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Graph pebbling is a mathematical model for the transmission of
consumable resources.
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A pebbling move consists of removing two pebbles from a vertex
and placing one of them on an adjacent vertex.
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Pebbling number of a graph G , denoted π(G ), is the least number
of pebbles necessary to guarantee that, regardless of distribution of
pebbles and regardless of target vertex, there exists a sequence of
pebbling moves that enables us to place a pebble on the target
vertex.
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Lower Bound on the Pebbling Number

π(G ) ≥ max{n, 2diam(G)}
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If π(G ) = n then G is called Class 0.
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If π(G ) = n then G is called Class 0.

Class 0 graphs include:

◮ the complete graph, Kn

◮ the complete t-partite graph (except stars), Kp1,p2,...,pt

◮ the d-dimensional hypercube, Qd (F. Chung, ’92)

◮ Petersen graph

◮ Kneser graph (certain instances)
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Problem (Hurlbert):
Find necessary and sufficient conditions for G to be Class 0.
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Problem (Hurlbert):
Find necessary and sufficient conditions for G to be Class 0.

Most results have placed conditions on diameter and/or
connectivity.
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Class 0 graphs have connectivity at least two
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cut−vertex
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Degree Sum Result

Theorem (Blasiak, S.) If for any pair of non-adjacent vertices, u, v ,
in G we have d(u) + d(v) ≥ n then G is Class 0.

Corollary (Czygrinow, Hurlbert - ’03) If δ(G ) ≥ ⌈n
2⌉ then G is

Class 0.
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Degree Sum Result

Theorem (Blasiak, S.) If for any pair of non-adjacent vertices, u, v ,
in G we have d(u) + d(v) ≥ n then G is Class 0.

Corollary (Czygrinow, Hurlbert - ’03) If δ(G ) ≥ ⌈n
2⌉ then G is

Class 0.

Theorem (Blasiak, S.) Let G be a graph on n ≥ 6 vertices. If for
each maximal independent set, S , of G we have

Σ
v∈S

d(v) ≥ (|S | − 1)(n − |S |) + 2

then G is Class 0.
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Showing sharpness

cut−vertex

       set

independent

|S|
n−|S|
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The proof...

The proof relies on a result of Clarke, Hochberg, Hurlbert (’97)
that characterizes graphs with diameter two and connectivity at
least two which are not Class 0.

We show that our degree sum condition implies that G has
diameter two and is 2-connected. The graphs characterized by
CHH do not meet the degree sum condition and so any graph
meeting the degree sum condition must be Class 0.
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Edge density for Class 0

Corollary (Pachter, Snevily, Voxman - ’95) Let G be a connected
graph with n ≥ 6 vertices and |E (G )| edges. If
|E (G )| ≥

(

n−1
2

)

+ 2, then G is Class 0.
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Edge density for Class 0

Corollary (Pachter, Snevily, Voxman - ’95) Let G be a connected
graph with n ≥ 6 vertices and |E (G )| edges. If
|E (G )| ≥

(

n−1
2

)

+ 2, then G is Class 0.

Proof: As
(

n
2

)

− (
(

n−1
2

)

+ 2) = n − 3, the hypothesis implies that
G has at most n − 3 non-edges.
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Edge density for Class 0

Corollary (Pachter, Snevily, Voxman - ’95) Let G be a connected
graph with n ≥ 6 vertices and |E (G )| edges. If
|E (G )| ≥

(

n−1
2

)

+ 2, then G is Class 0.

n−|S|

2

|S||S|

2
(   ) non−edges

non−edges n−3−

       set

independent

|S|

(   )
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Edge density for Class 0

Corollary (Pachter, Snevily, Voxman - ’95) Let G be a connected
graph with n ≥ 6 vertices and |E (G )| edges. If
|E (G )| ≥

(

n−1
2

)

+ 2, then G is Class 0.
Proof: Thus,

Σ
v∈S

d(v) ≥ |S |(n − |S |) − (n − 3 −

(

|S |

2

)

)

≥ (|S | − 1)(n − |S |) + 2.

Applying the theorem, G is Class 0.
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On-going work

We are currently investigating the minimum number of edges in a
Class 0 graph .... look for more soon!
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