Extremal Problems on Bipartite Graphs

John Schmitt Middlebury College

April, 2007

John Schmitt Middlebury College Extremal Problems on Bipartite Graphs

御 と く ヨ と く ヨ と …

An Erdős problem in number theory, 1938

Problem

How many integers can one choose between 1 and n so that no one divides the product of two others?

An Erdős problem in number theory, 1938

Problem

How many integers can one choose between 1 and n so that no one divides the product of two others?

Suppose n = 100. A bad set: $S = \{6, 11, 13, 22, 33\}$, since 6 divides 22×33 .

An Erdős problem in number theory, 1938

Problem

How many integers can one choose between 1 and n so that no one divides the product of two others? Suppose n = 100.

A good set

 $\begin{array}{rcl} S &=& \{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61, \\ && 67,71,73,79,83,89,97 \} \end{array}$

Let
$$A = \{x : 1 \le x \le n^{2/3}\}$$
, $P = \{p : p \text{ prime}, n^{2/3} , $B = A \cup P$$

Each integer between 1 and n can be written as a product of two integers, one from A and one from B.

御 と く ヨ と く ヨ と …

Let $A = \{x : 1 \le x \le n^{2/3}\}$, $P = \{p : p \text{ prime}, n^{2/3} , <math>B = A \cup P$

Each integer between 1 and n can be written as a product of two integers, one from A and one from B.

If
$$n = 100$$
, we have, $A = \{1, 2, 3, \dots, 21\}$
 $P = \{23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97\}$

$$B = \{1, 2, 3, \dots, 21, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97\}$$

▲□ > ▲ □ > ▲ □ > ▲ □ > ● ● ●

注入 注

문 🛌 🚊

(58)(63)=3654 (42)(87)=3654

< ∃⇒

FORBID QUADRILATERALS FORBID $C_4 = K_{2,2}$

문 문 문

Erdős determined that the maximum number of edges in a $K_{2,2}$ (quadrilateral)-free balanced bipartite graph with |A| = k = |B| is $3k^{3/2}$.

This implies that the answer to his question is

 $\pi(n)+O(n^{3/4}),$

where $\pi(n)$ denotes the number of primes less than or equal to n.

You can't do much better than choosing the primes.

伺下 イヨト イヨト

Consider a finite projective plane of order p: a set of p^2+p+1 points together with a collection of $\{p+1\}$ -subsets of these points (called lines) which has the following properties -

- each line is incident with p + 1 points,
- each point is incident with p+1 lines,
- any pair of points are joined by exactly one line,
- > any pair of lines intersect in exactly one point.

伺い イヨン イヨン

Consider a finite projective plane of order p: a set of $p^2 + p + 1$ points together with a collection of $\{p + 1\}$ -subsets of these points (called lines) which has the following properties -

- each line is incident with p + 1 points,
- each point is incident with p+1 lines,
- any pair of points are joined by exactly one line,
- > any pair of lines intersect in exactly one point.

Build the point-line incidence graph G of a projective plane of order p. This is a p + 1-regular bipartite graph which has $2(p^2 + p + 1) = n$ vertices and $O(n^{3/2})$ edges.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $G_{n,n}$ be a balanced bipartite $K_{2,2}$ -free graph, then $G_{n,n}$ contains at most $\frac{n}{2}(1 + \sqrt{4n-3})$ edges.

個 と く ヨ と く ヨ と …

Let $G_{n,n}$ be a balanced bipartite $K_{2,2}$ -free graph, then $G_{n,n}$ contains at most $\frac{n}{2}(1 + \sqrt{4n-3})$ edges. If we denote the degrees of the vertices in the first partite set by d_1, \ldots, d_n , then it follows that

$$\binom{n}{2} \geq \Sigma \binom{d_i}{2},$$

since each pair of vertices in the second set has at most one common neighbor in the first set.

If $G_{n,n}$ contains more edges than stated then after some algebraic manipulation using this inequality we may arrive at a contradiction.

Extremal Graph Theory deals with the inevitable occurrence of some specified structure when some graph invariant (such as the edge density) exceeds a certain threshold.

伺 ト イヨト イヨト

The father of Extremal Graph Theory

Turán's Theorem, 1941 The maximum number of edges in K_t -free graph on *n* vertices, $ex(n, K_t)$, is

$$(1-\frac{1}{t-1})\frac{n^2}{2}.$$

Furthermore, the only graph which achieves this bound is $K_{n_1,n_2,...n_{t-1}}$, where the n_i are as balanced as possible.

Theorem Given a graph F with chromatic number, $\chi(F)$, at least three, the maximum number of edges in an F-free graph on n, ex(n, F), vertices is

$$(1-\frac{1}{\chi(F)-1})\frac{n^2}{2}+o(n^2).$$

・ 回 と ・ ヨ と ・ ヨ と …

The Erdős-Stone-Simonovits Theorem does not apply to graphs with chromatic number two!

Problem Determine $ex(n, K_{s,t})$.

Problem of Zarankiewicz Determine $ex(n, n; K_{s,t})$, the maximum number of edges in a $K_{s,t}$ -free bipartite graph, with partite sets of size n.

Obtaining an upper bound for the latter problem yields an upper bound for the former.

伺 ト イヨト イヨト

$$ex(n, n; K_{s,t}) < cn^{2-1/t},$$

where c is a constant depending on s and t.

Is it true that there exists a constant c' depending on s and t such that $ex(n, n; K_{s,t}) > c' n^{2-1/t}$?

$$ex(n, n; K_{s,t}) < cn^{2-1/t},$$

where c is a constant depending on s and t.

Is it true that there exists a constant c' depending on s and t such that $e_x(n, n; K_{s,t}) > c' n^{2-1/t}$? Yes for $K_{2,2}$ (Erdős) and $K_{s,2}$ (Erdős, Rényi and Sós)

A B A A B A

$$ex(n, n; K_{s,t}) < cn^{2-1/t},$$

where c is a constant depending on s and t.

Is it true that there exists a constant c' depending on s and t such that $ex(n, n; K_{s,t}) > c' n^{2-1/t}$?

Yes for $K_{3,3}$ (Brown, and later Füredi)

(4) (2) (4) (2) (4)

$$ex(n, n; K_{s,t}) < cn^{2-1/t},$$

where c is a constant depending on s and t.

Is it true that there exists a constant c' depending on s and t such that $ex(n, n; K_{s,t}) > c' n^{2-1/t}$?

Yes for $K_{\geq t!+1,t}$ (Kollár, Rónyai and Szabó)

通 とう きょう うちょう

Let $S = (a_1, a_2, ..., a_m; b_1, b_2, ..., b_n)$ be a pair of positive integer sequences.

We say that *S* is a *bigraphic pair* if there exists some simple bipartite graph *G* with partite sets $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ such that the degree of x_i is a_i and the degree of y_j is b_j .

伺 ト イヨト イヨト

Let $S = (a_1, a_2, ..., a_m; b_1, b_2, ..., b_n)$ be a pair of positive integer sequences.

We say that S is a *bigraphic pair* if there exists some simple bipartite graph G with partite sets $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ such that the degree of x_i is a_i and the degree of y_j is b_j .

Let $\sigma(n, m; F)$ denote the minimum sum of one of these pairs which guarantees the existence of some G containing F as a subgraph.

Problem Determine $\sigma(n, m; K_{s,t})$.

伺 ト イヨト イヨト

Theorem (Ferrara, Jacobson, S., Siggers) For all $1 \le s \le t$, there exists an m_0 such that for $n \ge m \ge m_0$ the following holds:

$$\sigma(n,m;K_{s,t}) = n(s-1) + m(t-1) - (t-1)(s-1) + 1.$$

< 注 ▶ - 注

▲ @ ▶ < ≥ ▶</p>

<2 € > 2 €

▲ 御 ▶ → ミ ▶

★ 臣 ▶ 二 臣

(4日) (日)

 $S = (m^{s-1}, (t-1)^{m-s+1}, (s-1)^{n-m}; n^{s-1}, (t-1)^{m-s+1}) \text{ and the sum of the first sequence (and the second) is}$ n(s-1) + m(t-1) - (t-1)(s-1).

Proof of Upper Bound

Let S be a bigraphic pair with at least the sum given. Start by picking the best realization of S on the vertices of highest degree.

x^*b is not an edge as otherwise d(b) > d(y)

y^*a is not an edge as otherwise d(a) > d(x)

|A|, |B| < (s-1)(t-1) + 1 (i.e. these sets are small)

< 臣 > < 臣 > □

|A|, |B| < (s-1)(t-1) + 1 (i.e. these sets are small)

$d(x^*), d(y^*)$ are small as otherwise d(a) > d(x)

Finally....

Finally....

æ

Finally....

æ

Lemma (FJSS) If $n \ge m$ then $\sigma(n, m; P_3) = m + 1$, $\sigma(n, m : P_4) = n + 1$. Theorem (FJSS) For t > 2 and n > m > t + 1,

$$\sigma(n,m:P_{2t+1}) = \sigma(n,m:P_{2t+2}) = n(t-1) + m - (t-1) + 1.$$

Theorem (FJSS) For $t \ge 2$ and $n \ge m \ge 2(t + 1)$,

$$\sigma(n,m:C_{2t}) = n(t-1) + m - (t-1) + 1.$$

- ▲ 문 ▶ - - 문

- Determine $\sigma(n, m; F)$ for any bipartite graph F.
- Solve the Zarankiewicz problem, somebody please!

・ 回 ト ・ ヨ ト ・ ヨ ト …