John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $\rho \ge 4$ 1-factors Threshold or no Bounds

Questions

An extremal problem for a constant number of 1-factors

John Schmitt

Middlebury College

June 2010

joint work with Andrzej Dudek (Carnegie Mellon University)

8th French Combinatorics Conference, U. Paris Sud

John Schmitt

Introduction

Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or no Bounds

Questions

- *G* a graph of order *n*
- 1-factor a spanning 1-regular subgraph (i.e. a perfect matching)

- $\Phi(G)$ number of 1-factors in G
- $G_1 \cup G_2$ the *union* of G_1 and G_2
- $G_1 + G_2$ the *join* of G_1 and G_2
- n an even integer throughout

John Schmitt

Introduction

Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or no Bounds

Questions

- *G* a graph of order *n*
- 1-factor a spanning 1-regular subgraph (i.e. a perfect matching)
- $\Phi(G)$ number of 1-factors in G
- $G_1 \cup G_2$ the *union* of G_1 and G_2
- $G_1 + G_2$ the *join* of G_1 and G_2
- n an even integer throughout (except when we simply use it as a letter of a word, e.g. even)

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Theorem (G. Hetyei, unpublished - communicated by L. Lovász ('72))

The maximum number of edges in an n-vertex graph G with a unique 1-factor (i.e. $\Phi(G) = 1$) is $\frac{n^2}{4}$. The n-vertex extremal graph H_n is unique. For n = 2 it is $H_2 = K_2$ and for $n \ge 4$ we can define it recursively as $H_n = K_1 + (H_{n-2} \cup K_1)$.

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $\rho \geq 4$ 1-factors Threshold or not Bounds

Questions

Theorem (G. Hetyei, unpublished - communicated by L. Lovász ('72))

The maximum number of edges in an n-vertex graph G with a unique 1-factor (i.e. $\Phi(G) = 1$) is $\frac{n^2}{4}$. The n-vertex extremal graph H_n is unique. For n = 2 it is $H_2 = K_2$ and for $n \ge 4$ we can define it recursively as $H_n = K_1 + (H_{n-2} \cup K_1)$.

Proof.

There can be at most 2 edges joining two distinct edges of the 1-factor. Thus,

$$|E(G)| \le n/2 + 2\binom{n/2}{2} = \frac{n^2}{4}.$$

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or nor Bounds

Questions

Various authors considered a generalization of Hetyei's problem: what is the maximum number of edges in an *n*-vertex graph with unique *k*-factor? Results from:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- G. Hendry ('84)
- P. Johann ('00)
- L. Volkmann ('04)
- A. Hoffmann, L. Volkmann ('04)

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Various authors considered a generalization of Hetyei's problem: what is the maximum number of edges in an *n*-vertex graph with unique *k*-factor? Results from:

- G. Hendry ('84)
- P. Johann ('00)
- L. Volkmann ('04)
- A. Hoffmann, L. Volkmann ('04)

For extremal and structural results on 1-factors see:

- Bollobás' Extremal Graph Theory (cf. Chapter 2)
- Lovász and Plummer's Matching Theory (cf. Ch. 5 and 8)

The problem

An extremal problem for a constant number of 1-factors

John Schmitt

Introduction Definitions and notation **History** Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Problem

Determine maximum size and structure of such graphs when $\Phi(G) = p \ge 1$.

Notation: Let f(n, p) denote the maximum number of edges in *n*-vertex graph *G* with $\Phi(G) = p$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The problem

An extremal problem for a constant number of 1-factors

John Schmitt

Introduction Definitions and notation **History** Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Problem

Determine maximum size and structure of such graphs when $\Phi(G) = p \ge 1$.

Notation: Let f(n, p) denote the maximum number of edges in *n*-vertex graph *G* with $\Phi(G) = p$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

e.g.,
$$f(n, 1) = \frac{n^2}{4}$$

Overview of our results

An extremal problem for a constant number of 1-factors

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

- Determine f(n, p) for $2 \le p \le 6$ and find extremal graphs for p = 2, 3.
- Give bounds on f(n, p) for arbitrary p, showing that f(n, p) grows like $\frac{n^2}{4}$.
- Observe irregular and non-monotonic behavior of f(n, p).

An extremal				
problem for a constant				
number of				
1-factors				

Definitions a notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factor Threshold or no Bounds

Questions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Basic fact

An extremal
problem for a
constant
number of
1-factors

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factor Threshold or no Bounds

Questions

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or no Bounds

Questions

Lemma

Let
$$f(n, p) > 0$$
. Then $f(n + 2, p) \ge f(n, p) + (n + 1)$.
Consequently, if $f(n, p) \ge \frac{n^2}{4} + c$ then $f(n + 2, p) \ge \frac{(n+2)^2}{4} + c$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or no Bounds

Questions

Lemma

Let
$$f(n, p) > 0$$
. Then $f(n + 2, p) \ge f(n, p) + (n + 1)$.
Consequently, if $f(n, p) \ge \frac{n^2}{4} + c$ then $f(n + 2, p) \ge \frac{(n+2)^2}{4} + c$.

Proof.

Let G_n be an extremal graph of order n with Φ(G_n) = p.
Define recursively G_{n+2} = K₁ + (G_n ∪ K₁). Note that Φ(G_{n+2}) = Φ(G_n) = p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or no Bounds

Questions

Lemma

Let
$$f(n, p) > 0$$
. Then $f(n + 2, p) \ge f(n, p) + (n + 1)$.
Consequently, if $f(n, p) \ge \frac{n^2}{4} + c$ then $f(n + 2, p) \ge \frac{(n+2)^2}{4} + c$.

Proof.

- Let G_n be an extremal graph of order n with $\Phi(G_n) = p$.
- Define recursively $G_{n+2} = K_1 + (G_n \cup K_1)$. Note that $\Phi(G_{n+2}) = \Phi(G_n) = p$.
- Hence, $f(n+2, p) \ge |E(G_{n+2})| = |E(G_n)| + (n+1) = f(n, p) + (n+1)$, as required.

f(n,2) - an extremal graph, F_n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Theorem

For every even $n \ge 4$, $f(n, 2) = \frac{n^2}{4} + 1$; otherwise f(n, 2) = 0. Furthermore, for every $n \ge 4$ there are precisely $\frac{n-2}{2}$ extremal graphs G_n^i , $1 \le i \le \frac{n-2}{2}$, defined recursively as follows:

$$G_n^i = \begin{cases} K_1 + (G_{n-2}^i \cup K_1) & \text{for } 1 \le i \le \frac{n-4}{2}, \\ F_n & \text{for } i = \frac{n-2}{2}. \end{cases}$$

Proof for $f(n, 2) = \frac{n^2}{4} + 1$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Proof for $f(n,2) = \frac{n^2}{4} + 1$

Questions

Proof for $f(n,2) = \frac{n^2}{4} + 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof for $f(n,2) = \frac{n^2}{4} + 1$

An extremal problem for a constant number of 1-factors		
		No even chords.
Results Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds		
	Hetyei's graph	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Proof for $f(n,2) = \frac{n^2}{4} + 1$

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or no Bounds

Questions

 1		

Hetyei's graph

One odd chord per pair red edges.

Proof for $f(n,2) = \frac{n^2}{4} + 1$

Proof for $f(n,2) = \frac{n^2}{4} + 1$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

Proof for $f(n,2) = \frac{n^2}{4} + 1$

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or no Bounds

Questions

$$|E(G)| \leq \underbrace{(k-1)}^{r_1,\dots,r_{k-1}} + \underbrace{2\binom{k-1}{2}}_{(k-1)} + \underbrace{(k-1)(n-2k+2)}^{r_1,\dots,r_{k-1} \text{ to } C} + \underbrace{(n-2k+2)}_{(n-2k+2)} + \underbrace{(n-2k+2)}_{($$

Proof for $f(n,2) = \frac{n^2}{4} + 1$

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or no Bounds

Questions

$$|E(G)| \leq \underbrace{(k-1)}_{r_1,\dots,r_{k-1}} + \underbrace{2\binom{k-1}{2}}_{(k-1)} + \underbrace{(k-1)(n-2k+2)}_{(k-1)(n-2k+2)} + \underbrace{(n-2k+2)}_{(n-2k+2)} +$$

Clearly, on the set $\{0, \ldots, \frac{n}{2} - 1\}$ the function g(k) is maximized when k = n/2 - 1. Thus $|E(G)| \le g(n/2 - 1) = n^2/4 + 1$.

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Analyze when equality holds to obtain extremal graphs. \Box

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

John Schmitt

Introduction Definitions and notation History Overview

Results Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

One can easily generalize the proof of above Theorem to get the following.

Theorem

For every even $n \ge 4$, $f(n,3) = \frac{n^2}{4} + 2$; otherwise f(n,3) = 0. Furthermore, for each $n \ge 4$ there exists a unique extremal graph, for n = 4 it is $G_4 = K_4$ and for $n \ge 6$ it is given by $G_n = K_1 + (G_{n-2} \cup K_1)$.

Lemma

An extremal problem for a constant number of 1-factors

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Let $p \ge 1$ be an integer. Suppose that $f(n, r) \le C$ for every $1 \le r \le p$. Then $f(n, p+1) \le C+1$.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

John Schmitt

Introduction Definitions and notation History Overview

Results Two 1-fact Three 1-fac

 $ho \geq 4$ 1-factors Threshold or not Bounds

Questions

Lemma

Let $p \ge 1$ be an integer. Suppose that $f(n, r) \le C$ for every $1 \le r \le p$. Then $f(n, p+1) \le C+1$.

Proof.

- Let G be an *n*-vertex graph with $\Phi(G) = p + 1 \ge 2$ and f(n, p + 1) edges. By way of contradiction we will assume that f(n, p + 1) > C + 1.
- We may find an edge e in G which belongs to at least one of the 1-factors but *not to all* of the 1-factors. Now consider G e.

John Schmitt

Introduction Definitions and notation History Overview

Results Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not

Bounds

Questions

Lemma

Let $p \ge 1$ be an integer. Suppose that $f(n, r) \le C$ for every $1 \le r \le p$. Then $f(n, p+1) \le C+1$.

Proof.

- Let G be an *n*-vertex graph with $\Phi(G) = p + 1 \ge 2$ and f(n, p + 1) edges. By way of contradiction we will assume that f(n, p + 1) > C + 1.
- We may find an edge *e* in *G* which belongs to at least one of the 1-factors but *not to all* of the 1-factors. Now consider *G* − *e*.
- The graph G e contains r 1-factor(s) for some 1 ≤ r ≤ p and has precisely f(n, p + 1) - 1 > C ≥ f(n, r) edges. This is a contradiction.

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Hetyei's Theorem and this Lemma immediately imply the following.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Corollary

For every $p \ge 1$, $f(n, p) \le \frac{n^2}{4} + (p - 1)$.

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Hetyei's Theorem and this Lemma immediately imply the following.

Corollary

For every
$$p\geq 1$$
, $f(n,p)\leq rac{n^2}{4}+(p-1).$

Table: $f(n,p) = \frac{n^2}{4} + c_p$ for every even $n \ge n_p$.

f(n, p) is not monotonic in p

An extremal problem for a constant number of 1-factors

John Schmitt

Introduction Definitions and notation History Overview

Results Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Remark

It would be nice to prove previous Lemma under a weaker condition, namely, assuming $f(n, p) \leq C$ only. Unfortunately, the function f(n, p) is not monotonic in p. One can check that f(8, 14) = 20 < 21 = f(8, 12). Thus in order to proceed in the proof of Lemma we have to assume that $f(n, r) \leq C$ for all $1 \leq r \leq p$.

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factor Threshold or no Bounds

Questions

Theorem

For every even
$$n \ge 6$$
, $f(n, 4) = \frac{n^2}{4} + 2$; otherwise $f(n, 4) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

John Schmitt

Introduction Definitions and notation History Overview

Results Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Theorem

For every even
$$n \ge 6$$
, $f(n, 4) = \frac{n^2}{4} + 2$; otherwise $f(n, 4) = 0$.

Proof uses approach in previous lemma (finding an edge belonging to two or three 1-factors), connectivity results (to be found in Bollobás' text), and yields no information on structure of extremal graphs.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

A *threshold graph* is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations: (1) addition of a single isolated vertex to the graph, or (2) addition of a single dominating vertex to the graph.

・ロット 4 雪 > ・ 4 目 > ・ 1 目 ・ うらう

John Schmitt

Introduction Definitions and notation History Overview

Results Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

A *threshold graph* is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations: (1) addition of a single isolated vertex to the graph, or (2) addition of a single dominating vertex to the graph.

Fact

Extremal graphs for p = 0, 1, 2, 3 are threshold graphs (and also the ones we know for 4).

▲日▼▲□▼▲□▼▲□▼ □ のので

Fact

Recursive construction maintains threshold property.

John Schmitt

Introduction Definitions and notation History Overview

Results Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Theorem

If $\Phi(G)$ is a prime at least 5, then G is not a threshold graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A lower bound

A lower bound

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへぐ

Then apply recursive construction.

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factor Threshold or no Bounds

Questions

Theorem

For every $p \ge 4$ and even $n \ge 2p$,

$$\frac{n^2}{4} - (p-2)(p-1) \le f(n,p) \le \frac{n^2}{4} + (p-2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factor Threshold or no **Bounds**

Questions

Theorem

For every $p \ge 4$ and even $n \ge 2p$,

$$\frac{n^2}{4} - (p-2)(p-1) \le f(n,p) \le \frac{n^2}{4} + (p-2).$$

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

$f(n, (2t-1)!!) \ge \frac{n^2}{4} + (t^2 - t)$ and is tight for t = 1 and t = 2. Is it always?

Juestion

We know $f(n+2, p) \ge f(n, p) + (n+1)$. Is it tight? If yes, then answer to previous question is yes.

John Schmitt

Introduction Definitions and notation History Overview

Results

Two 1-factors Three 1-factors $p \ge 4$ 1-factors Threshold or not Bounds

Questions

Question

$$f(n, (2t-1)!!) \ge \frac{n^2}{4} + (t^2 - t)$$
 and is tight for $t = 1$ and $t = 2$. Is it always?

Juestion

We know $f(n+2, p) \ge f(n, p) + (n+1)$. Is it tight? If yes, then answer to previous question is yes.

Thanks!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @