Distinct partial sums in cyclic groups

John Schmitt
Middlebury College
Vermont, USA
jschmitt@middlebury.edu

Joint work with Jacob Hicks (U. Georgia) and Matt Ollis (Marlboro College, VT)
$(G,+)$ be an abelian group and consider a subset $A \subseteq G$ with $|A|=k$.
Given an ordering $\left(a_{1}, \ldots, a_{k}\right)$ of the elements of A, define its partial sums by $s_{0}=0$ and $s_{j}=\sum_{i=1}^{j} a_{i}$ for $1 \leq j \leq k$.
$(G,+)$ be an abelian group and consider a subset $A \subseteq G$ with $|A|=k$.
Given an ordering $\left(a_{1}, \ldots, a_{k}\right)$ of the elements of A, define its partial sums by $s_{0}=0$ and $s_{j}=\sum_{j=1}^{j} a_{i}$ for $1 \leq j \leq k$.

Conjecture (Alspach, '05)

For any cyclic group \mathbb{Z}_{n} and any subset $A \subseteq \mathbb{Z}_{n} \backslash\{0\}$ with $s_{k} \neq 0$, it is possible to find an ordering of the elements of A such that no two of its partial sums s_{i} and s_{j} are equal for $0 \leq i<j \leq k$.

Bode and Harborth ('05) showed Alspach's Conjecture holds when:

- $|A|=n-1, n-2$
- $|A| \leq 5$
- $n \leq 16$ via computer

Conjecture (Archdeacon, '15)

For any cyclic group \mathbb{Z}_{n} and any subset $A \subseteq \mathbb{Z}_{n} \backslash\{0\}$, it is possible to find an ordering of the elements of A such that no two of its partial sums s_{i} and s_{j} are equal for $1 \leq i<j \leq k$.

Conjecture (Archdeacon, '15)

For any cyclic group \mathbb{Z}_{n} and any subset $A \subseteq \mathbb{Z}_{n} \backslash\{0\}$, it is possible to find an ordering of the elements of A such that no two of its partial sums s_{i} and s_{j} are equal for $1 \leq i<j \leq k$.

Archdeacon, Dinitz, Mattern and Stinson ('16):

- Alspach's Conjecture implies Archdeacon's Conjecture
- Archdeacon's Conjecture holds for $|A| \leq 6$
- Verified Archdeacon's Conjecture by computer for $n \leq 25$

Problem

For any cyclic group \mathbb{Z}_{n} and any positive integer k, what is the smallest order such that from all subsets $A \subseteq \mathbb{Z}_{n} \backslash\{0\}$ of that order it is possible to find an order of distinct elements of length k that has distinct partial sums?

Problem

For any cyclic group \mathbb{Z}_{n} and any positive integer k, what is the smallest order such that from all subsets $A \subseteq \mathbb{Z}_{n} \backslash\{0\}$ of that order it is possible to find an order of distinct elements of length k that has distinct partial sums?

Archdeacon, Dinitz, Mattern and Stinson ('16) showed that the smallest order is no more than $2 k+1$ via a greedy approach.

Conjecture (Costa, Morini, Pasotti, and Pellegrini '18)

For any abelian group $(G,+)$ and any subset $A \subseteq G \backslash\{0\}$ such that there is no $x \in A$ with $\{x,-x\} \subseteq A$ and with $s_{k}=0$, it is possible to find an ordering of the elements of A such that no two of its partial sums s_{i} and s_{j} are equal for $1 \leq i<j \leq k$.

Conjecture (Costa, Morini, Pasotti, and Pellegrini '18)

For any abelian group $(G,+)$ and any subset $A \subseteq G \backslash\{0\}$ such that there is no $x \in A$ with $\{x,-x\} \subseteq A$ and with $s_{k}=0$, it is possible to find an ordering of the elements of A such that no two of its partial sums s_{i} and s_{j} are equal for $1 \leq i<j \leq k$.

Costa, Morini, Pasotti, and Pellegrini
■ When $G=\mathbb{Z}_{n}$: Costa et al. Conjecture follows immediately from Archdeacon's Conjecture

- Their conjecture holds when $|A| \leq 9$
- Their conjecture holds when $|G| \leq 27$

Motivations

Alspach: cycle decompositions of the complete graph Archdeacon: embeddings of complete graphs on surfaces to that the faces are 2-colorable and each color class is a k-cycle system Costa, Morini, Pasotti, and Pellegrini: Heffter systems

Our approach

From now on: $n=p$ is a prime.
For each conjecture and problem we seek an ordering of the elements of A.

To the $i^{t h}$-entry of an ordering of length k associate a variable x_{i}.
For each conjecture and problem, we construct a polynomial in these k variables over the field of order p.

The set of inputs to these polynomials is $A \times \ldots \times A=A^{k}$.

Encoding problems by polynomials

For Alspach's Conjecture (encoding):
■ $x_{i} \neq x_{j}$ for $1 \leq i<j \leq k$ permutation

- $\sum_{\ell=1}^{j} x_{\ell} \neq 0$ for $1 \leq j<k$ empty partial sum equals 0
- $\sum_{\ell=1}^{i} x_{\ell} \neq \sum_{\ell=1}^{j} x_{\ell}$ for $1 \leq i<j \leq k$ distinct partial sums

Encoding problems by polynomials

For Alspach's Conjecture (encoding):

- $x_{i}-x_{j} \neq 0$ for $1 \leq i<j \leq k$ permutation
- $\sum_{\ell=1}^{j} x_{\ell} \neq 0$ for $1 \leq j<k$ empty partial sum equals 0

■ $x_{i}+\cdots+x_{j} \neq 0$ for $2 \leq i<j \leq k$ distinct partial sums

Encoding problems by polynomials

For Alspach's Conjecture (encoding):
■ $x_{i}-x_{j} \neq 0$ for $1 \leq i<j \leq k$ permutation

- $\sum_{\ell=1}^{j} x_{\ell} \neq 0$ for $1 \leq j<k$ empty partial sum equals 0

■ $x_{i}+\cdots+x_{j} \neq 0$ for $2 \leq i<j \leq k$ distinct partial sums
Satisfy these simultaneously!

Encoding problems by polynomials

$$
F_{k}:=F_{k}\left(x_{1}, \ldots, x_{k}\right)=\frac{\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right)\left(x_{i}+\cdots+x_{j}\right)}{\left(x_{1}+\cdots+x_{k}\right)}
$$

Encoding problems by polynomials

$$
F_{k}:=F_{k}\left(x_{1}, \ldots, x_{k}\right)=\frac{\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right)\left(x_{i}+\cdots+x_{j}\right)}{\left(x_{1}+\cdots+x_{k}\right)}
$$

Inputs from A^{k} that output a nonzero value are solutions to Alspach's Conjecture

Encoding problems by polynomials

For Archdeacon's Conjecture:
■ $x_{i}-x_{j} \neq 0$ for $1 \leq i<j \leq k$.
■ $x_{i}+\cdots+x_{j} \neq 0$ for $2 \leq i<j \leq k$.
Satisfy these simultaneously!

Encoding problems by polynomials

For Archdeacon's Conjecture:

- $x_{i}-x_{j} \neq 0$ for $1 \leq i<j \leq k$.

■ $x_{i}+\cdots+x_{j} \neq 0$ for $2 \leq i<j \leq k$.
Satisfy these simultaneously!

$$
f_{k}:=f_{k}\left(x_{1}, \ldots, x_{k}\right)=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right) \prod_{2 \leq i<j \leq k}\left(x_{i}+\cdots+x_{j}\right)
$$

Inputs from A^{k} that output a nonzero value are solutions to Archdeacon's Conjecture

Theorem (Alon's Non-vanishing Corollary, '99)

Let \mathbb{F} be an arbitrary field, and let $f=f\left(x_{1}, \ldots, x_{k}\right)$ be a polynomial in $\mathbb{F}\left[x_{1}, \ldots, x_{k}\right]$. Suppose the degree $\operatorname{deg}(f)$ of f is $\sum_{i=1}^{k} t_{i}$, where each t_{i} is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^{k} x_{i}^{t_{i}}$ in f is nonzero. Then if A_{1}, \ldots, A_{k} are subsets of F with $\left|A_{i}\right|>t_{i}$, there are $a_{1} \in A_{1}, \ldots, a_{k} \in A_{k}$ so that $f\left(a_{1}, \ldots, a_{k}\right) \neq 0$.

A 'low' degree polynomial evaluated over a 'large' box has a 'nonzero'.

$$
F_{k}:=F_{k}\left(x_{1}, \ldots, x_{k}\right)=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right)\left(x_{i}+\cdots+x_{j}\right) /\left(x_{1}+\cdots+x_{k}\right)
$$

degree of F_{k} is $2\binom{k}{2}-1=k(k-1)-1$
Monomials of choice: $m_{k, j}=c_{k, j} x_{1}^{k-1} \cdots x_{j}^{k-2} \cdots x_{k}^{k-1}$ for $1 \leq j \leq k$

Coefficient $c_{k, j}$ on $m_{k, j}$ computed over \mathbb{Z}

$k \backslash j$	1	2	3	4	5
2	1				
3	-1	0			
4	1	-1	-4		
5	4	-40	-20		
6	-28	1662	1338	0	
7	966	-366468	-92412	144324	314556
8	-359616276	-13059656	72122706	254703096	326776260
9	595372941856	1404671795722	1785841044600	1435120776421	546395688803

$$
c_{k, j}= \pm c_{k, k+1-j} \text { for all } k \text { and } 1 \leq j \leq\left\lfloor\frac{k}{2}\right\rfloor
$$

Coefficient $c_{k, j}$ on $m_{k, j}$ computed over \mathbb{Z}

$k \backslash j$	1	2	3	4	5
2	1				
3	-1	0			
4	1	-1	-4		
5	4	-40	-20		
6	-28	1662	1338	0	
7	966	-366468	-92412	144324	314556
8	-359616276	-13059656	72122706	254703096	326776260
9	595372941856	1404671795722	1785841044600	1435120776421	546395688803

$c_{k, j}= \pm c_{k, k+1-j}$ for all k and $1 \leq j \leq\left\lfloor\frac{k}{2}\right\rfloor$
Compute prime factorization of each integer in the table.
e.g.:
$k=7 ; 966=2 \times 3 \times 7 \times 23 ; 1662=2 \times 3 \times 277 ; 1338=2 \times 3 \times 223 ; 0$

Theorem (Hicks, Ollis, S.)

Alspach's Conjecture is true for prime n and $k \leq 10$.

Corollary

Archdeacon's Conjecture and Costa et al. Conjecture (for $G=\mathbb{Z}_{n}$) is true for prime n and $k \leq 10$.

Theorem

Let p be prime. From any subset of size $2 k-3$ of $\mathbb{Z}_{p} \backslash\{0\}$ we can construct a sequence of length k with distinct partial sums.

Proof: The coefficient on

$$
x_{1}^{k-1} x_{2}^{0} x_{3}^{2} x_{4}^{4} \cdots x_{k}^{2 k-4}
$$

of

$$
f_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right) \prod_{2 \leq i<j \leq k}\left(x_{i}+\cdots+x_{j}\right)
$$

is $(-1)^{k-1}$.

L The polynomial method

Working towards a theoretical result

$$
f_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right) \prod_{2 \leq i<j \leq k}\left(x_{i}+\cdots+x_{j}\right) .
$$

Working towards a theoretical result

$$
f_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right) \prod_{2 \leq i<j \leq k}\left(x_{i}+\cdots+x_{j}\right) .
$$

Same argument: find a leading monomial with nonzero coefficient and degree of the highest term $2 k-d-1$.
Then Alon's Non-vanishing Corollary implies a solution to Problem when $|A|=2 k-d$ (for all but finitely many prime values of p).

Working towards a theoretical result

$$
f_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right) \prod_{2 \leq i<j \leq k}\left(x_{i}+\cdots+x_{j}\right) .
$$

Same argument: find a leading monomial with nonzero coefficient and degree of the highest term $2 k-d-1$.
Then Alon's Non-vanishing Corollary implies a solution to Problem when $|A|=2 k-d$ (for all but finitely many prime values of p). Monomial we choose is

$$
x_{1}^{k-1} x_{2}^{0} x_{3}^{2} x_{4}^{4} \cdots x_{k-d+2}^{2 k-2 d} x_{k-d+3}^{2 k-d-1} x_{k-d+4}^{2 k-d-1} \cdots x_{k}^{2 k-d-1}
$$

Theorem (Hicks, Ollis, S.)

Fix $d \in \mathbb{N}$ with $d>3$ and let $k \geq \min \left(8, d^{2} / 8\right)$. For almost all primes p there are at most $(d-3)(d-2)(d-1) / 6$ values of k (with $k \geq d^{2} / 8$) where it is not the case that we can construct a sequence of k elements with distinct partial sums from any set of $2 k-d$ distinct elements of $\mathbb{Z}_{p} \backslash\{0\}$.

Thanks!

