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1 Give the problem

2 Give history and warm-up proof

3 Introduce Combinatorial Nullstellensatz and prove main result using it

4 (Almost) prove main result again, without resorting to algebra

5 Debate ‘algebra’ vs. ‘combinatorics’
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Introduction

Consider a chessboard of size n × n

We want to place queens on it so that there are not three queens in a line,
but the addition of one more queen would force there to be three in a line.
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Introduction

Note that this does not require that every square lie on a line with two
queens.

How few queens (m3(n)) can we use and still satisfy these properties?
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Introduction

Martin Gardner

American mathematical journalist and author
(October 21, 1914 – May 22, 2010)

Wrote Mathematical Games column for Scientific
American (1956-1981)

Entire collection available on CD-ROM from the MAA
for $49.95!

Or at 4,408 pages and with Elsevier
pricing, only $4, 936.96!
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Introduction

Gardner first published the minimum no-three-in-line problem in the
October 1976 issue of Scientific American.

Gardner makes the following observation,

If ‘line’ is taken in the broadest sense — a straight line of any
orientation — the problem is difficult. . . The problem is also
unsolved if ‘line’ is restricted to orthogonals and diagonals.

Gardner corresponded with several people about this problem prior to the
publication.

In particular, Gardner had received a proof from a man named John Harris
(of Santa Barbara, CA) that at least n queens were always necessary to
satisfy the conditions on an n × n board, except in the case that n is
congruent to 3 modulo 4, in which case one less might be possible .

He mentioned the existence of this “proof” in his article, but did not give
it.
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n/2 Lower Bound

Proposition

For all n ≥ 1, m3(n) ≥ n
2 .

Proof.

Put q queens on the board.
Each queen occupies one square and sees at most 4n − 4 squares.
There are n2 squares, each of which takes two queens to cover it or one
queen to occupy it. So we have:

1

2
(4n − 4)q + q ≥ n2

(2n − 1)q ≥ n2

2nq ≥ n2

q ≥ n

2

Can be improved since only a few queens see 4n − 4 squares though each
sees at least 3n − 3 squares, but at best this gets to a bound of 2

3n.
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Combinatorial Nullstellensatz

Our approach to the problem: Combinatorial
Nullstellensatz

Developed by Noga Alon in 1990s

Leverages a special case of Hilbert’s Nullstellensatz
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Combinatorial Nullstellensatz

You know that a one variable polynomial (over a field F) can have at most
as many zeroes as its degree.

Lemma

Let F be an arbitrary field, and let f = f (x) be a polynomial in F[x ].
Suppose the degree of f is t (thus the x t coefficient of f is nonzero).
Then, if S is a subset of F with |S | > t, there is an s ∈ S so that

f (s) 6= 0.
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Combinatorial Nullstellensatz

Theorem (Part 2, Alon, 1999)

Let F be an arbitrary field, and let f = f (x1, . . . , xn) be a polynomial in
F[x1, . . . , xn].
Suppose the degree deg(f ) of f is

∑n
i=1 ti , where each ti is a nonnegative

integer, and suppose the coefficient of
∏n

i=1 x
ti
i in f is nonzero.

Then, if S1, . . . ,Sn are subsets of F with |Si | > ti , there are
s1 ∈ S1, . . . , sn ∈ Sn so that

f (s1, . . . , sn) 6= 0.
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Combinatorial Nullstellensatz

Lower Bound of n

Theorem (Cooper, Pikhurko, S. , Warrington, ’13)

For any n ≥ 1, we have m3(n) ≥ n, except when n ≡ 3 (mod 4) when
m3(n) ≥ n − 1.

Proof
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Combinatorial Nullstellensatz

Lower Bound of n

Proof

We restrict our attention to n = 4k + 1.

Place our chessboard into the standard Cartesian coordinate system.
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Combinatorial Nullstellensatz

Lower Bound of n

Proof

Suppose a set Q of q ≤ 4k queens have been placed, and that these
queens satisfy the requirements.
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Combinatorial Nullstellensatz

Lower Bound of n

Proof

Then there are at most 2k lines in each direction defined by these queens.
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Combinatorial Nullstellensatz

Lower Bound of n

Proof

Then there are at most 2k lines in each direction defined by these queens.
There might be some queens Q′ = {Q1,Q2, . . . ,Qq′} that don’t contribute

to any line. Then there are at most
⌊
4k−q′

2

⌋
lines in each direction.
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Combinatorial Nullstellensatz

Lower Bound of n

Proof

Define a new line through each of the queens of Q′, distributing them
evenly amongst the four directions. This gives us a total of⌊
4k−q′

2

⌋
+
⌈
q′

4

⌉
≤ 2k in each direction.
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Combinatorial Nullstellensatz

Lower Bound of n

Proof

This gives us a set L = {L1, L2, . . . , L8k} of 8k lines. Let li = 0 be the
equation defining Li and consider the following polynomial:

f (x , y) =
8k∏
i=1

li
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Combinatorial Nullstellensatz

Note that f (x , y) = 0 for all x , y since the queens must occupy or cover
every square.

If we group the factors in f according to slope, we see that f
can be rewritten as

f (x , y) =
2k∏
j=1

(x − αj)(y − βj)(x − y − γj)(x + y − δj) (1)

for suitable constants αj , βj , γj , δj .

In particular, the coefficient of the top-degree term x4ky4k is ±
(2k
k

)
6= 0,

so by the Combinatorial Nullstellensatz (Part II) with t1 = t2 = 4k and
S1 = S2 = [4k + 1], we must have s1 ∈ S1 and s2 ∈ S2 such that
f (s1, s2) 6= 0.

This contradiction completes the proof.

Proof extends to all other cases, that is, m3(n) ≥ n for all n.
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Some data

n 1 2 3 4 5 6 7 8 9
m3(n) 1 4 4 4 6 6 8 9 10

n 10 11 12 13 14 15 16 17 18
m3(n) 10 12 12 [13,14] [14,16] [15,16] [16,18] [17,20] [18,20]

Table: m3(n), for small values of n. Brackets indicate lower and upper bounds.

The C code that performed this brute-force search took around 900
3GHz-CPU hours to confirm that there is no good placement of 11 queens
on board of side 11; our main result indicates that this was the smallest
size we needed to test. We estimate that the corresponding search for a
board of side 13 would require at least 70 thousand 3GHz-CPU hours.
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Some data

Figure: Maximal placements: 14 queens for n = 13; 16 queens for n = 14 and
n = 15.
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Some data

Figure: Maximal placements: 18 queens for n = 16; 20 queens for n ∈ {17, 18}.
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An elementary proof for n even

Assume n ≥ 2. Let Q be a good
placement of size q.

Set U to be the set of squares left
uncovered by a line of slope 0 or ∞ and
set Q′′ ⊆ Q to be those queens not
involved in defining a line of slope 0 or
∞.

Write q′′ = |Q′′|. For any index i ∈ [n]
(respectively j ∈ [n]) let
Ci = {(i , k) ∈ U : 1 ≤ k ≤ n}
(respectively
Rj = {(k , j) ∈ U : 1 ≤ k ≤ n}).
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An elementary proof for n even

Let a < b be the minimum and
maximum indices, respectively, for
which Ci 6= ∅. Set c to be the number
of the Ci that are nonempty. Define
a′ < b′ and r analogously for the sets
Rj .

Note that c , r ≥ n − q−q′′
2 . In

particular, c ≤ 1 or r ≤ 1 requires
q ≥ 2(n − 1). We therefore assume for
the rest of the proof that r , c ≥ 2.

Wlog, we may assume b − a ≥ b′ − a′

as otherwise we may rotate the
placement by 90◦.
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An elementary proof for n even

As Q is good, the squares of Ca ∪ Cb

are either occupied or ‘attacked’ via a
pair of queens that would define a line
of slope ±1. By definition,
|Q ∩ Ca| ≤ 1, |Q ∩ Cb| ≤ 1; and so
|Q ∩ (Ca ∪ Cb)| ≤ min{q′′, 2}.

There is at most one line of slope +1
that attacks two squares of Ca ∪ Cb.
Likewise for −1 slope. Each of the
other lines of slope ±1 defined by Q
attack at most one square of Ca ∪ Cb.

John Schmitt (Middlebury College, VT) Minimum No-Three-In-A-Line Problem 25 / 1



An elementary proof for n even

As Q is good, the squares of Ca ∪ Cb

are either occupied or ‘attacked’ via a
pair of queens that would define a line
of slope ±1. By definition,
|Q ∩ Ca| ≤ 1, |Q ∩ Cb| ≤ 1; and so
|Q ∩ (Ca ∪ Cb)| ≤ min{q′′, 2}.
There is at most one line of slope +1
that attacks two squares of Ca ∪ Cb.
Likewise for −1 slope. Each of the
other lines of slope ±1 defined by Q
attack at most one square of Ca ∪ Cb.

John Schmitt (Middlebury College, VT) Minimum No-Three-In-A-Line Problem 25 / 1



An elementary proof for n even

Q defines at least 2r − 2−min{q′′, 2}
lines of slope ±1. Furthermore,

2r − 2−min{q′′, 2} ≥ 2

(
n − q − q′′

2

)
− 2− q′′

= 2n − q − 2.

q queens of Q define at most q lines of
slope ±1. Thus, q ≥ 2n− q − 2, and so
q ≥ n − 1.

Now restrict n to be even and reach a
contradiction by assuming that
q ≤ n − 1.2
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Algebra or combinatorics?

n 1 2 3 4 5 6 7 8 9
m3(n) 1 4 4 4 6 6 8 9 10

n 10 11 12 13 14 15 16 17 18
m3(n) 10 12 12 [13,14] [14,16] [14,16] [16,18] [17,20] [18,20]

Table: m3(n), for small values of n. Brackets indicate lower and upper bounds.

Data suggests that for n odd and n ≥ 3 we might have m3(n) ≥ n + 1. Is
it? If so, we’ve fallen short with both the algebraic and combinatorial
proof.
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Algebra or combinatorics?

Possible approach:

To get m3(n) ≥ n + 1 for odd n: place n queens and be more careful in
counting the lines defined by the set of queens placed, and then apply
algebraic method.
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Questions

An upper bound for m3(n)? Experimentally, we have
m3(n) ≤ 1.4108n + 5.87.

Variations on the problem: no-k-in-a-line, different boards, ‘general’
line, maximum problem...

Thanks!

John Schmitt (Middlebury College, VT) Minimum No-Three-In-A-Line Problem 29 / 1



Questions

An upper bound for m3(n)? Experimentally, we have
m3(n) ≤ 1.4108n + 5.87.

Variations on the problem: no-k-in-a-line, different boards, ‘general’
line, maximum problem...

Thanks!

John Schmitt (Middlebury College, VT) Minimum No-Three-In-A-Line Problem 29 / 1



Questions

An upper bound for m3(n)? Experimentally, we have
m3(n) ≤ 1.4108n + 5.87.

Variations on the problem: no-k-in-a-line, different boards, ‘general’
line, maximum problem...

Thanks!

John Schmitt (Middlebury College, VT) Minimum No-Three-In-A-Line Problem 29 / 1


