of moves -# of boxes +# of double-crosses.
of completed turns = $mn - 1 +$ # of double-crosses $=$ # of dots -1 + # of double-crosses.

Last move of game must complete a box, so final turn is incomplete. Adding this turn to total:
of turns = # of dots +# of double-crosses.
Chain Counting Problems - Puzzle 1

How to beat your friends at the dots-and-boxes game!
10 moves made, so it is A’s turn.
10 moves made, so it is A’s turn. # dots is 16, an even number.
10 moves made, so it is A’s turn. \# dots is 16, an even number. By the long chain rule, A wants an even number of long chains.
The dashed line indicates best move. It ensures 2 chains.
Chain Counting Problems

How to beat your friends at the dots-and-boxes game!
How to beat your friends at the dots-and-boxes game!
Chain Counting Problems

How to beat your friends at the dots-and-boxes game!

Slides available from my homepage:
http://community.middlebury.edu/~jschmitt/.