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Outline of this talk
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Warning’s Second Theorem with Restricted Variables

Zeros of polynomial systems

Conjecture

(Artin’s Conjecture) Let n, d ∈ Z+ with

d < n.

Let P1(t1, . . . , tn) ∈ Fq[t1, . . . , tn] be a homogeneous polynomial of
degree d. Let

Z = Z (P1) = {x ∈ Fn
q | P1(x) = 0}

be the zero set in Fn
q of P1, and let z = #Z. Then we have z ≥ 2.

Artin was considering Wedderburn’s celebrated theorem that every
finite division ring is a field.
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Zeros of polynomial systems

Theorem

(Chevalley-

Warning

Theorem) Let n, r , d1, . . . , dr ∈ Z+ with
d1 + . . .+ dr < n. For 1 ≤ i ≤ r , let Pi (t1, . . . , tn) ∈ Fq[t1, . . . , tn]
be a polynomial of degree di . Let

Z = Z (P1, . . . ,Pr ) = {x ∈ Fn
q | P1(x) = . . . = Pr (x) = 0}

be the common zero set in Fn
q of the Pi ’s, and let z = #Z. Then:

a) (Chevalley’s Theorem, 1935) We have z = 0 or z ≥ 2.

b) (Warning’s Theorem, 1935) We have z ≡ 0 (mod p).

Theorem

(Warning’s Second Theorem) With same hypotheses,

z = 0 or z ≥ qn−d .
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The polynomial method

The polynomial method!

Encode combinatorial problems via a polynomial so that nonzeros
of polynomial correspond to solutions of the combinatorial problem.

P(t) =
r∏

i=1

(1− Pi (t)q−1)

P(t) is zero whenever any Pi is nonzero.
P(t) is nonzero only when each Pi is zero.
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The polynomial method

A basic theorem of algebra

Fact: A one variable polynomial over a field F can have at most as
many zeros as its degree.

Example: f (t) = t2 − 1 ∈ R[t] and the set A = {1,−1, 3}.
f (3) 6= 0

Lemma

Let F be an arbitrary field, and let f = f (t) be a polynomial in
F[t]. Suppose the degree of f is α (thus the tα coefficient of f is
nonzero). Then, if A is a subset of F with |A| > α, there is an
a ∈ A so that

f (a) 6= 0.
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The polynomial method

Combinatorial Nullstellensatz

A ‘low’ degree polynomial evaluated over a ‘large’ box has a
nonzero.

Theorem

[Combinatorial Nullstellensatz (Part 2), N. Alon 1999] Let F be an
arbitrary field, and let f = f (t1, . . . , tn) be a polynomial in
F[t1, . . . , tn]. Suppose the degree deg(f ) of f is

∑n
i=1 αi , where

each αi is a nonnegative integer, and suppose the coefficient of∏n
i=1 t

αi
i in f is nonzero. Then, if A1, . . . ,An are subsets of F with

|Ai | > αi , there are a1 ∈ A1, . . . , an ∈ An so that f (a1, . . . , an) 6= 0.
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The polynomial method

Applications:

Chevalley’s theorem,

graph coloring,

the Permanent Lemma,

and many, many more.

Some challenges:

Finding an encoding polynomial,

having its degree ‘low’, and

computing an appropriate coefficient.
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The polynomial method

Set-up for Schauz’s Coefficient Formula

Given a polynomial f ∈ F[t1, . . . , tn], define the support of f ,
Supp(f ), as the set of all (α1, . . . , αn) such that the coefficient of
tα1
1 . . . tαn

n in f is nonzero. We say (α1, . . . , αn) ≥ (β1, . . . , βn) if
αi ≥ βi for all i ; this gives us a partial ordering of the elements of
Supp(f ).
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The polynomial method

Schauz’s Coefficient Formula - sharpening Alon’s CN

Theorem

[Coefficient Formula, U. Schauz 2008]
Let f be a polynomial in F[t1, . . . , tn] and let fα1,...,αn denote the
coefficient of tα1

1 · · · tαn
n in f . Suppose that there is no greater

element than (α1, . . . , αn) in Supp(f). Then for any sets
A1, . . . ,An in F such that |Ai | = αi + 1 we have

fα1,...,αn =
∑

(a1,...,an)∈A1×···×An

f (a1, . . . , an)

N(a1, . . . , an)
, (1)

where N(a1, . . . , an) =
∏n

i=1

∏
b∈Ai\{ai}(ai − b).

Note that this is ‘backwards’ to how we usually think – here we
find coefficients from values, not values from the coefficients.
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The polynomial method

Corollary

[Schauz’s Non-uniqueness Theorem, U. Schauz 2008] If
fα1,...,αn = 0, then either f vanishes over A1 × · · · × An or f has at
least two nonzeros over A1 × · · · × An.

Corollary

[U. Schauz 2008] Let F be an arbitrary field, and let f be a
polynomial of degree d in F[t1, . . . , tn]. Then for any subsets
A1, . . . ,An of F satisfying

∑n
i=1(|Ai | − 1) > d, f either vanishes

over A1 × · · · × An or f has at least two nonzeros over
A1 × · · · × An.

If the degree of the polynomial is small relative to the set we look
over, then there cannot be a unique nonzero value.
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The polynomial method

Consequences

Using these ideas, Schauz gave proofs of:

Warning’s Theorem

a restricted variables Chevalley’s Theorem
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The polynomial method

The Alon Füredi Theorem

Balls in bins lemma

A
1

A
2

A
n

Bin Ai holds at most ai balls.
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The polynomial method

The Alon Füredi Theorem

Balls in bins lemma

A
1

A
2

A
n

Bin Ai holds at most ai balls. Distribution of N balls is an n-tuple
y = (y1, . . . , yn) with y1 + . . .+ yn = N and 1 ≤ yi ≤ ai for all i .
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The polynomial method

The Alon Füredi Theorem

Balls in bins lemma

A
1

A
2

A
n

Let Π(y) = y1 · · · yn. If n ≤ N ≤ a1 + . . .+ an, let
m(a1, . . . , an;N) be the minimum value of Π(y) as y ranges over
all distributions of N balls into bins A1, . . . ,An.
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The polynomial method

The Alon Füredi Theorem

Balls in bins lemma

A
1

A
2

A
n

Let P(y) = y1 · · · yn. If n ≤ N ≤ a1 + . . .+ an, let
m(a1, . . . , an;N) be the minimum value of Π(y) as y ranges over
all distributions of N balls into bins A1, . . . ,An. To minimize the
product: serve the largest bins first.
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The polynomial method

The Alon Füredi Theorem

Alon-Füredi Theorem

Theorem

(Alon-Füredi Theorem) Let F be a field, let A1, . . . ,An be
nonempty finite subsets of F. Put A =

∏n
i=1 Ai and ai = #Ai for

all 1 ≤ i ≤ n. Let P ∈ F[t] = F[t1, . . . , tn] be a polynomial. Let

UA = {x ∈ A | P(x) 6= 0}, uA = #UA.

Then uA = 0 or uA ≥ m(a1, . . . , an; a1 + . . .+ an − degP).

Proof.

Induction on n.
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Warning’s Second Theorem
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Warning’s Second Theorem

Proof of Warning’s Second Theorem via Alon-Füredi
Theorem

Put

P(t) =
r∏

i=1

(1− Pi (t)q−1).

Then degP = (q − 1)(deg(P1) + . . .+ deg(Pr )), and

UA = {x ∈ A | P(x) 6= 0} = ZA,

so
zA = #ZA = #UA = uA.

Applying the Alon-Füredi Theorem we get zA = 0 or

zA ≥ m(#A1 + . . .+ #An; #A1 + . . .+ #An − (q − 1)d).
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Warning’s Second Theorem

Theorem

(Restricted Variable Warning’s Second Theorem, P. Clark, A.
Forrow, S. - 2014+) Let K be a number field with ring of integers
R, let p be a nonzero prime ideal of R, and let q = p` be the prime
power such that R/p ∼= Fq. Let A1, . . . ,An be nonempty subsets
of R such that for each i , the elements of Ai are pairwise
incongruent modulo p, and put A =

∏n
i=1 Ai . Let

r , v1, . . . , vr ∈ Z+. Let P1, . . . ,Pr ∈ R[t1, . . . , tn]. Let

ZA = {x ∈ A | Pj(x) ≡ 0 (mod pvj ) ∀1 ≤ j ≤ r}, zA = #ZA.

a) zA = 0 or zA ≥
m
(

#A1, . . . ,#An; #A1 + . . .+ #An −
∑r

j=1(qvj − 1) deg(Pj)
)

.

b) ( Boolean Case) We have z{0,1}n = 0 or

z{0,1}n ≥ 2n−
∑r

j=1(q
vj−1) deg(Pj ).
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Warning’s Second Theorem

The theorem recovers:

Warning’s Second Theorem

Schanuel’s Theorem (reproved by Baker-Schmidt) for
polynomial systems over the rings Z/pvjZ
Schauz’s restricted variable Chevalley Theorem

Schauz’s (and later Brink’s) generalization of these for
polynomial systems over Z
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Warning’s Second Theorem

Applications

Let’s draw integers from a bag and seek a subsequence of these
with sum divisible by n. How many draws must we take?

Say n = 5 and we draw b1 = 6, b2 = 1, b3 = 11, b4 = 1, b5 = 16

6 + 1 + 11 + 1 + 16 = 35

- we win!
The pigeonhole principle applied to the partial sums shows that n
draws is enough.
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Warning’s Second Theorem

Applications

(Erdős-Ginzburg-Ziv 1961) Let’s draw integers from a bag and
seek a subsequence of these with sum divisible by n and with the
number of terms equal to n. How many draws must we take?

Say n = 5 and b1 = 0, b2 = 0, b3 = 0, b4 = 0 and
b5 = 1, b6 = 1, b7 = 1, b8 = 1
So, 2n − 2 draws is not enough. Perhaps 2n − 1 is?
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Warning’s Second Theorem

Applications

Given n = p a prime, we sketch a proof that 2p − 1 terms is
enough. Let us consider a sequence of length m.

Let

P1(t1, . . . , tm) =
m∑
i=1

bi ti ∈ Fp[t1, . . . , tm]

and

P2(t1, . . . tm) =
m∑
i=1

ti ∈ Fp[t1, . . . , tm].

P1 encodes divisibility condition on sum. P2 encodes number of
terms in sequence.
deg(P1) + deg(P2) = 1 + 1 = 2 and
P1(0, . . . , 0) = P2(0, . . . , 0) = 0.
Restrict to Boolean case of RVW2T: get

z{0,1}n ≥ 2m−2(p−1).

Thus, when m > 2p − 2 we have non-trivial solutions.
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Chevalley’s Theorem =⇒ Erdős-Ginzburg-Ziv
Schanuel’s Theorem: computes Davenport constant of finite
commutative p-groups
Schanuel’s Theorem: main technical input of result of Alon,
Kleitman, Lipton, Meshulam, Rabin on selecting from set systems
to get union of cardinality divisible by prime power q

Restricted Variable Warning’s Second Theorem:
applies to each of above to get quantitative refinements, which
include inhomogeneous case;
tool to refine combinatorial existence theorems into
theorems which give explicit lower bounds on number of
combinatorial objects asserted to exist.
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Thank you.


	Zeros of polynomial systems
	The polynomial method
	The Alon Füredi Theorem

	Warning's Second Theorem
	Applications


