A dual to the Turán problem

John Schmitt

Middlebury College
joint work with
Ron Gould (Emory University)
Tomasz Łuczak (Adam Mickiewicz University and Emory University)
Oleg Pikhurko (Carnegie Mellon University)

June 2009
Discrete Mathematics Days of Northeast
John Schmitt

A dual to the Turán problem
A dual to the Turán problem
A dual to the Turán problem
John Schmitt

A dual to the Turán problem
Cycles
Paths, Bipartite Graphs and General Bound
A final problem

Definitions
History

John Schmitt
A dual to the Turán problem
A dual to the Turán problem
Cycles
Paths, Bipartite Graphs and General Bound
A final problem

 Definitions
History

John Schmitt
A dual to the Turán problem
John Schmitt

A dual to the Turán problem
A dual to the Turán problem
John Schmitt

A dual to the Turán problem
Introduction
Cycles
Paths, Bipartite Graphs and General Bound
A final problem

John Schmitt
A dual to the Turán problem
John Schmitt

A dual to the Turán problem
Definition
A graph \(G \) is \(F \)-saturated if

\[
F \not\subset G \quad \text{and} \quad F \subset G + e \quad \text{for any } e \in E(\overline{G}).
\]
The father of Extremal Graph Theory

Paul Turán

Turán’s Theorem, 1941 Among the K_t-saturated graphs on n vertices, the graph $K_{n_1,n_2,...,n_{t-1}}$, where the n_i are as balanced as possible, has the maximum number of edges.
Theorem Given a graph F with chromatic number $\chi(F)$ at least three, F-saturated graphs on n vertices can have at most

$$\left(\frac{\chi(F) - 2}{\chi(F) - 1} + o(1) \right)\left(\begin{array}{c} n \\ 2 \end{array}\right)$$

edges.
Problem

Determine the *minimum number* of edges in an n-vertex F-saturated graph. We denote this number by $\text{sat}(n,F)$.
Theorem (Erdős, Hajnal, Moon - 1964)

\[\text{sat}(n, K_t) = (t - 2)(n - 1) - \binom{t - 2}{2}. \]

Furthermore, the only \(K_t \)-saturated graph with this many edges is \(K_{t-2} + \overline{K}_{n-t+2} \).
Theorem (Erdős, Hajnal, Moon - 1964)

$$\text{sat}(n, K_t) = (t - 2)(n - 1) - \binom{t - 2}{2}.$$

Furthermore, the only K_t-saturated graph with this many edges is $K_{t-2} + \overline{K}_{n-t+2}$.
Theorem (Erdős, Hajnal, Moon - 1964)

\[\text{sat}(n, K_t) = (t - 2)(n - 1) - \binom{t - 2}{2}. \]

Furthermore, the only \(K_t\)-saturated graph with this many edges is \(K_{t-2} + \bar{K}_{n-t+2}\).

A dual to the Turán problem
Theorem (Ollmann - ’72, Tuza - ’86)

\[\text{sat}(n, C_4) = \left\lfloor \frac{3n - 5}{2} \right\rfloor, \quad n \geq 5. \]
Theorem (Ollmann - '72, Tuza - '86)

$$\text{sat}(n, C_4) = \left\lfloor \frac{3n - 5}{2} \right\rfloor, \quad n \geq 5$$
Theorem (Ollmann - '72, Tuza - '86)

\[\text{sat}(n, C_4) = \left\lfloor \frac{3n - 5}{2} \right\rfloor, \quad n \geq 5. \]
Theorem (Fisher, Fraughnaugh, Langley - '97)

\[\text{sat}(n, P_3 - \text{connected}) = \left\lfloor \frac{3n - 5}{2} \right\rfloor. \]

Theorem

\[\text{sat}(n, C_5) = \left\lceil \frac{10n - 10}{7} \right\rceil, n \neq 21. \]

Fisher, Fraughnaugh, Langley, -'95 gave the upper bound. Y.C. Chen - '09 gave(!) the lower bound.

Problem (FFL)

Determine \(\text{sat}(n, P_4 - \text{connected}) \).
Hamiltonian Cycles

Theorem

$$\text{sat}(n, C_n) = \left\lfloor \frac{3n + 1}{2} \right\rfloor, \; n \geq 53.$$

Bondy (’72) showed the lower bound. Clark, Entringer, Crane and Shapiro (’83-’86) gave upper bound based on Isaacs’ flower snarks (girth 5, 6). L. Stacho (’96) gave further constructions based on the Coxeter graph (girth 7).
Hamiltonian Cycles

Theorem

\[sat(n, C_n) = \left\lfloor \frac{3n + 1}{2} \right\rfloor, \quad n \geq 53. \]

Bondy ('72) showed the lower bound. Clark, Entringer, Crane and Shapiro ('83-'86) gave upper bound based on Isaacs’ flower snarks (girth 5, 6). L. Stacho ('96) gave further constructions based on the Coxeter graph (girth 7).

Problem (Horák, Širáň -’86)

Is there a maximally non-hamiltonian graph of girth at least 8?
Conjecture (Bollobás - '78)

There exist constants, c_1, c_2, such that

$$n + c_1 \frac{n}{l} \leq \text{sat}(n, C_l) \leq n + c_2 \frac{n}{l}.$$

Theorem (Barefoot, Clark, Entringer, Porter, Székely, Tuza - '96)

$$(1 + \frac{1}{2l + 8})n \leq \text{sat}(n, C_l)$$
Theorem (Barefoot et al. - ’96)

\[sat(n, C_l) \leq (1 + \frac{6}{l-3})n + O(l^2) \text{ for } l \text{ odd, } l \geq 9 \]

\[sat(n, C_l) \leq (1 + \frac{4}{l-2})n + O(l^3) \text{ for } l \text{ even, } l \geq 14 \]
Theorem (Barefoot et al. - '96)

\[\text{sat}(n, C_l) \leq (1 + \frac{1}{3} \frac{6}{l-3})n + \frac{5l^2}{4} \text{ for } l \text{ odd, } l \geq 9, l \geq 17, n \geq 7l \]

\[\text{sat}(n, C_l) \leq (1 + \frac{1}{2} \frac{4}{l-2})n + \frac{5l^2}{4} \text{ for } l \text{ even } l \geq 14, l \geq 10, n \geq 3l \]

Theorem

\[\text{sat}(n, C_l) < \left\lfloor \frac{3n}{2} \right\rfloor + \frac{l^2}{2} \]

John Schmitt

A dual to the Turán problem
Introduction
Cycles
Paths, Bipartite Graphs and General Bound
A final problem
Both small and large
Our Result and Logic of Construction
Łuczak Wheel
Cycle Summary

A dual to the Turán problem
A dual to the Turán problem
The Even Łuczak Wheel, $l = 2k + 2 \geq 10$
The Even Łuczak Wheel, $l = 2k + 2 \geq 10$
The Even Łuczak Wheel, $l = 2k + 2 \geq 10$
The Even Łuczak Wheel, $l = 2k + 2 \geq 10$
Counting Edges of the Łuczak Wheel

For $l = 2k + 2$ and $n \equiv a \mod k$,

$$|E(L - \text{Wheel})| = \left(n - k - a \right) + \frac{n - k - a}{k} + a + \binom{k}{2}.$$

Theorem

[GLS] For $k \geq 4$, $l = 2k + 2$, $n \equiv a \mod k$ and $n \geq 3l$,

$$\text{sat}(n, C_l) \leq n \left(1 + \frac{1}{k} \right) + \frac{k^2 - 3k - 2}{2} - \frac{a}{k}$$

$$\leq n \left(1 + \frac{2}{l - 2} \right) + \frac{5l^2}{4}.$$
The Odd Łuczak Wheel, $l = 2k + 3 \geq 17$
C_l-saturated graphs of minimum size

<table>
<thead>
<tr>
<th>l</th>
<th>$\text{sat}(n, C_l)$</th>
<th>$n \geq$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$n - 1$</td>
<td>3</td>
<td>EHM</td>
</tr>
<tr>
<td>4</td>
<td>$\left\lfloor \frac{3n-5}{2} \right\rfloor$</td>
<td>5</td>
<td>Ollmann; Tuza</td>
</tr>
<tr>
<td>5</td>
<td>$\left\lceil \frac{10n-10}{7} \right\rceil$</td>
<td>21</td>
<td>FFL; Chen</td>
</tr>
<tr>
<td>6</td>
<td>$\leq \frac{3n}{2}$</td>
<td>11</td>
<td>Barefoot et al.</td>
</tr>
<tr>
<td>7</td>
<td>$\leq \frac{7n+12}{5}$</td>
<td>10</td>
<td>Barefoot et al.</td>
</tr>
<tr>
<td>8, 9, 11, 13, 15</td>
<td>$\leq \frac{3n}{2} + \frac{l^2}{2}$</td>
<td>21</td>
<td>GLS</td>
</tr>
<tr>
<td>≥ 10 and $\equiv 0 \pmod{2}$</td>
<td>$\leq (1 + \frac{2}{l-2}) n + \frac{5l^2}{4}$</td>
<td>31</td>
<td>Łuczak wheel</td>
</tr>
<tr>
<td>≥ 17 and $\equiv 1 \pmod{2}$</td>
<td>$\leq (1 + \frac{2}{l-3}) n + \frac{5l^2}{4}$</td>
<td>71</td>
<td>Łuczak wheel</td>
</tr>
<tr>
<td>n</td>
<td>$\left\lfloor \frac{3n+1}{2} \right\rfloor$</td>
<td>20</td>
<td>Bondy; CE, CES</td>
</tr>
</tbody>
</table>
Problem (Barefoot et al. - '96)

Determine the value of l which minimizes $\text{sat}(n, C_l)$ for fixed n.

Problem

Are any of these constructions optimal? Can one improve the lower bound?
Other values of \(sat(n, F) \) known for:

- **matchings** (Mader - '73),
- **stars and paths** (Kászonyi and Tuza - '86),
- **hamiltonian path, \(P_n \)** (Frick and Singleton, 05; Dudek, Katona, Wojda - '06)
- **longest path = detour** (Beineke, Dunbar, Frick, '05)
- **disjoint cliques of the same order** (Faudree, Gould, Jacobson, Ferrara - '08)
Difficulties and Hereditary Properties Lacking

Quote from Erdős, Hajnal and Moon:
“One of the difficulties of proving these conjectures may be that the obvious extremal graphs are certainly not unique, which fact may make an induction proof difficult.”

- $\text{sat}(n, F) \not\leq \text{sat}(n + 1, F)$
- $\mathcal{F}_1 \subset \mathcal{F}_2 \nRightarrow \text{sat}(n, \mathcal{F}_1) \geq \text{sat}(n, \mathcal{F}_2)$
- $\mathcal{F}' \subset \mathcal{F} \nRightarrow \text{sat}(n, \mathcal{F}') \leq \text{sat}(n, \mathcal{F})$
Difficulties and Hereditary Properties Lacking

Quote from Erdős, Hajnal and Moon:
“One of the difficulties of proving these conjectures may be that the obvious extremal graphs are certainly not unique, which fact may make an induction proof difficult.”

- \(\text{sat}(n, F) \not\subseteq \text{sat}(n + 1, F) \)
- \(\mathcal{F}_1 \subset \mathcal{F}_2 \not\Rightarrow \text{sat}(n, \mathcal{F}_1) \geq \text{sat}(n, \mathcal{F}_2) \)
- \(\mathcal{F}' \subset \mathcal{F} \not\Rightarrow \text{sat}(n, \mathcal{F}') \leq \text{sat}(n, \mathcal{F}) \)

- \(\text{sat}(2k - 1, P_4) = k + 1 \) and \(\text{sat}(2k, P_4) = k \)
- \(\text{sat}(n, \{P_5, S_4\}) = n - 1 > \text{sat}(n, P_5) \)
- \(\text{sat}(n, K_4) = 2n - 3 \) but \(\text{sat}(n, K_5 - S_3) \leq \frac{3}{2}n \)
Theorem (Kászonyi and Tuza - ’86)

Let F be a graph. Set

$$u = |V(F)| - \alpha(F) - 1$$

$$s = \min\{e(F') : F' \subseteq F, \alpha(F') = \alpha(F), |V(F')| = \alpha(F) + 1\}.$$

Then

$$\text{sat}(n, F) \leq (u + \frac{s - 1}{2})n - \frac{u(s + u)}{2}.$$

They considered a clique on u vertices joined to an $(s - 1)$-regular graph.
Best Known Lower Bound
Best Known Lower Bound

???

Problem

For an arbitrary graph F, determine a non-trivial lower bound on $\text{sat}(n, F)$.
Problem

For an arbitrary graph F, determine a non-trivial lower bound on $\text{sat}(n, F)$.
Let $\text{sat}(n, F, \delta)$ equal minimum number of edges in a graph on n vertices and minimum degree δ that is F-saturated.

Theorem (Duffus, Hanson - '86)

\[
\text{sat}(n, K_3, 2) = 2n - 5, \quad n \geq 5.
\]
\[
\text{sat}(n, K_3, 3) = 3n - 15, \quad n \geq 10.
\]

Problem (Bollobás - '95)

Is it true that for every fixed $\delta \geq 1$ one has $\text{sat}(n, K_3, \delta) = \delta n - O(1)$?
Theorem (Gould, S. - '07)

For integers $t \geq 3$, $n \geq 4t - 4$,

$sat(n, K_{t(2)}) \leq sat(n, K_{t(2)}, 2t - 3) = \left\lceil \frac{(4t - 5)n - 4t^2 + 6t - 1}{2} \right\rceil$.

Problem

Given a fixed graph F, for n sufficiently large determine if the function $sat(n, F, \delta)$ is monotonically increasing in δ.
Theorem (Pikhurko, S. - ’08)

There is a constant C such that for all $n \geq 5$ we have

$$2n - Cn^{3/4} \leq \text{sat}(n, K_{2,3}) \leq 2n - 3.$$
Theorem (Pikhurko, S. - ’08)

There is a constant C such that for all $n \geq 5$ we have

$$2n - Cn^{3/4} \leq sat(n, K_{2,3}) \leq 2n - 3.$$
Theorem (Pikhurko, S. - ’08)

There is a constant C such that for all $n \geq 5$ we have

$$2n - Cn^{3/4} \leq \text{sat}(n, K_{2,3}) \leq 2n - 3.$$
Proof of Lower Bound

Let G be a $K_{2,3}$-saturated graph.
Proof of Lower Bound

Let G be a $K_{2,3}$-saturated graph. If $\delta(G) \geq 4$, then $|E(G)| \geq 2n$ and we are done.
Let G be a $K_{2,3}$-saturated graph.

If $\delta(G) = 1$ then,
Proof of Lower Bound

If $\delta(G) = 1$ then,

$$|E(G)| \geq 2n - 3.$$
Proof of Lower Bound

If $\delta(G) = 1$ then,

$$|E(G)| \geq 2n - 3.$$
Proof of Lower Bound

Otherwise, $2 \leq \delta(G) \leq 3$, pick vertex of minimum degree and consider breadth-first search tree.

John Schmitt

A dual to the Turán problem
Otherwise, $2 \leq \delta(G) \leq 3$, pick vertex of minimum degree and consider breadth-first search tree.

Tree has $n - 1$ edges, we must find $n - Cn^{3/4}$ more edges.
Divide and Conquer

A dual to the Turán problem
Divide and Conquer
Hit ’em where they’re weakest

Y_0 has at most one component which is a tree. Pick up an extra $V_3 - 1$ edges.
More Division and More Conquering

Pick up extra $V_2 - \#(\text{trees in } X_0)$ edges.
More Division and More Conquering
Trees in X_0 are connected via a path of length at most three through V_3.

More Hitting Weak Spots
More Hitting Weak Spots

Small degree vertices can only “serve” so many trees of X_0. So, sum of large degree vertices is large.

V_1

V_2

V_3

X_0

X_1

X_2

small degree vertices

large degree vertices
Small degree vertices can only “serve” so many trees of X_0. So, sum of large degree vertices is large. This allows us to add $\#(\text{trees in } X_0) - O(n^{3/4})$ edges to the count. Completes proof. \hfill \square
Recently, Bohman, Fonoberova and Pikhurko have announced the determination of $\text{sat}(n, K_{s_1, s_2, \ldots, s_r})$.

$$\text{sat}(n, K_{s_1, s_2, \ldots, s_r}) = (s_1 + s_2 + \ldots + s_{r-1} - 1 + \frac{s_r - 1}{2} + o(1))n,$$

where $s_1 \leq s_2 \leq \ldots \leq s_r$.
And Ramsey Numbers

\[F \to (F_1, \ldots, F_t) \] if any \(t \) coloring of \(E(F) \) contains a monochromatic \(F_i \)-subgraph of color \(i \) for some \(i \in [t] \).

Conjecture (Hanson and Toft, ’87)

Given \(t \geq 2 \) and numbers \(m_i \geq 3, i \in [t] \), let

\[\mathcal{F} = \{ F : F \to (K_{m_1}, \ldots, K_{m_t}) \}. \]

Let \(r = r(K_{m_1}, \ldots, K_{m_t}) \) be the classical Ramsey number. Then

\[\text{sat}(n, \mathcal{F}) = (r - 2)(n - 1) - \binom{r - 2}{2}. \]
Many Thanks!!

Talk and results are available online at:
http://community.middlebury.edu/~jschmitt/