Distinct partial sums in cyclic groups

John Schmitt

Middlebury College Vermont, USA jschmitt@middlebury.edu

Joint work with Jacob Hicks (U. Georgia) and Matt Ollis (Marlboro College, VT)

(G, +) be an abelian group and consider a subset $A \subseteq G$ with |A| = k.

Given an ordering (a_1, \ldots, a_k) of the elements of A, define its *partial sums* by $s_0 = 0$ and $s_j = \sum_{i=1}^j a_i$ for $1 \le j \le k$.

ション ふゆ アメリア メリア しょうめん

(G, +) be an abelian group and consider a subset $A \subseteq G$ with |A| = k. Given an ordering (a_1, \ldots, a_k) of the elements of A, define its partial sums by $s_0 = 0$ and $s_j = \sum_{i=1}^j a_i$ for $1 \le j \le k$.

Conjecture (Alspach, '05)

For any cyclic group \mathbb{Z}_n and any subset $A \subseteq \mathbb{Z}_n \setminus \{0\}$ with $s_k \neq 0$, it is possible to find an ordering of the elements of A such that no two of its partial sums s_i and s_j are equal for $0 \le i < j \le k$.

- 「 (西) (西) (西) (日)

Bode and Harborth ('05) showed Alspach's Conjecture holds when:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

■
$$|A| = n - 1, n - 2$$

- |*A*| ≤ 5
- $n \leq 16$ via computer

Conjecture (Archdeacon, '15)

For any cyclic group \mathbb{Z}_n and any subset $A \subseteq \mathbb{Z}_n \setminus \{0\}$, it is possible to find an ordering of the elements of A such that no two of its partial sums s_i and s_j are equal for $1 \le i < j \le k$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Conjecture (Archdeacon, '15)

For any cyclic group \mathbb{Z}_n and any subset $A \subseteq \mathbb{Z}_n \setminus \{0\}$, it is possible to find an ordering of the elements of A such that no two of its partial sums s_i and s_j are equal for $1 \le i < j \le k$.

Archdeacon, Dinitz, Mattern and Stinson ('16):

- Alspach's Conjecture implies Archdeacon's Conjecture
- Archdeacon's Conjecture holds for $|A| \leq 6$
- Verified Archdeacon's Conjecture by computer for n ≤ 25

Problem

For any cyclic group \mathbb{Z}_n and any positive integer k, what is the smallest order such that from all subsets $A \subseteq \mathbb{Z}_n \setminus \{0\}$ of that order it is possible to find an order of distinct elements of length k that has distinct partial sums?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Problem

For any cyclic group \mathbb{Z}_n and any positive integer k, what is the smallest order such that from all subsets $A \subseteq \mathbb{Z}_n \setminus \{0\}$ of that order it is possible to find an order of distinct elements of length k that has distinct partial sums?

Archdeacon, Dinitz, Mattern and Stinson ('16) showed that the smallest order is no more than 2k + 1 via a greedy approach.

Conjecture (Costa, Morini, Pasotti, and Pellegrini '18)

For any abelian group (G, +) and any subset $A \subseteq G \setminus \{0\}$ such that there is no $x \in A$ with $\{x, -x\} \subseteq A$ and with $s_k = 0$, it is possible to find an ordering of the elements of A such that no two of its partial sums s_i and s_j are equal for $1 \le i < j \le k$.

うして ふゆう ふほう ふほう しょうく

Conjecture (Costa, Morini, Pasotti, and Pellegrini '18)

For any abelian group (G, +) and any subset $A \subseteq G \setminus \{0\}$ such that there is no $x \in A$ with $\{x, -x\} \subseteq A$ and with $s_k = 0$, it is possible to find an ordering of the elements of A such that no two of its partial sums s_i and s_j are equal for $1 \le i < j \le k$.

Costa, Morini, Pasotti, and Pellegrini

■ When *G* = ℤ_n: Costa et al. Conjecture follows immediately from Archdeacon's Conjecture

- Their conjecture holds when $|A| \leq 9$
- Their conjecture holds when $|G| \leq 27$

Distinct partial sums in cyclic groups

Conjectures and Problems

Motivations

Alspach: cycle decompositions of the complete graph Archdeacon: embeddings of complete graphs on surfaces to that the faces are 2-colorable and each color class is a *k*-cycle system Costa, Morini, Pasotti, and Pellegrini: Heffter systems

Our approach

From now on: n = p is a prime. For each conjecture and problem we seek an ordering of the elements of A.

To the i^{th} -entry of an ordering of length k associate a variable x_i .

For each conjecture and problem, we construct a polynomial in these k variables over the field of order p.

うして ふゆう ふほう ふほう うらつ

The set of inputs to these polynomials is $A \times \ldots \times A = A^k$.

Encoding problems by polynomials

For Alspach's Conjecture (encoding):

- $x_i \neq x_j$ for $1 \leq i < j \leq k$ permutation
- $\sum_{\ell=1}^{j} x_{\ell} \neq 0$ for $1 \leq j < k$ empty partial sum equals 0
- $\sum_{\ell=1}^{i} x_{\ell} \neq \sum_{\ell=1}^{j} x_{\ell}$ for $1 \leq i < j \leq k$ distinct partial sums

うして ふゆう ふほう ふほう しょうく

Encoding problems by polynomials

For Alspach's Conjecture (encoding):

- $x_i x_j \neq 0$ for $1 \leq i < j \leq k$ permutation
- $\sum_{\ell=1}^{j} x_{\ell} \neq 0$ for $1 \leq j < k$ empty partial sum equals 0
- $x_i + \cdots + x_j \neq 0$ for $2 \leq i < j \leq k$ distinct partial sums

Encoding problems by polynomials

For Alspach's Conjecture (encoding):

•
$$x_i - x_j \neq 0$$
 for $1 \le i < j \le k$ permutation

- $\sum_{\ell=1}^{j} x_{\ell} \neq 0$ for $1 \leq j < k$ empty partial sum equals 0
- $x_i + \cdots + x_j \neq 0$ for $2 \leq i < j \leq k$ distinct partial sums

うして ふゆう ふほう ふほう しょうく

Satisfy these simultaneously!

Encoding problems by polynomials

$$F_k := F_k(x_1,\ldots,x_k) = \frac{\prod_{1 \le i < j \le k} (x_j - x_i)(x_i + \cdots + x_j)}{(x_1 + \cdots + x_k)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Encoding problems by polynomials

$$F_k := F_k(x_1,\ldots,x_k) = \frac{\prod_{1 \le i < j \le k} (x_j - x_i)(x_i + \cdots + x_j)}{(x_1 + \cdots + x_k)}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Inputs from A^k that output a nonzero value are solutions to Alspach's Conjecture

Encoding problems by polynomials

For Archdeacon's Conjecture:

- $x_i x_j \neq 0$ for $1 \leq i < j \leq k$.
- $x_i + \cdots + x_j \neq 0$ for $2 \leq i < j \leq k$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Satisfy these simultaneously!

Encoding problems by polynomials

For Archdeacon's Conjecture:

- $x_i x_j \neq 0$ for $1 \leq i < j \leq k$.
- $x_i + \cdots + x_j \neq 0$ for $2 \leq i < j \leq k$.

Satisfy these simultaneously!

$$f_k := f_k(x_1, ..., x_k) = \prod_{1 \le i < j \le k} (x_j - x_i) \prod_{2 \le i < j \le k} (x_i + \dots + x_j)$$

Inputs from A^k that output a nonzero value are solutions to Archdeacon's Conjecture

Theorem (Alon's Non-vanishing Corollary, '99)

Let \mathbb{F} be an arbitrary field, and let $f = f(x_1, \ldots, x_k)$ be a polynomial in $\mathbb{F}[x_1, \ldots, x_k]$. Suppose the degree deg(f) of f is $\sum_{i=1}^{k} t_i$, where each t_i is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^{k} x_i^{t_i}$ in f is nonzero. Then if A_1, \ldots, A_k are subsets of F with $|A_i| > t_i$, there are $a_1 \in A_1, \ldots, a_k \in A_k$ so that $f(a_1, \ldots, a_k) \neq 0$.

A 'low' degree polynomial evaluated over a 'large' box has a 'nonzero'.

$$F_k := F_k(x_1,\ldots,x_k) = \prod_{1 \leq i < j \leq k} (x_j - x_i)(x_i + \cdots + x_j) / (x_1 + \cdots + x_k)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

degree of
$$F_k$$
 is $2\binom{k}{2} - 1 = k(k-1) - 1$

Monomials of choice: $m_{k,j} = c_{k,j} x_1^{k-1} \cdots x_j^{k-2} \cdots x_k^{k-1}$ for $1 \le j \le k$

Coefficient $c_{k,j}$ on $m_{k,j}$ computed over \mathbb{Z}

$k \setminus j$	1	2	3	4	5
2	1				
3	$^{-1}$	0			
4	1	$^{-1}$			
5	4	-2	-4		
6	-28	-40	-20		
7	966	1662	1338	0	
8	-366468	-92412	144324	314556	
9	-359616276	-130597656	72122706	254703096	326776260
10	595372941856	1404671795722	1785841044600	1435120776421	546395688803

ション ふゆ アメリア メリア しょうめん

 $c_{k,j} = \pm c_{k,k+1-j}$ for all k and $1 \le j \le \lfloor \frac{k}{2} \rfloor$

Coefficient $c_{k,j}$ on $m_{k,j}$ computed over \mathbb{Z}

$k \setminus j$	1	2	3	4	5
2	1				
3	$^{-1}$	0			
4	1	$^{-1}$			
5	4	-2	-4		
6	-28	-40	-20		
7	966	1662	1338	0	
8	-366468	-92412	144324	314556	
9	-359616276	-130597656	72122706	254703096	326776260
10	595372941856	1404671795722	1785841044600	1435120776421	546395688803

 $c_{k,j} = \pm c_{k,k+1-j}$ for all k and $1 \le j \le \lfloor \frac{k}{2} \rfloor$ Compute prime factorization of each integer in the table. e.g.: k = 7; 966 = 2×3×7×23; 1662 = 2×3×277; 1338 = 2×3×223; 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

Theorem (Hicks, Ollis, S.)

Alspach's Conjecture is true for prime n and $k \leq 10$.

Corollary

Archdeacon's Conjecture and Costa et al. Conjecture (for $G = \mathbb{Z}_n$) is true for prime n and $k \leq 10$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Theorem

Let p be prime. From any subset of size 2k - 3 of $\mathbb{Z}_p \setminus \{0\}$ we can construct a sequence of length k with distinct partial sums.

 $\operatorname{Proof:}$ The coefficient on

$$x_1^{k-1}x_2^0x_3^2x_4^4\cdots x_k^{2k-4}$$

of

$$f_k(x_1, x_2, ..., x_k) = \prod_{1 \le i < j \le k} (x_j - x_i) \prod_{2 \le i < j \le k} (x_i + \dots + x_j)$$

is $(-1)^{k-1}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Working towards a theoretical result

$$f_k(x_1, x_2, \ldots, x_k) = \prod_{1 \leq i < j \leq k} (x_j - x_i) \prod_{2 \leq i < j \leq k} (x_i + \cdots + x_j).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Working towards a theoretical result

$$f_k(x_1, x_2, \ldots, x_k) = \prod_{1 \leq i < j \leq k} (x_j - x_i) \prod_{2 \leq i < j \leq k} (x_i + \cdots + x_j).$$

Same argument: find a leading monomial with nonzero coefficient and degree of the highest term 2k - d - 1. Then Alon's Non-vanishing Corollary implies a solution to Problem

when |A| = 2k - d (for all but finitely many prime values of p).

Working towards a theoretical result

$$f_k(x_1, x_2, \ldots, x_k) = \prod_{1 \leq i < j \leq k} (x_j - x_i) \prod_{2 \leq i < j \leq k} (x_i + \cdots + x_j).$$

Same argument: find a leading monomial with nonzero coefficient and degree of the highest term 2k - d - 1. Then Alon's Non-vanishing Corollary implies a solution to Problem when |A| = 2k - d (for all but finitely many prime values of p). Monomial we choose is

$$x_1^{k-1}x_2^0x_3^2x_4^4\cdots x_{k-d+2}^{2k-2d}x_{k-d+3}^{2k-d-1}x_{k-d+4}^{2k-d-1}\cdots x_k^{2k-d-1}.$$

Theorem (Hicks, Ollis, S.)

Fix $d \in \mathbb{N}$ with d > 3 and let $k \ge \min(8, d^2/8)$. For almost all primes p there are at most (d - 3)(d - 2)(d - 1)/6 values of k (with $k \ge d^2/8$) where it is not the case that we can construct a sequence of k elements with distinct partial sums from any set of 2k - d distinct elements of $\mathbb{Z}_p \setminus \{0\}$.

Distinct partial sums in cyclic groups

<u>— The</u> polynomial method

Thanks!

◆□ > < 個 > < E > < E > E の < @</p>