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Distinct partial sums in cyclic groups

Conjectures and Problems

(G ,+) be an abelian group and consider a subset A ⊆ G
with |A| = k .
Given an ordering (a1, . . . , ak) of the elements of A, define its
partial sums by s0 = 0 and sj =

∑j
i=1 ai for 1 ≤ j ≤ k .

Conjecture (Alspach, ’05 )

For any cyclic group Zn and any subset A ⊆ Zn \ {0} with sk 6= 0,
it is possible to find an ordering of the elements of A such that no
two of its partial sums si and sj are equal for 0 ≤ i < j ≤ k.
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Conjectures and Problems

Bode and Harborth (’05) showed Alspach’s Conjecture holds when:

|A| = n − 1, n − 2

|A| ≤ 5

n ≤ 16 via computer
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Conjecture (Archdeacon, ’15)

For any cyclic group Zn and any subset A ⊆ Zn \ {0}, it is possible
to find an ordering of the elements of A such that no two of its
partial sums si and sj are equal for 1 ≤ i < j ≤ k.

Archdeacon, Dinitz, Mattern and Stinson
(’16):

Alspach’s Conjecture implies
Archdeacon’s Conjecture

Archdeacon’s Conjecture holds for |A| ≤ 6

Verified Archdeacon’s Conjecture by
computer for n ≤ 25
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Problem

For any cyclic group Zn and any positive integer k, what is the
smallest order such that from all subsets A ⊆ Zn \ {0} of that
order it is possible to find an order of distinct elements of length k
that has distinct partial sums?

Archdeacon, Dinitz, Mattern and Stinson (’16) showed that the
smallest order is no more than 2k + 1 via a greedy approach.
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Conjecture (Costa, Morini, Pasotti, and Pellegrini ’18)

For any abelian group (G ,+) and any subset A ⊆ G \ {0} such
that there is no x ∈ A with {x ,−x} ⊆ A and with sk = 0, it is
possible to find an ordering of the elements of A such that no two
of its partial sums si and sj are equal for 1 ≤ i < j ≤ k.

Costa, Morini, Pasotti, and Pellegrini

When G = Zn: Costa et al. Conjecture follows immediately
from Archdeacon’s Conjecture

Their conjecture holds when |A| ≤ 9

Their conjecture holds when |G | ≤ 27
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Conjectures and Problems

Motivations

Alspach: cycle decompositions of the complete graph
Archdeacon: embeddings of complete graphs on surfaces to that
the faces are 2-colorable and each color class is a k-cycle system
Costa, Morini, Pasotti, and Pellegrini: Heffter systems
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The polynomial method

Our approach

From now on: n = p is a prime.
For each conjecture and problem we seek an ordering of the
elements of A.

To the i th-entry of an ordering of length k associate a variable xi .

For each conjecture and problem, we construct a polynomial in
these k variables over the field of order p.

The set of inputs to these polynomials is A× . . .× A = Ak .



Distinct partial sums in cyclic groups

The polynomial method

Encoding problems by polynomials

For Alspach’s Conjecture (encoding):

xi 6= xj for 1 ≤ i < j ≤ k permutation∑j
`=1 x` 6= 0 for 1 ≤ j < k empty partial sum equals 0∑i
`=1 x` 6=

∑j
`=1 x` for 1 ≤ i < j ≤ k distinct partial sums
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The polynomial method

Encoding problems by polynomials

For Alspach’s Conjecture (encoding):

xi − xj 6= 0 for 1 ≤ i < j ≤ k permutation∑j
`=1 x` 6= 0 for 1 ≤ j <k empty partial sum equals 0

xi + · · ·+ xj 6= 0 for 2 ≤ i < j ≤ k distinct partial sums

Satisfy these simultaneously!
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The polynomial method

Encoding problems by polynomials

Fk := Fk(x1, . . . , xk) =

∏
1≤i<j≤k(xj − xi )(xi + · · ·+ xj)

(x1 + · · ·+ xk)

Inputs from Ak that output a nonzero value are solutions to
Alspach’s Conjecture
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The polynomial method

Theorem (Alon’s Non-vanishing Corollary, ’99)

Let F be an arbitrary field, and let f = f (x1, . . . , xk) be a
polynomial in F[x1, . . . , xk ]. Suppose the degree deg(f ) of f is∑k

i=1 ti , where each ti is a nonnegative integer, and suppose the

coefficient of
∏k

i=1 x
ti
i in f is nonzero. Then if A1, . . . ,Ak are

subsets of F with |Ai | > ti , there are a1 ∈ A1, . . . , ak ∈ Ak so
that f (a1, . . . , ak) 6= 0.

A ‘low’ degree polynomial evaluated over a ‘large’ box has a
‘nonzero’.
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The polynomial method

Fk := Fk(x1, . . . , xk) =
∏

1≤i<j≤k

(xj−xi )(xi+· · ·+xj) / (x1+· · ·+xk)

degree of Fk is 2
(k
2

)
− 1 = k(k − 1)− 1

Monomials of choice: mk,j = ck,jx
k−1
1 · · · xk−2

j · · · xk−1
k for

1 ≤ j ≤ k
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The polynomial method

Coefficient ck,j on mk ,j computed over Z

k \ j 1 2 3 4 5
2 1
3 −1 0
4 1 −1
5 4 −2 −4
6 −28 −40 −20
7 966 1662 1338 0
8 −366468 −92412 144324 314556
9 −359616276 −130597656 72122706 254703096 326776260
10 595372941856 1404671795722 1785841044600 1435120776421 546395688803

ck,j = ±ck,k+1−j for all k and 1 ≤ j ≤ bk2 c

Compute prime factorization of each integer in the table.
e.g.:
k = 7; 966 = 2×3×7×23; 1662 = 2×3×277; 1338 = 2×3×223; 0
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The polynomial method

Theorem (Hicks, Ollis, S.)

Alspach’s Conjecture is true for prime n and k ≤ 10.

Corollary

Archdeacon’s Conjecture and Costa et al. Conjecture (for G = Zn)
is true for prime n and k ≤ 10.
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The polynomial method

Theorem

Let p be prime. From any subset of size 2k − 3 of Zp \ {0} we can
construct a sequence of length k with distinct partial sums.

Proof: The coefficient on

xk−1
1 x02x

2
3x

4
4 · · · x2k−4

k

of

fk(x1, x2, . . . , xk) =
∏

1≤i<j≤k

(xj − xi )
∏

2≤i<j≤k

(xi + · · ·+ xj)

is (−1)k−1.
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The polynomial method

Working towards a theoretical result

fk(x1, x2, . . . , xk) =
∏

1≤i<j≤k

(xj − xi )
∏

2≤i<j≤k

(xi + · · ·+ xj).

Same argument: find a leading monomial with nonzero coefficient
and degree of the highest term 2k − d − 1.
Then Alon’s Non-vanishing Corollary implies a solution to Problem
when |A| = 2k − d (for all but finitely many prime values of p).
Monomial we choose is

xk−1
1 x02x

2
3x

4
4 · · · x2k−2d

k−d+2x
2k−d−1
k−d+3 x2k−d−1

k−d+4 · · · x
2k−d−1
k .
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The polynomial method

Theorem (Hicks, Ollis, S.)

Fix d ∈ N with d > 3 and let k ≥ min (8, d2/8). For almost all
primes p there are at most (d − 3)(d − 2)(d − 1)/6 values of k
(with k ≥ d2/8) where it is not the case that we can construct a
sequence of k elements with distinct partial sums from any set
of 2k − d distinct elements of Zp \ {0}.
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The polynomial method

Thanks!
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