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An Erdős problem in number theory, 1938

Problem
How many integers can one choose between 1 and n so that no
one divides the product of two others?
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An Erdős problem in number theory, 1938

Problem
How many integers can one choose between 1 and n so that no
one divides the product of two others?

Suppose n = 100.
A bad set: S = {6, 11, 13, 22, 33}, since 6 divides 22 × 33.
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An Erdős problem in number theory, 1938

Problem
How many integers can one choose between 1 and n so that no
one divides the product of two others?

Suppose n = 100.

A good set

S = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

67, 71, 73, 79, 83, 89, 97}
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A solution

Let A = {x : 1 ≤ x ≤ n2/3}, P = {p : p prime, n2/3 < p ≤ n},
B = A ∪ P

Each integer between 1 and n can be written as a product of two
integers, one from A and one from B .
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A solution

Let A = {x : 1 ≤ x ≤ n2/3}, P = {p : p prime, n2/3 < p ≤ n},
B = A ∪ P

Each integer between 1 and n can be written as a product of two
integers, one from A and one from B .
If n = 100, we have, A = {1, 2, 3, . . . , 21}
P = {23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

B = {1, 2, 3, . . . , 21, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97}
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Turning it into a graph problem
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Turning it into a graph problem
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Turning it into a graph problem
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(42)(87)=3654

(58)(63)=3654
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Turning it into a graph problem
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Erdős determined that the maximum number of edges in a
K2,2(quadrilateral)-free balanced bipartite graph with
|A| = k = |B | is 3k3/2.
This implies that the answer to his question is

π(n) + O(n3/4),

where π(n) denotes the number of primes less than or equal to n.

You can’t do much better than choosing the primes.
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A construction of a K2,2-free graph with many edges

Consider a finite projective plane of order p: a set of p2 + p + 1
points together with a collection of {p + 1}-subsets of these points
(called lines) which has the following properties -

◮ each line is incident with p + 1 points,

◮ each point is incident with p + 1 lines,

◮ any pair of points are joined by exactly one line,

◮ any pair of lines intersect in exactly one point.

John Schmitt Middlebury College Extremal Problems on Bipartite Graphs



A construction of a K2,2-free graph with many edges

Consider a finite projective plane of order p: a set of p2 + p + 1
points together with a collection of {p + 1}-subsets of these points
(called lines) which has the following properties -

◮ each line is incident with p + 1 points,

◮ each point is incident with p + 1 lines,

◮ any pair of points are joined by exactly one line,

◮ any pair of lines intersect in exactly one point.

Build the point-line incidence graph G of a projective plane of
order p. This is a p + 1-regular bipartite graph which has
2(p2 + p + 1) = n vertices and O(n3/2) edges.
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Showing the upper bound

Let Gn,n be a balanced bipartite K2,2-free graph, then Gn,n

contains at most n
2
(1 +

√
4n − 3) edges.
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Showing the upper bound

Let Gn,n be a balanced bipartite K2,2-free graph, then Gn,n

contains at most n
2
(1 +

√
4n − 3) edges.

If we denote the degrees of the vertices in the first partite set by
d1, . . . , dn, then it follows that

(

n

2

)

≥ Σ

(

di

2

)

,

since each pair of vertices in the second set has at most one
common neighbor in the first set.

If Gn,n contains more edges than stated then after some algebraic
manipulation using this inequality we may arrive at a contradiction.
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The tip of the iceberg

Extremal Graph Theory deals with the inevitable occurrence of
some specified structure when some graph invariant (such as the
edge density) exceeds a certain threshold.
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The father of Extremal Graph Theory

Paul Turán

Turán’s Theorem, 1941 The maximum number of edges in Kt -free
graph on n vertices, ex(n,Kt), is

(1 − 1

t − 1
)
n2

2
.

Furthermore, the only graph which achieves this bound is
Kn1,n2,...nt−1

, where the ni are as balanced as possible.
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Erdős-Stone-Simonovits Theorem

Theorem Given a graph F with chromatic number, χ(F ), at least
three, the maximum number of edges in an F -free graph on n,
ex(n,F ), vertices is

(1 − 1

χ(F ) − 1
)
n2

2
+ o(n2).
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The problem of Zarankiewicz

The Erdős-Stone-Simonovits Theorem does not apply to graphs
with chromatic number two!

Problem Determine ex(n,Ks,t).

Problem of Zarankiewicz Determine ex(n, n;Ks,t), the maximum
number of edges in a Ks,t-free bipartite graph, with partite sets of
size n.

Obtaining an upper bound for the latter problem yields an upper
bound for the former.
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It can be shown that for 2 ≤ t ≤ s we have

ex(n, n;Ks,t) < cn2−1/t
,

where c is a constant depending on s and t.
Is it true that there exists a constant c ′ depending on s and t such
that ex(n, n;Ks,t) > c ′n2−1/t?
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It can be shown that for 2 ≤ t ≤ s we have

ex(n, n;Ks,t) < cn2−1/t
,

where c is a constant depending on s and t.
Is it true that there exists a constant c ′ depending on s and t such
that ex(n, n;Ks,t) > c ′n2−1/t?
Yes for K2,2 (Erdős) and Ks,2 (Erdős, Rényi and Sós)
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It can be shown that for 2 ≤ t ≤ s we have

ex(n, n;Ks,t) < cn2−1/t
,

where c is a constant depending on s and t.
Is it true that there exists a constant c ′ depending on s and t such
that ex(n, n;Ks,t) > c ′n2−1/t?

Yes for K3,3 (Brown, and later Füredi)
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It can be shown that for 2 ≤ t ≤ s we have

ex(n, n;Ks,t) < cn2−1/t
,

where c is a constant depending on s and t.
Is it true that there exists a constant c ′ depending on s and t such
that ex(n, n;Ks,t) > c ′n2−1/t?

Yes for K≥t!+1,t (Kollár, Rónyai and Szabó)

John Schmitt Middlebury College Extremal Problems on Bipartite Graphs



A variation of the Zarankiewicz problem

Let S = (a1, a2, . . . , am; b1, b2, . . . bn) be a pair of positive integer
sequences.
We say that S is a bigraphic pair if there exists some simple
bipartite graph G with partite sets X = {x1, . . . xm} and
Y = {y1, . . . yn} such that the degree of xi is ai and the degree of
yj is bj .
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A variation of the Zarankiewicz problem

Let S = (a1, a2, . . . , am; b1, b2, . . . bn) be a pair of positive integer
sequences.
We say that S is a bigraphic pair if there exists some simple
bipartite graph G with partite sets X = {x1, . . . xm} and
Y = {y1, . . . yn} such that the degree of xi is ai and the degree of
yj is bj .
Let σ(n,m;F ) denote the minimum sum of one of these pairs
which guarantees the existence of some G containing F as a
subgraph.
Problem Determine σ(n,m;Ks,t).
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Our result

Theorem (Ferrara, Jacobson, S., Siggers) For all 1 ≤ s ≤ t, there
exists an m0 such that for n ≥ m ≥ m0 the following holds:

σ(n,m;Ks,t) = n(s − 1) + m(t − 1) − (t − 1)(s − 1) + 1.
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Proof of Lower Bound

n m
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Proof of Lower Bound
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Proof of Lower Bound
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Proof of Lower Bound

n

(t−s)−regular
m−s+1m−s+1

n−m

s−1s−1

m

S = (ms−1, (t − 1)m−s+1, (s − 1)n−m; ns−1, (t − 1)m−s+1) and the
sum of the first sequence (and the second) is
n(s − 1) + m(t − 1) − (t − 1)(s − 1).
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Proof of Upper Bound

Let S be a bigraphic pair with at least the sum given. Start by
picking the best realization of S on the vertices of highest degree.
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ab is an edge
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ab is an edge
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ab is an edge
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ab is an edge
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x∗b is not an edge as otherwise d(b) > d(y)
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y ∗a is not an edge as otherwise d(a) > d(x)
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av is an edge
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av is an edge
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|A|, |B | < (s − 1)(t − 1) + 1 (i.e. these sets are small)
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|A|, |B | < (s − 1)(t − 1) + 1 (i.e. these sets are small)
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d(x∗), d(y ∗) are small as otherwise d(a) > d(x)

b
B

A

y*

a

x*

mn

t
s

x

y

John Schmitt Middlebury College Extremal Problems on Bipartite Graphs



Finally....
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Finally....
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Further Results

Lemma (FJSS)

If n ≥ m then σ(n,m;P3) = m + 1, σ(n,m : P4) = n + 1.

Theorem (FJSS)

For t ≥ 2 and n ≥ m ≥ t + 1,

σ(n,m : P2t+1) = σ(n,m : P2t+2) = n(t − 1) + m − (t − 1) + 1.

Theorem (FJSS)

For t ≥ 2 and n ≥ m ≥ 2(t + 1),

σ(n,m : C2t) = n(t − 1) + m − (t − 1) + 1.
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Open Problems

◮ Determine σ(n,m;F ) for any bipartite graph F .

◮ Solve the Zarankiewicz problem, somebody - please!
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