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Introduction and problem statement

Consider a chessboard of size n × n

We want to place queens on it so that there are not three queens in a line,
but the addition of one more queen would force there to be three in a line.
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Introduction and problem statement

Note that this does not require that every square lie on a line with two
queens.

Question (Martin Gardner, 1976)

How few queens (m3(n)) can we use and still satisfy these properties?
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Introduction and problem statement

Proposition

For all n ≥ 1, m3(n) > n
2 .

Proof.

Put q queens on the board.
Each queen occupies one square and sees at most 4n − 4 squares.
There are n2 squares, each of which takes two queens to cover it or one
queen to occupy it. So we have:

1

2
(4n − 4)q + q ≥ n2

(2n − 1)q ≥ n2

2nq > n2

q >
n

2

Can be improved since only a few queens see 4n − 4 squares though each
sees at least 3n − 3 squares, but at best this gets to a bound of 2

3n.
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Introduction and problem statement

Martin Gardner

American mathematical journalist and author
(October 21, 1914 – May 22, 2010)

Wrote Mathematical Games column for Scientific
American (1956-1981)

Entire collection available on CD-ROM from the MAA
for $55.95!
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Introduction and problem statement

A first-year seminar on Mathematical Games

The Combinatorics of Paper Folding
Activity: create stamp books, Dictators puzzle, Beelzebub puzzle, a
tetraflexagon, and Sheep and Goats puzzle
Ideas: permutations

A Matchbox Game-Learning Machine
Activity: build a machine for playing hexapawn
Ideas: machine learning

The Binary System
Activity: create a set of punch-cards
Ideas: binary numbers, sorting and logic

Back from the Klondike and Other Problems
Activity: problems on the chessboard
Ideas: combinatorics, algebra, algebraic geometry, linear
programming, computer science . . .!!
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You know that a one variable polynomial (over a field F) can have at most
as many zeroes as its degree.

Lemma

Let F be an arbitrary field, and let f = f (x) be a polynomial in F[x ].
Suppose the degree of f is t (thus the x t coefficient of f is nonzero).
Then, if S is a subset of F with |S | > t, there is an s ∈ S so that

f (s) 6= 0.
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Lower Bound of n

Theorem (Cooper, Pikhurko, S. , Warrington, ’14)

For any n ≥ 1, we have m3(n) ≥ n, except when n ≡ 3 (mod 4) when
m3(n) ≥ n − 1.

Proof
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Lower Bound of n

Proof

We restrict our attention to n = 4k + 1.

Place our chessboard into the standard Cartesian coordinate system.
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Lower Bound of n

Proof

Suppose a set Q of q ≤ 4k queens have been placed, and that these
queens satisfy the requirements.
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Lower Bound of n

Proof

Then there are at most 2k lines in each direction defined by these queens.
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Lower Bound of n

Proof

Then there are at most 2k lines in each direction defined by these queens.
There might be some queens Q′ = {Q1,Q2, . . . ,Qq′} that don’t contribute

to any line. Then there are at most
⌊
4k−q′

2

⌋
lines in each direction.
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Lower Bound of n

Proof

Define a new line through each of the queens of Q′, distributing them
evenly amongst the four directions. This gives us a total of⌊
4k−q′

2

⌋
+
⌈
q′

4

⌉
≤ 2k in each direction.
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Lower Bound of n

Proof

This gives us a set L = {L1, L2, . . . , L8k} of 8k lines. Let `i = 0 be the
equation defining Li and consider the following polynomial:

f (x , y) =
8k∏
i=1

`i
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Note that f (x , y) = 0 for all (x , y), where 1 ≤ x , y ≤ 4k + 1, since the
queens must occupy or cover every square.

If we group the factors in f
according to slope, we see that f can be rewritten as

f (x , y) =
2k∏
j=1

(x − αj)(y − βj)(x − y − γj)(x + y − δj) (1)

for suitable constants αj , βj , γj , δj .

In particular, the coefficient of the top-degree term x4ky4k is ±
(2k
k

)
6= 0.
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Theorem (Combinatorial Nullstellensatz Part 2, the Non-vanishing
Corollary, N. Alon, 1999)

Let F be an arbitrary field, and let f = f (x1, . . . , xn) be a polynomial in
F[x1, . . . , xn].
Suppose the degree deg(f ) of f is

∑n
i=1 ti , where each ti is a nonnegative

integer, and suppose the coefficient of
∏n

i=1 x
ti
i in f is nonzero.

Then, if S1, . . . ,Sn are subsets of F with |Si | > ti , there are
s1 ∈ S1, . . . , sn ∈ Sn so that

f (s1, . . . , sn) 6= 0.
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so by the Combinatorial Nullstellensatz (Part II) with t1 = t2 = 4k and
S1 = S2 = {1, . . . , 4k + 1}, we must have s1 ∈ S1 and s2 ∈ S2 such that
f (s1, s2) 6= 0.

This contradiction completes the proof.

Proof extends to all other cases.
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An elementary proof for n even

Assume n ≥ 2. Let Q be a good
placement of size q.

Set U to be the set of squares left
uncovered by a line of slope 0 or ∞ and
set Q′′ ⊆ Q to be those queens not
involved in defining a line of slope 0 or
∞.

Write q′′ = |Q′′|. For any index i ∈ [n]
(respectively j ∈ [n]) let
Ci = {(i , k) ∈ U : 1 ≤ k ≤ n}
(respectively
Rj = {(k , j) ∈ U : 1 ≤ k ≤ n}).
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An elementary proof for n even

Let a < b be the minimum and
maximum indices, respectively, for
which Ci 6= ∅. Set c to be the number
of the Ci that are nonempty. Define
a′ < b′ and r analogously for the sets
Rj .

Note that c , r ≥ n − q−q′′
2 . In

particular, c ≤ 1 or r ≤ 1 requires
q ≥ 2(n − 1). We therefore assume for
the rest of the proof that r , c ≥ 2.

Wlog, we may assume b − a ≥ b′ − a′

as otherwise we may rotate the
placement by 90◦.
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An elementary proof for n even

As Q is good, the squares of Ca ∪ Cb

are either occupied or ‘attacked’ via a
pair of queens that would define a line
of slope ±1. By definition,
|Q ∩ Ca| ≤ 1, |Q ∩ Cb| ≤ 1; and so
|Q ∩ (Ca ∪ Cb)| ≤ min{q′′, 2}.

There is at most one line of slope +1
that attacks two squares of Ca ∪ Cb.
Likewise for −1 slope. Each of the
other lines of slope ±1 defined by Q
attack at most one square of Ca ∪ Cb.
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An elementary proof for n even

Q defines at least 2r − 2−min{q′′, 2}
lines of slope ±1. Furthermore,

2r − 2−min{q′′, 2} ≥ 2

(
n − q − q′′

2

)
− 2− q′′

= 2n − q − 2.

q queens of Q define at most q lines of
slope ±1. Thus, q ≥ 2n− q − 2, and so
q ≥ n − 1.

Now restrict n to be even and reach a
contradiction by assuming that
q ≤ n − 1.2
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Some data: OEIS A219760

n 1 2 3 4 5 6 7 8 9
m3(n) 1 4 4 4 6 6 8 9 10

n 10 11 12 13 14 15 16 17 18
m3(n) 10 12 12 [13,14] [14,16] [14,16] [16,18] [17,20] [18,20]

Table: m3(n) for small values of n. Brackets indicate lower and upper bounds.

Cooper, Pikhurko, S., Warrington - and brute-force search
The C code that performed this brute-force search took around 900
3GHz-CPU hours to confirm that there is no good placement of 11 queens
on board of side 11; our main result indicates that this was the smallest
size we needed to test. We estimate that the corresponding search for a
board of side 13 would require at least 70 thousand 3GHz-CPU hours.
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Some data: OEIS A219760

n 1 2 3 4 5 6 7 8 9
m3(n) 1 4 4 4 6 6 8 9 10

n 10 11 12 13 14 15 16 17 18
m3(n) 10 12 12 14 15 16 17 18 18

Table: m3(n) for all values of n where it is known precisely

Cooper, Pikhurko, S., Warrington - and brute-force search
Rob Pratt - and Integer Linear Programming
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Some data: OEIS A219760

An e-mail from Maggie McLoughlin

On 8/25/14, 8:58 PM, ”Maggie McLoughlin”
<mam@CS.Stanford.EDU> wrote:
Dear Alec, Oleg, John, and Gregory!
Last Friday I came across your appealing paper about Gardner’s problem
of no-3-queens-in-a-line ... and it led to a very pleasant weekend indeed.
As it happens, I’m currently writing a section of The Art of Computer
Programming, Volume 4B, that deals with ”satisfiability” and the
revolutionary methods by which ”SAT solvers” have been able to help
resolve combinatorial problems of many kinds. So I realized that this
queens problem makes an excellent test case for the algorithms I am
discussing.
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Some data: OEIS A219760

An e-mail from Maggie McLoughlin

In particular, I can verify the lower bound for n=11, which you said took
900 CPU hours on a 3GHz machine: The SAT solver I gave it to was able
to prove unsatisfiability, of the relevant clauses for placement of 11 queens,
in two days or so. (My machine is only only 75% as fast as yours; but I
can tell you precisely that the run did 8.9 teramems of work — namely, 8.9
trillion accesses to memory.) It explored 93 million nodes of an implicit
search tree and learned 71 million clauses during the run.
....
Anyway, here are some of the solutions that I found:
....
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Some data: OEIS A219760

An e-mail from Maggie McLoughlin

These examples give new upper bounds of n+1 for n=14 thru n=20 ...
and — big big surprise! — the EXACT value 18 for n=18! That was pure
luck: I asked the machine only for a solution that has 19 or fewer, and it
stumbled upon this one after five minutes. Then I asked it for a solution
that has 18 or fewer, and it ran for several hours without success(!).
I soon noticed that (1) there usually are many, many solutions; and (2)
lots of the solutions are especially nice because they put queens ONLY ON
WHITE SQUARES! Therefore I made a special version, which obviously
ran much faster, limiting the search only to such cases. Optimum
solutions (or at least, solutions that achieve the best upper bound so far
known) were quickly found in all cases except when n=12; no such
placement of 12 queens on the white squares of a 12x12 is possible.
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Some data: OEIS A219760

An e-mail from Maggie McLoughlin

Looking further, I noticed that not only were queens only on white
squares, but they appeared only in odd-numbered rows! So that reduced
the search space to the fourth root of its original size. You will notice that
every solution listed above has this property, except in the case of n=12.
That 12x12 solution turned out to have eightfold symmetry, although I
didn’t specify any symmetry. Thus I wonder if it agrees with the solution(s)
that you know, or if there are any unsymmetrical solutions for 12 queens
on the 12x12. With extra work I could search this case exhaustively (but I
don’t have time — my budget for weekend recreation is already shot).
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Some data: OEIS A219760

An e-mail from Maggie McLoughlin

Some of the solutions above were discovered before I made this
improvement to the program’s upperbound heuristic. But then I could
speed everything up tremendously.
Finally I realized that I could put even more contraints on solutions, but
still get placements of n+1 queens on the odd boards n=21, 23, 25, etc.,
in a fraction of second. Using a different random seed, I’d get further
solutions — too fast to bother writing them down.

John Schmitt (Middlebury College, VT) Minimum No-Three-In-A-Line Problem 29 / 36



Some data: OEIS A219760

An e-mail from Maggie McLoughlin

Then I boiled the whole thing down to a simple problem on permutations
of m elements, for boards of size 2m-1. That problem seems to have
zillions of solutions ... I mean, zillions of ways to place 2m queens, as
illustrated above for odd boards ... although I haven’t been able to see a
pattern that generalizes to arbitrary m. So I shall write a computer
program to see how high I can go with this in a short amount of time.
(The new program will use classical backtracking, not SAT solving.) I’ll
send you the code and the results when they are ready, if you’re interested.
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Some data: OEIS A219760

An e-mail from Maggie McLoughlin

—————— Let me conclude this progress report with a request: I will
almost surely be mentioning your work in my book, and I like to put FULL
NAMES of all cited authors in the indexes to the books of this series,
Therefore, I ask you to please tell me your full and complete name,
including all middle names. (In Gregory’s case, I’m pretty sure it is Gregory
Saunders Warrington, based on the Harvard thesis. But John, you signed
your Emory thesis only ”John R. Schmitt”; what does the R stand for?
And Alec, you still haven’t written a thesis; what belongs between Alec
and Cooper besides just S? And Oleg: For you I need to know also the
spelling of your name in Cyrillic, INCLUDING the patronymic part.
Readers often tell me that they appreciate this feature of my books, so I
thank you in advance for any help you can give.
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Some data: OEIS A219760

An e-mail from Maggie McLoughlin

And of course I thank you also for the stimulation that your article
provided, and the things it taught me about Alon’s Nullstellensatz.
Cordially, Don Knuth [Donald Ervin Knuth]
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Some data: OEIS A219760

n 1 2 3 4 5 6 7 8 9
m3(n) 1 4 4 4 6 6 8 9 10

n 10 11 12 13 14 15 16 17 18
m3(n) 10 12 12 14 15 16 17 18 18

n 19 20 21 22 23 24 25 26 27
m3(n) 20 21 22 23 24 25 26 26 28

Table: m3(n) for all values of n where it is known precisely

Cooper, Pikhurko, S., Warrington - and brute-force search
Rob Pratt - and Integer Linear Programming
Don Knuth - and SAT solver
See On-line Encyclopedia of Integer Sequences, Sequence A219760.

Question

Data suggests that m3(n) ≥ n + 1 when n is odd. Is it?
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Some data: OEIS A219760
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Table: m3(n) for all values of n where it is known precisely

Question

Data suggests that m3(n) ≥ n + 1 when n is odd. Is it?

Question

Can you give an upper bound on m3(n)?

Question

What is m3(28)?

Question

Might you prove that m3(34) = 34 and there is a solution of the type
specified by Knuth here, A219760?
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Some data: OEIS A219760
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THANKS!
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