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Definition
A graph G is F -saturated if

F 6⊂ G and

F ⊂ G + e for any e ∈ E (G ).
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The father of Extremal Graph Theory

Paul Turán

Turán’s Theorem, 1941 Among the Kt-saturated graphs on n
vertices, the graph Kn1,n2,...,nt−1 , where the ni are as balanced as
possible, has the maximum number of edges.
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Erdős-Stone-Simonovits Theorem

Theorem Given a graph F with chromatic number χ(F ) at least
three, F -saturated graphs on n vertices can have at most

(
χ(F )− 2

χ(F )− 1
+ o(1))

(
n

2

)
edges.
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Problem
Determine the minimum number of edges in an n-vertex
F -saturated graph. We denote this number by sat(n,F ).
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Theorem (Erdős, Hajnal, Moon - 1964)

sat(n,Kt) = (t − 2)(n − 1)−
(

t − 2

2

)
.

Furthermore, the only Kt-saturated graph with this many edges is
Kt−2 + Kn−t+2.
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sat(n,Kt) = (t − 2)(n − 1)−
(

t − 2

2

)
.
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Theorem (Ollmann - ’72, Tuza - ’86)

sat(n,C4) = b3n − 5

2
c, n ≥ 5.
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Theorem (Fisher, Fraughnaugh, Langley - ’97)

sat(n,P3 − connected) = b3n − 5

2
c.

Theorem

sat(n,C5) = d10n − 10

7
e, n 6= 21.

Fisher, Fraughnaugh, Langley, -’95 gave the upper bound.
Y.C.Chen - ’09 gave(!) the lower bound.

Problem (FFL)

Determine sat(n,P4 − connected).
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Hamiltonian Cycles

Theorem

sat(n,Cn) = b3n + 1

2
c, n ≥ 53.

Bondy (’72) showed the lower bound. Clark, Entringer, Crane and
Shapiro (’83-’86) gave upper bound based on Isaacs’ flower snarks
(girth 5, 6). L. Stacho (’96) gave further constructions based on
the Coxeter graph (girth 7).

Problem (Horák, Širáň -’86)

Is there a maximally non-hamiltonian graph of girth at least 8?
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Our Result and Logic of Construction
 Luczak Wheel
Cycle Summary

I Conjecture (Bollobás - ’78)

There exist constants, c1, c2, such that

n + c1
n

l
≤ sat(n,Cl) ≤ n + c2

n

l
.

I Theorem (Barefoot, Clark, Entringer, Porter, Székely, Tuza -
’96)

(1 +
1

2l + 8
)n ≤ sat(n,Cl)

John Schmitt A dual to the Turán problem
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Theorem (Barefoot et al. - ’96)

sat(n,Cl) ≤ (1 + 6
l−3 )n + O(l2) for l odd, l ≥ 9

sat(n,Cl) ≤ (1 + 4
l−2 )n + O(l3) for l even, l ≥ 14
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Theorem (Barefoot et al. - ’96)

[Gould,  Luczak, S. -’06]

sat(n,Cl) ≤ (1 + 1
3

6
l−3 )n + 5l2

4 for l odd, l ≥ 9, l ≥ 17, n ≥ 7l

sat(n,Cl) ≤ (1 + 1
2

4
l−2 )n + 5l2

4 for l even l ≥ 14, l ≥ 10, n ≥ 3l

Theorem
[Gould,  Luczak, S. -’06] For l = 8, 9, 11, 13 or 15 and n ≥ 2l

sat(n,Cl) < d3n

2
e+

l2

2

John Schmitt A dual to the Turán problem
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The Even  Luczak Wheel, l = 2k + 2 ≥ 10

Spoke-nut
Flange

Spoke
Hub

ni;�ri;1
ni+1;�ri;k�1

Rim ri;2
h�h�

f�
Kk
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Counting Edges of the  Luczak Wheel

For l = 2k + 2 and n ≡ a mod k ,

|E (L−Wheel)| =

Rim︷ ︸︸ ︷
(n − k − a) +

Spokes︷ ︸︸ ︷
n − k − a

k
+

Flange︷︸︸︷
a +

Hub︷︸︸︷(
k

2

)
.

Theorem
[GLS] For k ≥ 4, l = 2k + 2, n ≡ a mod k and n ≥ 3l ,

sat(n,Cl) ≤ n(1 +
1

k
) +

k2 − 3k − 2

2
− a

k

≤ n(1 +
2

l − 2
) +

5l2

4
.

John Schmitt A dual to the Turán problem
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The Odd  Luczak Wheel, l = 2k + 3 ≥ 17

Spoke-nutSpoke
Hub

ni;�ri;1
ni+1;�ri;k�1

Rim ri;2f�
Kk�3 +K4

Flangeh�h�
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Cl -saturated graphs of minimum size

l sat(n,Cl) n ≥ Reference

3 = n − 1 3 EHM

4 = b3n−5
2 c 5 Ollmann; Tuza

5 = d10n−10
7 e 21 FFL; Chen

6 ≤ 3n
2 11 Barefoot et al.

7 ≤ 7n+12
5 10 Barefoot et al.

8,9,11,13,15 ≤ 3n
2 + l2

2 2l GLS

≥ 10 and ≡ 0 mod 2 ≤
(
1 + 2

l−2

)
n + 5l2

4 3l  Luczak wheel

≥ 17 and ≡ 1 mod 2 ≤
(
1 + 2

l−3

)
n + 5l2

4 7l  Luczak wheel

n b3n+1
2 c 20 Bondy; CE, CES
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Problem (Barefoot et al. - ’96)

Determine the value of l which minimizes sat(n,Cl) for fixed n.

Problem
Are any of these constructions optimal? Can one improve the
lower bound?

John Schmitt A dual to the Turán problem
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Bipartite graphs

Other Subgraphs

Other values of sat(n,F ) known for:

I matchings (Mader - ’73),

I stars and paths (Kászonyi and Tuza - ’86),

I hamiltonian path, Pn (Frick and Singleton, 05; Dudek,
Katona, Wojda - ’06)

I longest path = detour(Beineke, Dunbar, Frick, ’05)

I disjoint cliques of the same order(Faudree, Gould,
Jacobson, Ferrara - ’08)

John Schmitt A dual to the Turán problem
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Bipartite graphs

Difficulties and Hereditary Properties Lacking

Quote from Erdős, Hajnal and Moon:
“One of the difficulties of proving these conjectures may be that
the obvious extremal graphs are certainly not unique, which fact
may make an induction proof difficult.”

I sat(n,F ) 6≤ sat(n + 1,F )

I F1 ⊂ F2 6⇒ sat(n,F1) ≥ sat(n,F2)

I F ′ ⊂ F 6⇒ sat(n,F ′) ≤ sat(n,F )

I sat(2k − 1,P4) = k + 1 and sat(2k ,P4) = k

I sat(n, {P5,S4}) = n − 1 > sat(n,P5)

I sat(n,K4) = 2n − 3 but sat(n,K5 − S3) ≤ 3
2 n

John Schmitt A dual to the Turán problem
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Bipartite graphs

Best known upper bound

Theorem (Kászonyi and Tuza - ’86 )

Let F be a graph. Set

u = |V (F )| − α(F )− 1

s = min{e(F ′) : F ′ ⊆ F , α(F ′) = α(F ), |V (F ′)| = α(F ) + 1}.

Then

sat(n,F ) ≤ (u +
s − 1

2
)n − u(s + u)

2
.

They considered a clique on u vertices joined to an (s − 1)-regular
graph.

John Schmitt A dual to the Turán problem
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Bipartite graphs

Best Known Lower Bound

????

Problem
For an arbitrary graph F , determine a non-trivial lower bound on
sat(n,F ).
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Bipartite graphs

Let sat(n,F , δ) equal minimum number of edges in a graph on n
vertices and minimum degree δ that is F -saturated.

Theorem (Duffus, Hanson - ’86)

sat(n,K3, 2) = 2n − 5, n ≥ 5.

sat(n,K3, 3) = 3n − 15, n ≥ 10.

Problem (Bollobás - ’95)

Is it true that for every fixed δ ≥ 1 one has
sat(n,K3, δ) = δn − O(1)?

John Schmitt A dual to the Turán problem



Introduction
Cycles

Paths, Bipartite Graphs and General Bound
A final problem

Bipartite graphs

Theorem (Gould, S. - ’07)

For integers t ≥ 3, n ≥ 4t − 4,

sat(n,Kt(2)) ≤ sat(n,Kt(2), 2t − 3) = d(4t − 5)n − 4t2 + 6t − 1

2
e.

Problem
Given a fixed graph F , for n sufficiently large determine if the
function sat(n,F , δ) is monotonically increasing in δ.

John Schmitt A dual to the Turán problem
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Bipartite graphs

Theorem (Pikhurko, S. - ’08)

There is a constant C such that for all n ≥ 5 we have

2n − Cn3/4 ≤ sat(n,K2,3) ≤ 2n − 3.
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Bipartite graphs

Proof of Lower Bound

Let G be a K2,3-saturated graph.

If δ(G ) ≥ 4, then |E (G )| ≥ 2n
and we are done. If δ(G ) = 1 then,
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Proof of Lower Bound

If δ(G ) = 1 then,

and so |E (G )| ≥ 2n − 3.
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Proof of Lower Bound

Otherwise, 2 ≤ δ(G ) ≤ 3, pick vertex of minimum degree and
consider breadth-first search tree.

1

V

V

V

3

2

Tree has n − 1 edges, we must find n − Cn3/4 more edges.
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Divide and Conquer

1

2
1

0
Y Y Y

V

V

V

3
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Hit ’em where they’re weakest

1

2
1

0
Y Y Y

V

V

V

3

2

Y0 has at most one component which is a tree. Pick up an extra
V3 − 1 edges.
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More Division and More Conquering

0

V

V

V

3

2

1

XXX
2

1

Pick up extra V2 −#(trees in X0) edges.
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0
1

2
X X X

1

2

3

V
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More Hitting Weak Spots

V

0
1

2
X X X

1

2

3

V

V

Trees in X0 are connected via a path of length at most three
through V3.
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More Hitting Weak Spots

0

large degree vertices
small degree vertices

V

V

V

3

2

1

XXX 21

Small degree vertices can only “serve” so many trees of X0. So,
sum of large degree vertices is large.

This allows us to add
#(trees in X0)− O(n3/4) edges to the count. Completes proof.
�
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Recently, Bohman, Fonoberova and Pikhurko have announced the
determination of sat(n,Ks1,s2,...,sr ).

sat(n,Ks1,s2,...,sr ) = (s1 + s2 + . . .+ sr−1 − 1 +
sr − 1

2
+ o(1))n,

where s1 ≤ s2 ≤ . . . ≤ sr .
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And Ramsey Numbers

F → (F1, . . . ,Ft) if any t coloring of E (F ) contains a
monochromatic Fi -subgraph of color i for some i ∈ [t].

Conjecture (Hanson and Toft, ’87)

Given t ≥ 2 and numbers mi ≥ 3, i ∈ [t], let

F = {F : F → (Km1 , . . . ,Kmt )}.

Let r = r(Km1 , . . . ,Kmt ) be the classical Ramsey number. Then

sat(n,F) = (r − 2)(n − 1)−
(

r − 2

2

)
.
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Many Thanks!!

Talk and results are available online at:
http://community.middlebury.edu/∼jschmitt/
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