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Introduction

“The strategy [of the polynomial method] is to capture the arbitrary sets
of objects (viewed as points in some configuration space) in the zero set of
a polynomial whose degree (or other measure of complexity) is under
control...One then uses tools from algebraic geometry to understand the
structure of this zero set, and thence to control the original sets of
objects.”

Terence Tao, EMS Surveys, 2014
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Introduction

A one variable non-zero polynomial over a field F can have at most as
many zeroes as its degree.

Lemma

Let F be an arbitrary field, and let f = f (x) be a polynomial in F[x ].
Suppose the degree of f is t (thus the x t coefficient of f is nonzero).
Then, if A is a subset of F with |A| > t, there is an a ∈ A so that

f (a) 6= 0.

Example: f (x) = x2 − 1 ∈ R[x ] and A = {1,−1, 7}. f (7) 6= 0.
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Alon’s Combinatorial Nullstellensatz

Theorem (Non-vanishing corollary to the Combinatorial Nullstellensatz,
Noga Alon, 1999)

Let F be an arbitrary field, and let f = f (x1, . . . , xn) be a polynomial in
F[x1, . . . , xn]. Suppose the degree deg(f ) of f is

∑n
i=1 ti , where each ti is

a nonnegative integer, and suppose the coefficient of
∏n

i=1 x
ti
i in f is

nonzero. Then, if A1, . . . ,An are subsets of F with |Ai | > ti , there are
a1 ∈ A1, . . . , an ∈ An so that

f (a1, . . . , an) 6= 0.
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Alon’s Combinatorial Nullstellensatz

Theorem

(Chevalley-Warning Theorem) Let n, r , d1, . . . , dr ∈ Z+ with
d = d1 + . . . + dr < n. For 1 ≤ i ≤ r , let Pi (x1, . . . , xn) ∈ Fq[x1, . . . , xn]
be a polynomial of degree di . Let

Z = Z (P1, . . . ,Pr ) = {a ∈ Fn
q | P1(a) = . . . = Pr (a) = 0}

be the common zero set in Fn
q of the Pi ’s, and let z = |Z |. Then:

a) (Chevalley’s Theorem, 1935) We have z = 0 or z ≥ 2.
b) (Warning’s Theorem, 1935) We have z ≡ 0 (mod p).

Alon proved (a) using Non-vanishing corollary.

Chevalley’s Theorem is useful in zero-sum theory.

Schauz (’08) proved (b) using a generalization of Alon’s statement.
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The Alon-Füredi Theorem

A one variable non-zero polynomial over a field F can have at most as
many zeroes as its degree.

Lemma

Let F be an arbitrary field, and let f = f (x) be a polynomial in F[x ].
Suppose the degree of f is t (thus the x t coefficient of f is nonzero).
Then, if A is a subset of F with |A| > t, there is an a ∈ A so that

f (a) 6= 0.

Example: f (x) = x2 − 1 ∈ R[x ] and A = {1,−1, 7, 9, 5}.
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The Alon-Füredi Theorem

Theorem

(Alon-Füredi Theorem, 1993) Let F be a field, let A1, . . . ,An be nonempty
finite subsets of F. Put A =

∏n
i=1 Ai for all 1 ≤ i ≤ n. Let

f ∈ F[x ] = F[x1, . . . , xn] be a polynomial. Let

UA = {a ∈ A | f (a) 6= 0}, uA = |UA|.

Then uA = 0 or uA ≥ m(|A1|, . . . , |An|; |A1|+ . . . + |An| − deg f ).
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The Alon-Füredi Theorem

Balls in bins lemma

A
1

A
2

A
n

Bin Ai holds at most |Ai | balls.
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The Alon-Füredi Theorem

Balls in bins lemma

A
1

A
2

A
n

Bin Ai holds at most |Ai | balls. Distribution of N balls is an n-tuple
y = (y1, . . . , yn) with y1 + . . . + yn = N and 1 ≤ yi ≤ |Ai | for all i .

John R. Schmitt (Middlebury) Alon-Füredi Bound 9 / 21



The Alon-Füredi Theorem

Balls in bins lemma

A
1

A
2

A
n

Let Π(y) = y1 · · · yn. If n ≤ N ≤ |A1|+ . . . + |An|, let m(|A1|, . . . , |An|;N)
be the minimum value of Π(y) as y ranges over all distributions of N balls
into bins A1, . . . ,An.
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The Alon-Füredi Theorem

Balls in bins lemma
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1
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A
n

Let Π(y) = y1 · · · yn. If n ≤ N ≤ |A1|+ . . . + |An|, let m(|A1|, . . . , |An|;N)
be the minimum value of Π(y) as y ranges over all distributions of N balls
into bins A1, . . . ,An. To minimize the product: serve the largest bins first.
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The Alon-Füredi Theorem

Theorem

(Chevalley-Warning Theorem) Let n, r , d1, . . . , dr ∈ Z+ with
d = d1 + . . . + dr < n. For 1 ≤ i ≤ r , let Pi (x1, . . . , xn) ∈ Fq[x1, . . . , xn]
be a polynomial of degree di . Let

Z = Z (P1, . . . ,Pr ) = {a ∈ Fn
q | P1(a) = . . . = Pr (a) = 0}

be the common zero set in Fn
q of the Pi ’s, and let z = |Z |. Then:

a) (Chevalley’s Theorem, 1935) We have z = 0 or z ≥ 2.
b) (Warning’s Theorem, 1935) We have z ≡ 0 (mod p).

Theorem

(Warning’s Second Theorem) With same hypotheses,

z = 0 or z ≥ qn−d .
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Applications of Alon-Füredi Theorem

Encode combinatorial/number-theoretic/incidence-geometry problems via
a polynomial so that non-zeros of polynomial correspond to solutions of
the given problem.
Proof of Warning’s Second Theorem: (Clark, Forrow, S. -
2014+) Let x = (x1, . . . , xn) and

P(x) =
r∏

i=1

(1− Pi (x)q−1)

P(x) is zero whenever any Pi is nonzero.

P(x) is nonzero only when each Pi is zero.

Apply the Alon-Füredi Theorem.2
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Applications of Alon-Füredi Theorem

Clark, Forrow, S. (14+) showed applications of this to:

weighted Davenport constants,

generalizations of Erdős-Ginzburg-Ziv Theorem, and

graph theory;

and Clark (15+) gave strengthenings of these and a further
application to:

polynomial interpolation.
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Applications of Alon-Füredi Theorem

Theorem (Schwartz-Zippel Lemma, 1979)

Let R be a domain and let S ⊂ R be finite and nonempty, with |S | := s.
Let f ∈ R[x1, . . . , xn] be a nonzero polynomial. Then

zSn(f ) ≤ (deg f )sn−1. (1)

Proof.

The conclusion is equivalent to

uSn(f ) ≥ sn−1(s − deg f ).

If deg f ≥ s, then (1) asserts that f has no more zeros on Sn than the size
of Sn: true. So the nontrivial case is deg f < s. Then apply Alon-Füredi,
so

uSn(f ) ≥ m(s, . . . , s; ns − deg f ) = sn−1(s − deg f ).
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so

uSn(f ) ≥ m(s, . . . , s; ns − deg f ) = sn−1(s − deg f ).

John R. Schmitt (Middlebury) Alon-Füredi Bound 15 / 21
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Applications of Alon-Füredi Theorem

Theorem

(DeMillo-Lipton-Zippel Theorem, 1978) Let R be a domain, let
f ∈ R[x1, . . . , xn] be a nonzero polynomial, and let d ∈ Z+ be such that
degxi f ≤ d for all i ∈ [n]. Let S ⊂ R be a nonempty set with |S | := s > d
elements. Then

zSn(f ) ≤ sn − (s − d)n.
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Applications of Alon-Füredi Theorem

Example

Let S be a finite subset of R containing 0 and of size s ≥ 3. Let
f = x1x2 ∈ R[x1, x2]. Then we have

zS2(f ) = 2s − 1.

DeMillo-Lipton-Zippel gives

zS2(f ) ≤ s2 − (s − 1)2 = 2s − 1.

Schwartz-Zippel gives
zS2(f ) ≤ 2s.

The Alon-Füredi Theorem gives

zS2(f ) ≤ s2 −m(s, s; 2s − 2) = s2 − s(s − 2) = 2s.

Thus neither Alon-Füredi nor Schwartz-Zippel implies
DeMillo-Lipton-Zippel.
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Applications of Alon-Füredi Theorem

Example

For the other direction, take f = x1 + x2.

DeMillo-Lipton-Zippel gives
zS2(f ) ≤ s2 − (s − 1)2 = 2s − 1.

Schwartz-Zippel and Alon-Füredi give
zS2(f ) ≤ s.

Thus DeMillo-Lipton-Zippel does not imply Schwartz-Zippel or
Alon-Füredi.
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Applications of Alon-Füredi Theorem

Theorem (Generalized Alon-Füredi Theorem; A. Bishnoi, P.L. Clark,
A. Potukuchi, S (15+))

Let R be a ring and let A1, . . . ,An be non-empty finite subsets of R that
satisfy Condition (D). For i ∈ [n], let bi be an integer such that
1 ≤ bi ≤ |Ai |. Let f ∈ R[x1, . . . , xn] be a non-zero polynomial such that
degxi f ≤ |Ai | − bi for all i ∈ [n]. Let UA = {a ∈ A : f (a) 6= 0} where
A = A1 × · · · × An ⊆ Rn. Then we have

uA ≥ m(|A1|, . . . , |An|; b1, . . . , bn;
n∑

i=1

|Ai | − deg f ).

Moreover, this bound is sharp in all cases.

Generalized Alon-Füredi does imply DeMillo-Lipton-Zippel.

(Generalized) Alon-Füredi has other applications to coding theory and
finite geometry.
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Generalized Alon-Füredi does imply DeMillo-Lipton-Zippel.
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Applications of Alon-Füredi Theorem

A nonempty subset S ⊂ R is said to satisfy Condition (D) if for all
x 6= y ∈ S , the element x − y ∈ R is not a zero divisor. A finite grid is a
subset A =

∏n
i=1 Ai of Rn (for some n ∈ Z+) with each Ai a finite,

nonempty subset of R. We say that A satisfies Condition (D) if each Ai

does.

Given any b1, . . . , bn ∈ Z with 1 ≤ bi ≤ ai , we may consider the scenario in
which the i-th bin comes prefilled with bi balls. If

∑n
i=1 bi ≤ N ≤

∑n
i=1 ai ,

we may restrict to distributions y = (y1, . . . , yn) of N balls into bins of
sizes a1, . . . , an such that bi ≤ yi ≤ ai for all i ∈ [n] and put

m(a1, . . . , an; b1, . . . , bn;N) = min Π(y),

where the minimum ranges over this restricted set of distributions.
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Applications of Alon-Füredi Theorem
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