John Schmitt

Middlebury College Vermont, USA

Joint work with Pete L. Clark (U. Georgia) and Aden Forrow (M.I.T.)

・ロト ( 母 ) ( 日 ) ( 日 ) ( 日 ) ( 0 ) ( 0 )

# A puzzle without a unique solution



Figure: A 16-clue Sudoku puzzle

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Outline of this talk

## 1 Zeros of polynomial systems

- Artin's conjecture
- Chevalley-Warning Theorem
- Warning's Second Theorem
- 2 Tools from the polynomial method
  - Alon's Combinatorial Nullstellensatz
  - Schauz's generalization
  - Alon-Füredi Theorem
- 3 Warning's Second Theorem
  - A short(!) proof via Alon-Füredi Theorem

うして ふゆう ふほう ふほう うらつ

- A generalization
- Applications

## Conjecture

(Artin's Conjecture) Let 
$$n, d \in \mathbb{Z}^+$$
 with

d < n.

Let  $P_1(t_1, \ldots, t_n) \in \mathbb{F}_q[t_1, \ldots, t_n]$  be a homogeneous polynomial of degree d. Let

$$Z = Z(P_1) = \{x \in \mathbb{F}_q^n \mid P_1(x) = 0\}$$

be the zero set in  $\mathbb{F}_q^n$  of  $P_1$ , and let  $\mathbf{z} = \#Z$ . Then we have  $\mathbf{z} \ge 2$ .

ション ふゆ アメリア イロア しょうくつ

## Conjecture

(Artin's Conjecture) Let 
$$n, d \in \mathbb{Z}^+$$
 with

*d* < *n*.

Let  $P_1(t_1, \ldots, t_n) \in \mathbb{F}_q[t_1, \ldots, t_n]$  be a homogeneous polynomial of degree d. Let

$$Z=Z(P_1)=\{x\in\mathbb{F}_q^n\mid P_1(x)=0\}$$

be the zero set in  $\mathbb{F}_q^n$  of  $P_1$ , and let  $\mathbf{z} = \#Z$ . Then we have  $\mathbf{z} \ge 2$ .

Artin was considering Wedderburn's celebrated theorem that every finite division ring is a field.

うして ふゆう ふほう ふほう うらつ

## Theorem

(Chevalley  $d_1 + \ldots + d_r < n$ . For  $1 \le i \le r$ , let  $P_i(t_1, \ldots, t_n) \in \mathbb{F}_q[t_1, \ldots, t_n]$ be a polynomial of degree  $d_i$ . Let

$$Z = Z(P_1, \ldots, P_r) = \{x \in \mathbb{F}_q^n \mid P_1(x) = \ldots = P_r(x) = 0\}$$

be the common zero set in  $\mathbb{F}_q^n$  of the  $P_i$ 's, and let  $\mathbf{z} = \#Z$ . Then: a) (Chevalley's Theorem, 1935) We have  $\mathbf{z} = 0$  or  $\mathbf{z} \ge 2$ .

うして ふゆう ふほう ふほう うらう

### Theorem

(Chevalley-Warning Theorem) Let  $n, r, d_1, \ldots, d_r \in \mathbb{Z}^+$  with  $d_1 + \ldots + d_r < n$ . For  $1 \le i \le r$ , let  $P_i(t_1, \ldots, t_n) \in \mathbb{F}_q[t_1, \ldots, t_n]$  be a polynomial of degree  $d_i$ . Let

$$Z = Z(P_1, \ldots, P_r) = \{x \in \mathbb{F}_q^n \mid P_1(x) = \ldots = P_r(x) = 0\}$$

be the common zero set in  $\mathbb{F}_q^n$  of the  $P_i$ 's, and let  $\mathbf{z} = \#Z$ . Then: a) (Chevalley's Theorem, 1935) We have  $\mathbf{z} = 0$  or  $\mathbf{z} \ge 2$ . b) (Warning's Theorem, 1935) We have  $\mathbf{z} \equiv 0 \pmod{p}$ .

うして ふゆう ふほう ふほう しょうく

## Theorem

(Chevalley  $d_1 + \ldots + d_r < n$ . For  $1 \le i \le r$ , let  $P_i(t_1, \ldots, t_n) \in \mathbb{F}_q[t_1, \ldots, t_n]$ be a polynomial of degree  $d_i$ . Let

$$Z = Z(P_1, \ldots, P_r) = \{x \in \mathbb{F}_q^n \mid P_1(x) = \ldots = P_r(x) = 0\}$$

be the common zero set in  $\mathbb{F}_q^n$  of the  $P_i$ 's, and let  $\mathbf{z} = \#Z$ . Then: a) (Chevalley's Theorem, 1935) We have  $\mathbf{z} = 0$  or  $\mathbf{z} \ge 2$ . b) (Warning's Theorem, 1935) We have  $\mathbf{z} \equiv 0 \pmod{p}$ .

#### Theorem

(Warning's Second Theorem) With same hypotheses,

$$z = 0$$
 or  $z \ge q^{n-d}$ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うらる

└─ The polynomial method

## The polynomial method!

Encode combinatorial problems via a polynomial so that nonzeros of polynomial correspond to solutions of the combinatorial problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# The polynomial method!

Encode combinatorial problems via a polynomial so that nonzeros of polynomial correspond to solutions of the combinatorial problem.

$$P(\mathbf{t}) = \prod_{i=1}^r (1 - P_i(\mathbf{t})^{q-1})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# The polynomial method!

Encode combinatorial problems via a polynomial so that nonzeros of polynomial correspond to solutions of the combinatorial problem.

$$P(\mathbf{t}) = \prod_{i=1}^{r} (1 - P_i(\mathbf{t})^{q-1})$$

うして ふゆう ふほう ふほう うらつ

 $P(\mathbf{t})$  is zero whenever any  $P_i$  is nonzero.

# The polynomial method!

Encode combinatorial problems via a polynomial so that nonzeros of polynomial correspond to solutions of the combinatorial problem.

$$P(\mathbf{t}) = \prod_{i=1}^{r} (1 - P_i(\mathbf{t})^{q-1})$$

うして ふゆう ふほう ふほう うらつ

 $P(\mathbf{t})$  is zero whenever any  $P_i$  is nonzero.  $P(\mathbf{t})$  is nonzero only when each  $P_i$  is zero.

# A basic theorem of algebra

**Fact:** A one variable polynomial over a field  $\mathbb F$  can have at most as many zeros as its degree.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

# A basic theorem of algebra

**Fact:** A one variable polynomial over a field  $\mathbb{F}$  can have at most as many zeros as its degree. **Example:**  $f(t) = t^2 - 1 \in \mathbb{R}[t]$  and the set  $A = \{1, -1, 3\}$ .  $f(3) \neq 0$ 

・ロト ( 母 ) ( 日 ) ( 日 ) ( 日 ) ( 0 ) ( 0 )

# A basic theorem of algebra

**Fact:** A one variable polynomial over a field  $\mathbb{F}$  can have at most as many zeros as its degree. **Example:**  $f(t) = t^2 - 1 \in \mathbb{R}[t]$  and the set  $A = \{1, -1, 3\}$ .  $f(3) \neq 0$ 

### Lemma

Let  $\mathbb{F}$  be an arbitrary field, and let f = f(t) be a polynomial in  $\mathbb{F}[t]$ . Suppose the degree of f is  $\alpha$  (thus the  $t^{\alpha}$  coefficient of f is nonzero). Then, if A is a subset of  $\mathbb{F}$  with  $|A| > \alpha$ , there is an  $a \in A$  so that

$$f(a) \neq 0.$$

うして ふゆう ふほう ふほう うらつ

└─ The polynomial method

## Combinatorial Nullstellensatz

A 'low' degree polynomial evaluated over a 'large' box has a nonzero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Combinatorial Nullstellensatz

A 'low' degree polynomial evaluated over a 'large' box has a nonzero.

#### Theorem

[Combinatorial Nullstellensatz (Part 2), N. Alon 1999] Let  $\mathbb{F}$  be an arbitrary field, and let  $f = f(t_1, \ldots, t_n)$  be a polynomial in  $\mathbb{F}[t_1, \ldots, t_n]$ . Suppose the degree deg(f) of f is  $\sum_{i=1}^n \alpha_i$ , where each  $\alpha_i$  is a nonnegative integer, and suppose the coefficient of  $\prod_{i=1}^n t_i^{\alpha_i}$  in f is nonzero. Then, if  $A_1, \ldots, A_n$  are subsets of  $\mathbb{F}$  with  $|A_i| > \alpha_i$ , there are  $a_1 \in A_1, \ldots, a_n \in A_n$  so that  $f(a_1, \ldots, a_n) \neq 0$ .

Applications:

- Chevalley's theorem,
- graph coloring,
- the Permanent Lemma,
- and many, many more.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Applications:

- Chevalley's theorem,
- graph coloring,
- the Permanent Lemma,
- and many, many more.

Some challenges:

- Finding an encoding polynomial,
- having its degree 'low', and
- computing an appropriate coefficient.

うして ふゆう ふほう ふほう うらつ

# Set-up for Schauz's Coefficient Formula

Given a polynomial  $f \in \mathbb{F}[t_1, \ldots, t_n]$ , define the *support of f*, Supp(*f*), as the set of all  $(\alpha_1, \ldots, \alpha_n)$  such that the coefficient of  $t_1^{\alpha_1} \ldots t_n^{\alpha_n}$  in *f* is nonzero. We say  $(\alpha_1, \ldots, \alpha_n) \ge (\beta_1, \ldots, \beta_n)$  if  $\alpha_i \ge \beta_i$  for all *i*; this gives us a partial ordering of the elements of Supp(*f*).

うして ふゆう ふほう ふほう うらつ

# Schauz's Coefficient Formula - sharpening Alon's CN

### Theorem

[Coefficient Formula, U. Schauz 2008] Let f be a polynomial in  $\mathbb{F}[t_1, \ldots, t_n]$  and let  $f_{\alpha_1, \ldots, \alpha_n}$  denote the coefficient of  $t_1^{\alpha_1} \cdots t_n^{\alpha_n}$  in f. Suppose that there is no greater element than  $(\alpha_1, \ldots, \alpha_n)$  in Supp(f). Then for any sets  $A_1, \ldots, A_n$  in  $\mathbb{F}$  such that  $|A_i| = \alpha_i + 1$  we have

$$f_{\alpha_1,\dots,\alpha_n} = \sum_{(a_1,\dots,a_n)\in A_1\times\dots\times A_n} \frac{f(a_1,\dots,a_n)}{N(a_1,\dots,a_n)},$$
(1)
where  $N(a_1,\dots,a_n) = \prod_{i=1}^n \prod_{b\in A_i\setminus\{a_i\}} (a_i-b).$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ ● ● ●

# Schauz's Coefficient Formula - sharpening Alon's CN

#### Theorem

[Coefficient Formula, U. Schauz 2008] Let f be a polynomial in  $\mathbb{F}[t_1, \ldots, t_n]$  and let  $f_{\alpha_1, \ldots, \alpha_n}$  denote the coefficient of  $t_1^{\alpha_1} \cdots t_n^{\alpha_n}$  in f. Suppose that there is no greater element than  $(\alpha_1, \ldots, \alpha_n)$  in Supp(f). Then for any sets  $A_1, \ldots, A_n$  in  $\mathbb{F}$  such that  $|A_i| = \alpha_i + 1$  we have

$$f_{\alpha_1,\dots,\alpha_n} = \sum_{(a_1,\dots,a_n)\in A_1\times\dots\times A_n} \frac{f(a_1,\dots,a_n)}{N(a_1,\dots,a_n)},$$
where  $N(a_1,\dots,a_n) = \prod_{i=1}^n \prod_{b\in A_i\setminus\{a_i\}} (a_i-b).$ 
(1)

Note that this is 'backwards' to how we usually think – here we find coefficients from values, not values from the coefficients.

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うらの

## Corollary

[Schauz's Non-uniqueness Theorem, U. Schauz 2008] If  $f_{\alpha_1,...,\alpha_n} = 0$ , then either f vanishes over  $A_1 \times \cdots \times A_n$  or f has at least two nonzeros over  $A_1 \times \cdots \times A_n$ .

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

## Corollary

[Schauz's Non-uniqueness Theorem, U. Schauz 2008] If  $f_{\alpha_1,...,\alpha_n} = 0$ , then either f vanishes over  $A_1 \times \cdots \times A_n$  or f has at least two nonzeros over  $A_1 \times \cdots \times A_n$ .

## Corollary

[U. Schauz 2008] Let  $\mathbb{F}$  be an arbitrary field, and let f be a polynomial of degree d in  $\mathbb{F}[t_1, \ldots, t_n]$ . Then for any subsets  $A_1, \ldots, A_n$  of  $\mathbb{F}$  satisfying  $\sum_{i=1}^n (|A_i| - 1) > d$ , f either vanishes over  $A_1 \times \cdots \times A_n$  or f has at least two nonzeros over  $A_1 \times \cdots \times A_n$ .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

## Corollary

[Schauz's Non-uniqueness Theorem, U. Schauz 2008] If  $f_{\alpha_1,...,\alpha_n} = 0$ , then either f vanishes over  $A_1 \times \cdots \times A_n$  or f has at least two nonzeros over  $A_1 \times \cdots \times A_n$ .

## Corollary

[U. Schauz 2008] Let  $\mathbb{F}$  be an arbitrary field, and let f be a polynomial of degree d in  $\mathbb{F}[t_1, \ldots, t_n]$ . Then for any subsets  $A_1, \ldots, A_n$  of  $\mathbb{F}$  satisfying  $\sum_{i=1}^n (|A_i| - 1) > d$ , f either vanishes over  $A_1 \times \cdots \times A_n$  or f has at least two nonzeros over  $A_1 \times \cdots \times A_n$ .

If the degree of the polynomial is small relative to the set we look over, then there cannot be a unique nonzero value.

└─ The polynomial method



Using these ideas, Schauz gave proofs of:

- Warning's Theorem
- a restricted variables Chevalley's Theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─ The polynomial method

└─ The Alon Füredi Theorem

## Balls in bins lemma



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Bin  $A_i$  holds at most  $a_i$  balls.

└─ The polynomial method

└─ The Alon Füredi Theorem

## Balls in bins lemma



Bin  $A_i$  holds at most  $a_i$  balls. Distribution of N balls is an *n*-tuple  $y = (y_1, \ldots, y_n)$  with  $y_1 + \ldots + y_n = N$  and  $1 \le y_i \le a_i$  for all i.

- The polynomial method

└─ The Alon Füredi Theorem

## Balls in bins lemma



Let  $\Pi(y) = y_1 \cdots y_n$ . If  $n \le N \le a_1 + \ldots + a_n$ , let  $\mathfrak{m}(a_1, \ldots, a_n; N)$  be the minimum value of  $\Pi(y)$  as y ranges over all distributions of N balls into bins  $A_1, \ldots, A_n$ .

└─ The polynomial method

└─ The Alon Füredi Theorem

## Balls in bins lemma



Let  $P(y) = y_1 \cdots y_n$ . If  $n \le N \le a_1 + \ldots + a_n$ , let  $\mathfrak{m}(a_1, \ldots, a_n; N)$  be the minimum value of  $\Pi(y)$  as y ranges over all distributions of N balls into bins  $A_1, \ldots, A_n$ . To minimize the product: serve the largest bins first.

The polynomial method

└─ The Alon Füredi Theorem

## Alon-Füredi Theorem

#### Theorem

(Alon-Füredi Theorem) Let  $\mathbb{F}$  be a field, let  $A_1, \ldots, A_n$  be nonempty finite subsets of  $\mathbb{F}$ . Put  $A = \prod_{i=1}^n A_i$  and  $a_i = \#A_i$  for all  $1 \le i \le n$ . Let  $P \in \mathbb{F}[t] = \mathbb{F}[t_1, \ldots, t_n]$  be a polynomial. Let

$$\mathcal{U}_A = \{x \in A \mid P(x) \neq 0\}, \ \mathfrak{u}_A = \#\mathcal{U}_A.$$

うして ふゆう ふほう ふほう うらつ

Then  $\mathfrak{u}_A = 0$  or  $\mathfrak{u}_A \ge \mathfrak{m}(a_1, \ldots, a_n; a_1 + \ldots + a_n - \deg P)$ .

└─ The polynomial method

└─ The Alon Füredi Theorem

## Alon-Füredi Theorem

#### Theorem

(Alon-Füredi Theorem) Let  $\mathbb{F}$  be a field, let  $A_1, \ldots, A_n$  be nonempty finite subsets of  $\mathbb{F}$ . Put  $A = \prod_{i=1}^n A_i$  and  $a_i = \#A_i$  for all  $1 \le i \le n$ . Let  $P \in \mathbb{F}[t] = \mathbb{F}[t_1, \ldots, t_n]$  be a polynomial. Let

$$\mathcal{U}_A = \{x \in A \mid P(x) \neq 0\}, \ \mathfrak{u}_A = \#\mathcal{U}_A.$$

うして ふゆう ふほう ふほう うらつ

Then  $\mathfrak{u}_A = 0$  or  $\mathfrak{u}_A \ge \mathfrak{m}(a_1, \ldots, a_n; a_1 + \ldots + a_n - \deg P)$ .

#### Proof.

Induction on n.

## Warning's Second Theorem

#### Theorem

Let  $n, r, d_1, \ldots, d_r \in \mathbb{Z}^+$  with

 $d_1 + \ldots + d_r < n$ .

For  $1 \leq i \leq r$ , let  $P_i(t_1, \ldots, t_n) \in \mathbb{F}_q[t_1, \ldots, t_n]$  be a polynomial of degree  $d_i$ . Let

$$Z = Z(P_1, ..., P_r) = \{x \in \mathbb{F}_q^n \mid P_1(x) = ... = P_r(x) = 0\}$$

be the common zero set in  $\mathbb{F}_{a}^{n}$  of the  $P_{i}$ 's, and let  $\mathbf{z} = \#Z$ . Then:

$$z = 0$$
 or  $z \ge q^{n-d}$ .

Warning's Second Theorem

# Proof of Warning's Second Theorem via Alon-Füredi Theorem

Put

$$P(\mathbf{t}) = \prod_{i=1}^r (1 - P_i(\mathbf{t})^{q-1}).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Warning's Second Theorem

# Proof of Warning's Second Theorem via Alon-Füredi Theorem

Put

$$P(\mathbf{t}) = \prod_{i=1}^r (1 - P_i(\mathbf{t})^{q-1}).$$

Then deg  $P = (q-1)(\deg(P_1) + \ldots + \deg(P_r))$ , and

$$\mathcal{U}_A = \{x \in A \mid P(x) \neq 0\} = Z_A$$

SO

$$z_A = \# Z_A = \# \mathcal{U}_A = \mathfrak{u}_A.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Warning's Second Theorem

# Proof of Warning's Second Theorem via Alon-Füredi Theorem

Put

$$P(\mathbf{t}) = \prod_{i=1}^r (1 - P_i(\mathbf{t})^{q-1}).$$

Then deg  $P = (q-1)(\deg(P_1) + \ldots + \deg(P_r))$ , and

$$\mathcal{U}_A = \{x \in A \mid P(x) \neq 0\} = Z_A$$

SO

$$z_A = \# Z_A = \# \mathcal{U}_A = \mathfrak{u}_A.$$

Applying the Alon-Füredi Theorem we get  $\mathbf{z}_A = \mathbf{0}$  or

$$\mathbf{z}_A \geq \mathfrak{m}(\#A_1+\ldots+\#A_n;\#A_1+\ldots+\#A_n-(q-1)d).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

#### Theorem

(Restricted Variable Warning's Second Theorem, P. Clark, A. Forrow, S. - 2014+) Let K be a number field with ring of integers R, let p be a nonzero prime ideal of R, and let  $q = p^{\ell}$  be the prime power such that  $R/p \cong \mathbb{F}_q$ . Let  $A_1, \ldots, A_n$  be nonempty subsets of R such that for each i, the elements of  $A_i$  are pairwise incongruent modulo p, and put  $A = \prod_{i=1}^n A_i$ . Let  $r, v_1, \ldots, v_r \in \mathbb{Z}^+$ . Let  $P_1, \ldots, P_r \in R[t_1, \ldots, t_n]$ . Let

$$Z_A = \{ x \in A \mid P_j(x) \equiv 0 \pmod{\mathfrak{p}^{v_j}} \ \forall 1 \leq j \leq r \}, \ \mathbf{z}_A = \# Z_A.$$

a) 
$$\mathbf{z}_{A} = 0 \text{ or } \mathbf{z}_{A} \ge$$
  
 $\mathfrak{m} \left( \# A_{1}, \dots, \# A_{n}; \# A_{1} + \dots + \# A_{n} - \sum_{j=1}^{r} (q^{v_{j}} - 1) \deg(P_{j}) \right).$   
b) (Boolean Case) We have  $\mathbf{z}_{\{0,1\}^{n}} = 0$  or  
 $\mathbf{z}_{\{0,1\}^{n}} \ge 2^{n - \sum_{j=1}^{r} (q^{v_{j}} - 1) \deg(P_{j})}.$ 

Warning's Second Theorem

The theorem recovers:

- Warning's Second Theorem
- Schanuel's Theorem (reproved by Baker-Schmidt) for polynomial systems over the rings Z/p<sup>vj</sup>Z
- Schauz's restricted variable Chevalley Theorem
- Schauz's (and later Brink's) generalization of these for polynomial systems over Z

うして ふゆう ふほう ふほう うらつ

Applications

Let's draw integers from a bag and seek a subsequence of these with sum divisible by n. How many draws must we take?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Applications

Let's draw integers from a bag and seek a subsequence of these with sum divisible by n. How many draws must we take? Say n = 5 and we draw  $b_1 = 6$ ,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Applications

Let's draw integers from a bag and seek a subsequence of these with sum divisible by n. How many draws must we take? Say n = 5 and we draw  $b_1 = 6$ ,  $b_2 = 1$ ,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Applications

Let's draw integers from a bag and seek a subsequence of these with sum divisible by n. How many draws must we take? Say n = 5 and we draw  $b_1 = 6$ ,  $b_2 = 1$ ,  $b_3 = 11$ ,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Applications

Let's draw integers from a bag and seek a subsequence of these with sum divisible by n. How many draws must we take? Say n = 5 and we draw  $b_1 = 6$ ,  $b_2 = 1$ ,  $b_3 = 11$ ,  $b_4 = 1$ ,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Applications

Let's draw integers from a bag and seek a subsequence of these with sum divisible by n. How many draws must we take? Say n = 5 and we draw  $b_1 = 6$ ,  $b_2 = 1$ ,  $b_3 = 11$ ,  $b_4 = 1$ ,  $b_5 = 16$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Applications

Let's draw integers from a bag and seek a subsequence of these with sum divisible by n. How many draws must we take? Say n = 5 and we draw  $b_1 = 6$ ,  $b_2 = 1$ ,  $b_3 = 11$ ,  $b_4 = 1$ ,  $b_5 = 16$ 

6 + 1 + 11 + 1 + 16 = 35

(ロ) (型) (E) (E) (E) (O)

- we win!

Applications

Let's draw integers from a bag and seek a subsequence of these with sum divisible by n. How many draws must we take? Say n = 5 and we draw  $b_1 = 6$ ,  $b_2 = 1$ ,  $b_3 = 11$ ,  $b_4 = 1$ ,  $b_5 = 16$ 

$$6 + 1 + 11 + 1 + 16 = 35$$

- we win!

The pigeonhole principle applied to the partial sums shows that n draws is enough.

ション ふゆ アメリア イロア しょうくつ

Applications

(Erdős-Ginzburg-Ziv 1961) Let's draw integers from a bag and seek a subsequence of these with sum divisible by n and with the number of terms equal to n. How many draws must we take?

Applications

(Erdős-Ginzburg-Ziv 1961) Let's draw integers from a bag and seek a subsequence of these with sum divisible by n and with the number of terms equal to n. How many draws must we take?

Say 
$$n = 5$$
 and  $b_1 = 0, b_2 = 0, b_3 = 0, b_4 = 0$ 

Applications

(Erdős-Ginzburg-Ziv 1961) Let's draw integers from a bag and seek a subsequence of these with sum divisible by n and with the number of terms equal to n. How many draws must we take?

Say 
$$n=5$$
 and  $b_1=0, b_2=0, b_3=0, b_4=0$  and  $b_5=1, b_6=1, b_7=1, b_8=1$ 

Applications

(Erdős-Ginzburg-Ziv 1961) Let's draw integers from a bag and seek a subsequence of these with sum divisible by n and with the number of terms equal to n. How many draws must we take?

Say 
$$n = 5$$
 and  $b_1 = 0$ ,  $b_2 = 0$ ,  $b_3 = 0$ ,  $b_4 = 0$  and  
 $b_5 = 1$ ,  $b_6 = 1$ ,  $b_7 = 1$ ,  $b_8 = 1$   
So,  $2n - 2$  draws is not enough. Perhaps  $2n - 1$  is?

Applications

Given n = p a prime, we sketch a proof that 2p - 1 terms is enough. Let us consider a sequence of length m.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

└─Warning's Second Theorem

Applications

Given n = p a prime, we sketch a proof that 2p - 1 terms is enough. Let us consider a sequence of length m. Let

$$P_1(t_1,\ldots,t_m) = \sum_{i=1}^m b_i t_i \in \mathbb{F}_p[t_1,\ldots,t_m]$$

and

$$P_2(t_1,\ldots t_m)=\sum_{i=1}^m t_i\in \mathbb{F}_p[t_1,\ldots,t_m].$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $P_1$  encodes divisibility condition on sum.  $P_2$  encodes number of terms in sequence.

└─Warning's Second Theorem

Applications

Given n = p a prime, we sketch a proof that 2p - 1 terms is enough. Let us consider a sequence of length m. Let

$$P_1(t_1,\ldots,t_m)=\sum_{i=1}^m b_it_i\in\mathbb{F}_p[t_1,\ldots,t_m]$$

and

$$P_2(t_1,\ldots t_m)=\sum_{i=1}^m t_i\in \mathbb{F}_p[t_1,\ldots,t_m].$$

 $P_1$  encodes divisibility condition on sum.  $P_2$  encodes number of terms in sequence.

 $deg(P_1) + deg(P_2) = 1 + 1 = 2$  and  $P_1(0, \dots, 0) = P_2(0, \dots, 0) = 0.$ Restrict to Boolean case of RVW2T: get

$$\mathbf{z}_{\{0,1\}^n} \ge 2^{m-2(p-1)}.$$

Thus, when m > 2p - 2 we have non-trivial solutions.

- Applications

Chevalley's Theorem  $\implies$  Erdős-Ginzburg-Ziv Schanuel's Theorem: computes Davenport constant of finite commutative *p*-groups Schanuel's Theorem: main technical input of result of Alon, Kleitman, Lipton, Meshulam, Rabin on selecting from set systems to get union of cardinality divisible by prime power *q* 

Applications

Chevalley's Theorem  $\implies$  Erdős-Ginzburg-Ziv

Schanuel's Theorem: computes Davenport constant of finite commutative *p*-groups

Schanuel's Theorem: main technical input of result of Alon,

Kleitman, Lipton, Meshulam, Rabin on selecting from set systems

to get union of cardinality divisible by prime power q

Restricted Variable Warning's Second Theorem:

applies to each of above to get quantitative refinements, which include inhomogeneous case;

tool to refine combinatorial existence theorems into theorems which give explicit lower bounds on number of combinatorial objects asserted to exist.

Warning's Second Theorem

Applications

Thank you.

(ロ)、(型)、(E)、(E)、 E のQで