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Introduction

Graph pebbling is a technique developed for proving results in
number theory, introduced by Lagarias and Saks and first used by
Fan Chung.

John Schmitt Graph pebbling in sparse graphs



Introduction

Graph pebbling is a mathematical model for the transportation of
consumable resources.
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Introduction

A pebbling move consists of removing two pebbles from a vertex
and placing one of them on an adjacent vertex.
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Introduction

Pebbling number of a graph G, denoted 7(G), is the least number
of pebbles necessary to guarantee that, regardless of distribution of
pebbles and regardless of target vertex, there exists a sequence of
pebbling moves that enables us to place a pebble on the target
vertex.
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Introduction

Lower Bound on the Pebbling Number

7(G) > max{n, 292m(C)}
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If 7(G) = n, then G is called Class 0.

Class 0 graphs include:

v

the complete graph, K,

the complete t-partite graph (except stars), Ky, p,.... p:s
the d-dimensional hypercube, Q4 (F. Chung, '92),
Petersen graph,

Kneser graph (certain instances).
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Problem :
Find necessary and sufficient conditions for G to be Class 0.
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Problem :
Find necessary and sufficient conditions for G to be Class 0.

Most results have placed conditions on diameter and/or
connectivity.
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Class 0 graphs don't have a cut-vertex

cut—vertex
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Class 0 graphs don't have a cut-vertex
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Degree Sum Condition

Our Result

Proposition (Blasiak, S.) If for any pair of non-adjacent vertices,
u,v, in G we have d(u) + d(v) > n, then G is Class 0.

Corollary (Czygrinow, Hurlbert - '03) If §(G) > [5], then G is
Class 0.
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Degree Sum Condition

Our Result

Proposition (Blasiak, S.) If for any pair of non-adjacent vertices,
u,v, in G we have d(u) + d(v) > n, then G is Class 0.

Corollary (Czygrinow, Hurlbert - '03) If §(G) > [5], then G is
Class 0.

Theorem (Blasiak, S.) Let G be a graph on n > 6 vertices. If for
each maximal independent set S of G we have

E dv) = (IS =1)(n—1S]) +2,

then G is Class 0.
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Degree Sum Condition

Showing sharpness

cut—vertex
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Degree Sum Condition

Corollary Complete multi-partite graphs (except stars) are Class 0.
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Degree Sum Condition

Edge density for Class 0

Corollary (Pachter, Snevily, Voxman - '95) Let G be a connected
graph with n > 6 vertices and |E(G)| edges. If
|E(G)| > (";1) + 2, then G is Class 0. And, the bound is sharp.
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Degree Sum Condition

Edge density for Class 0

Corollary (Pachter, Snevily, Voxman - '95) Let G be a connected
graph with n > 6 vertices and |E(G)| edges. If

|E(G)| > (";1) + 2, then G is Class 0. And, the bound is sharp.
PROOF: As (3) — ((";1) + 2) = n— 3, the hypothesis implies that
G has at most n — 3 non-edges.
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Degree Sum Condition

Edge density for Class 0

Corollary (Pachter, Snevily, Voxman - '95) Let G be a connected
graph with n > 6 vertices and |E(G)| edges. If

|E(G)| > (";1) + 2, then G is Class 0. And, the bound is sharp.
PROOF: As (3) — ((";1) + 2) = n— 3, the hypothesis implies that
G has at most n — 3 non-edges.

(\j ) non—edges n—3»(|§| ) non—edges
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Degree Sum Condition

Edge density for Class 0

Corollary (Pachter, Snevily, Voxman - '95) Let G be a connected
graph with n > 6 vertices and |E(G)| edges. If
|E(G)| > ("51) + 2, then G is Class 0. And, the bound is sharp.

Proof: Thus,
s
I = islo-1sh- -3 ()
> (5]~ 1)(n—I5) +2.

Applying the theorem, G is Class 0.
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Cheap and No Class

What about the other extreme?

Determine the least number of edges in an n-vertex Class 0 graph,
f(n,0).
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Cheap and No Class

Recall that this graph is Class 0, and so f(n,0) < 2n — 4 edges.
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Cheap and No Class

Recall that this graph is Class 0, and so f(n,0) < 2n — 4 edges.
So, the minimum degree of the graph we seek has to be less than 4.
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Cheap and No Class

Recall that this graph is Class 0, and so f(n,0) < 2n — 4 edges.
So, the minimum degree of the graph we seek has to be less than 4.

Recall, we can't have degree 1 vertices as Class 0 graphs don't
have cut-vertices.
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Cheap and No Class

How about minimum degree 27

Proposition

In a graph G on n> 6 (or 7) vertices, if vertex vi has d(vi) = 2
(or 3), vertex vo has d(v2) = 2 and dist(vy, v2) > 3 then w(G) > n.
Degree 2 vertices can't be far apart.....

Lemma
Let G be a Class 0 graph on n > 6 vertices, X the set of degree two
vertices of G, Y := N[X]\ X. One of the following conditions must hold:

1. G[X] = Ps = x1xax3 and x is adjacent to y, x3 is adjacent to y’
with y # ',
2. G[X]=P2U(r—2)P; and |Y| =2,

3. G[X] = rPy and there exists a vertex y; € Y which is adjacent to
each vertex in X.

and so we can describe the structure of graphs'that contain them:
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Cheap and No Class

Lemma
For n > 10, f(n,0) > [37].

Proof: Applies previous lemma, first two cases are easy.
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Cheap and No Class

How about minimum degree 3?7 We don’t have an argument for
how degree 3 vertices affect the structure of the graph.
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Cheap and No Class

How about minimum degree 3?7 We don’t have an argument for
how degree 3 vertices affect the structure of the graph.

But surely there would be more edges in a Class 0 graph with
minimum degree 3. Right?
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Cheap and No Class

How about minimum degree 3?7 We don’t have an argument for
how degree 3 vertices affect the structure of the graph.

But surely there would be more edges in a Class 0 graph with
minimum degree 3. Right?

Probably not.
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Cheap and No Class

So what's the minimum number of edges in a graph with minimum
degree 3 and fixed diameter?
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Cheap and No Class

So what's the minimum number of edges in a graph with minimum
degree 3 and fixed diameter?

Bondy and Murty posed this question (recently).
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Cheap and No Class

Bondy and Murty knew that the minimum number of edges in a
graph with minimum degree 3 and diameter two is:

And, we know this graph to be Class 0.
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Cheap and No Class

And, it was suggested to them by Erdds that for diameter 4 the
following graph might be best:
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Cheap and No Class

A more interesting graph P with an equal number of edges is:

(a generalization of the Petersen graph).
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Cheap and No Class
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Cheap and No Class
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Cheap and No Class
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Cheap and No Class
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Cheap and No Class

Proposition

m(P) < n+17.

Proof: Uses linear programming to find “witnesses”, and we take
advantage of the symmetry of the graph.

Conjecture
P is Class 0.

If P is Class 0, then f(n,0) < 5("3_1).
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Proposition

m(P) < n+17.

Proof: Uses linear programming to find “witnesses”, and we take
advantage of the symmetry of the graph.

Conjecture
P is Class 0.

If P is Class 0, then f(n,0) < 5("3_1).

Thanks!
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