Counting zero-sum subsequences with the polynomial method

John Schmitt

Middlebury College Vermont, USA

Joint work with Pete L. Clark (U. Georgia) and Aden Forrow (now at Oxford)

・ロト (母) (日) (日) (日) (0) (0)

The Erdős-Ginzburg-Ziv Theorem

Theorem (Erdős-Ginzburg-Ziv - 1961)

Every sequence of length 2m - 1 in $\mathbb{Z}/m\mathbb{Z}$ has a zero-sum subsequence of length m.

・ロト ・ 日 ・ モ ト ・ 田 ・ うへで

PROOF FOR PRIME CASE (BAILEY-RICHTER - 1989): Let us consider a sequence $(b_1, \ldots, b_n) \in \mathbb{F}_p^n$. Let

$$P_1(t_1,\ldots,t_n)=\sum_{i=1}^n b_i t_i^{p-1}\in \mathbb{F}_p[t_1,\ldots,t_n]$$

and

$$P_2(t_1,\ldots,t_n)=\sum_{i=1}^n t_i^{p-1}\in\mathbb{F}_p[t_1,\ldots,t_n].$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

PROOF FOR PRIME CASE (BAILEY-RICHTER - 1989): Let us consider a sequence $(b_1, \ldots, b_n) \in \mathbb{F}_p^n$. Let

$$P_1(t_1,\ldots,t_n)=\sum_{i=1}^n b_i t_i^{p-1}\in \mathbb{F}_p[t_1,\ldots,t_n]$$

and

$$P_2(t_1,\ldots,t_n)=\sum_{i=1}^n t_i^{p-1}\in \mathbb{F}_p[t_1,\ldots,t_n].$$

Recall Fermat's Little Theorem. P_1 encodes divisibility condition on sum. P_2 encodes number of terms in subsequence. Seek common zeros other than **0**, for a shared zero $\mathbf{0} \neq (x_1, \ldots, x_n) \in \mathbb{F}_p^n$ will provide $I = \{1 \le i \le n | x_i \ne 0\}$, the set we seek.

Theorem (Chevalley-Warning - 1935)

Let $n, r, d_1, \ldots, d_r \in \mathbb{Z}^+$ with $d_1 + \ldots + d_r < n$. For $1 \le i \le r$, let $P_i(t_1, \ldots, t_n) \in \mathbb{F}_q[t_1, \ldots, t_n]$ be a polynomial of degree d_i . Let

$$Z = Z(P_1, \ldots, P_r) = \{x \in \mathbb{F}_q^n \mid P_1(x) = \ldots = P_r(x) = 0\}$$

be the common zero set in \mathbb{F}_q^n of the P_i 's, and let $\mathbf{z} = \#Z$. Then: a) (Chevalley's Theorem, 1935) We have $\mathbf{z} = 0$ or $\mathbf{z} \ge 2$. b) (Warning's Theorem, 1935) We have $\mathbf{z} \equiv 0 \pmod{p}$.

うして ふゆう ふほう ふほう しょうく

Theorem (Chevalley-Warning - 1935)

Let $n, r, d_1, \ldots, d_r \in \mathbb{Z}^+$ with $d_1 + \ldots + d_r < n$. For $1 \le i \le r$, let $P_i(t_1, \ldots, t_n) \in \mathbb{F}_q[t_1, \ldots, t_n]$ be a polynomial of degree d_i . Let

$$Z = Z(P_1, \ldots, P_r) = \{x \in \mathbb{F}_q^n \mid P_1(x) = \ldots = P_r(x) = 0\}$$

be the common zero set in \mathbb{F}_q^n of the P_i 's, and let $\mathbf{z} = \#Z$. Then: a) (Chevalley's Theorem, 1935) We have $\mathbf{z} = 0$ or $\mathbf{z} \ge 2$. b) (Warning's Theorem, 1935) We have $\mathbf{z} \equiv 0 \pmod{p}$.

PROOF OF EGZ CONTINUED: With n = 2p - 1 > p - 1 + p - 1, we can apply Chevalley's Theorem.

Theorem (Combinatorial Nullstellensatz (Part 2), N. Alon 1999)

Let \mathbb{F} be an arbitrary field, and let $f = f(t_1, \ldots, t_n)$ be a polynomial in $\mathbb{F}[t_1, \ldots, t_n]$. Suppose the degree deg(f) of f is $\sum_{i=1}^{n} \alpha_i$, where each α_i is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^{n} t_i^{\alpha_i}$ in f is nonzero. Then, if A_1, \ldots, A_n are subsets of \mathbb{F} with $|A_i| > \alpha_i$, there are $a_1 \in A_1, \ldots, a_n \in A_n$ so that $f(a_1, \ldots, a_n) \neq 0$.

Theorem (Combinatorial Nullstellensatz (Part 2), N. Alon 1999)

Let \mathbb{F} be an arbitrary field, and let $f = f(t_1, \ldots, t_n)$ be a polynomial in $\mathbb{F}[t_1, \ldots, t_n]$. Suppose the degree deg(f) of f is $\sum_{i=1}^{n} \alpha_i$, where each α_i is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^{n} t_i^{\alpha_i}$ in f is nonzero. Then, if A_1, \ldots, A_n are subsets of \mathbb{F} with $|A_i| > \alpha_i$, there are $a_1 \in A_1, \ldots, a_n \in A_n$ so that $f(a_1, \ldots, a_n) \neq 0$.

Combinatorial Nullstellensatz \Rightarrow Chevalley's Theorem \Rightarrow EGZ.

Theorem (Combinatorial Nullstellensatz (Part 2), N. Alon 1999)

Let \mathbb{F} be an arbitrary field, and let $f = f(t_1, \ldots, t_n)$ be a polynomial in $\mathbb{F}[t_1, \ldots, t_n]$. Suppose the degree deg(f) of f is $\sum_{i=1}^{n} \alpha_i$, where each α_i is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^{n} t_i^{\alpha_i}$ in f is nonzero. Then, if A_1, \ldots, A_n are subsets of \mathbb{F} with $|A_i| > \alpha_i$, there are $a_1 \in A_1, \ldots, a_n \in A_n$ so that $f(a_1, \ldots, a_n) \neq 0$.

Combinatorial Nullstellensatz \Rightarrow Chevalley's Theorem \Rightarrow EGZ.

These are existence theorems.

GOAL FOR THIS TALK: Show how to refine combinatorial existence theorems into theorems which give explicit (and sometimes sharp) lower bounds on the *number* of combinatorial objects asserted to exist.

Theorem (Chevalley-Warning - 1935)

Let $n, r, d_1, \ldots, d_r \in \mathbb{Z}^+$ with $d_1 + \ldots + d_r < n$. For $1 \le i \le r$, let $P_i(t_1, \ldots, t_n) \in \mathbb{F}_q[t_1, \ldots, t_n]$ be a polynomial of degree d_i . Let

$$Z = Z(P_1, \ldots, P_r) = \{x \in \mathbb{F}_q^n \mid P_1(x) = \ldots = P_r(x) = 0\}$$

be the common zero set in \mathbb{F}_q^n of the P_i 's, and let $\mathbf{z} = \#Z$. Then: a) (Chevalley's Theorem, 1935) We have $\mathbf{z} = 0$ or $\mathbf{z} \ge 2$. b) (Warning's Theorem, 1935) We have $\mathbf{z} \equiv 0 \pmod{p}$.

Theorem (Warning's Second Theorem)

With same hypotheses,

$$\mathbf{z} = 0$$
 or $\mathbf{z} \ge q^{n-d}$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Balls in bins

Let $P(y) = y_1 \cdots y_n$. If $n \le N \le a_1 + \ldots + a_n$, let $\mathfrak{m}(a_1, \ldots, a_n; N)$ be the minimum value of P(y) as y ranges over all distributions of N balls into bins A_1, \ldots, A_n , where $|A_i| = a_i$ and where each bin must have at least one ball. To minimize the product: greedily serve the largest bins first.

Alon-Füredi Theorem

Theorem (Alon-Füredi Theorem - 1993)

Let \mathbb{F} be a field, let A_1, \ldots, A_n be nonempty finite subsets of \mathbb{F} . Put $A = \prod_{i=1}^n A_i$ and $a_i = \#A_i$ for all $1 \le i \le n$. Let $P \in \mathbb{F}[t] = \mathbb{F}[t_1, \ldots, t_n]$ be a polynomial. Let

$$\mathcal{U}_A = \{x \in A \mid P(x) \neq 0\}, \ \mathfrak{u}_A = \#\mathcal{U}_A.$$

うして ふゆう ふほう ふほう うらつ

Then $\mathfrak{u}_A = 0$ or $\mathfrak{u}_A \ge \mathfrak{m}(a_1, \ldots, a_n; a_1 + \ldots + a_n - \deg P)$.

Proof.

Induction on n.

Theorem (Warning's Second Theorem)

Let $n, r, d_1, \ldots, d_r \in \mathbb{Z}^+$ with $d_1 + \ldots + d_r < n$. For $1 \le i \le r$, let $P_i(t_1, \ldots, t_n) \in \mathbb{F}_q[t_1, \ldots, t_n]$ be a polynomial of degree d_i . Let

$$Z = Z(P_1, \ldots, P_r) = \{x \in \mathbb{F}_q^n \mid P_1(x) = \ldots = P_r(x) = 0\}$$

be the common zero set in \mathbb{F}_{a}^{n} of the P_{i} 's, and let $\mathbf{z} = \#Z$. Then,

 $\mathbf{z} = 0$ or $\mathbf{z} \ge q^{n-d}$.

うして ふゆう ふほう ふほう しょうく

Theorem (Warning's Second Theorem)

Let $n, r, d_1, \ldots, d_r \in \mathbb{Z}^+$ with $d_1 + \ldots + d_r < n$. For $1 \le i \le r$, let $P_i(t_1, \ldots, t_n) \in \mathbb{F}_q[t_1, \ldots, t_n]$ be a polynomial of degree d_i . Let

$$Z = Z(P_1, \ldots, P_r) = \{x \in \mathbb{F}_q^n \mid P_1(x) = \ldots = P_r(x) = 0\}$$

be the common zero set in \mathbb{F}_{a}^{n} of the P_{i} 's, and let $\mathbf{z} = \#Z$. Then,

$$z = 0$$
 or $z \ge q^{n-d}$.

PROOF (CLARK-FORROW-S. - 2017): Apply Alon-Füredi to

$$\prod_{i=1}^{r} (1 - P_i(t)^{q-1}).$$

Theorem (Clark, Forrow, S. - 2017)

Let p be a prime, let $n, r, v \in \mathbb{Z}^+$, and for $1 \le i \le r$, let $1 \le v_j \le v$. Let $A_1, \ldots, A_n \subset \mathbb{Z}$ be nonempty subsets each having the property that no two distinct elements are congruent modulo p. Let $P_1, \ldots, P_r \in \mathbb{Z}[t_1, \ldots, t_n]$. Put

$$Z_{\mathbf{A}} := \{x \in \prod_{i=1}^n A_i \mid orall 1 \leq j \leq r, P_j(x) \equiv 0 \pmod{p^{V_j}}\}.$$

Then $\#Z_{\mathbf{A}} = 0$ or

$$\#Z_{\mathbf{A}} \geq \mathfrak{m}\left(\#A_1,\ldots,\#A_n;\sum_{i=1}^n \#A_i - \sum_{j=1}^r (p^{\mathbf{v}_j} - 1) \deg P_j\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● のへで

Use this generalization of Warning's Second Theorem to prove a generalization of EGZ.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Theorem (Clark-Forrow-S. - 2017)

Let $k, r, v_1 \leq \ldots \leq v_r$ be positive integers, and let $G = \bigoplus_{i=1}^r \mathbb{Z}/p^{v_i}\mathbb{Z}$. Let A_1, \ldots, A_n be nonempty subsets of \mathbb{Z} , each containing 0, such that for each *i* the elements of A_i are pairwise incongruent modulo *p*. Put

$$A=\prod_{i=1}^n A_i, \ a_M=\max \#A_i.$$

For $g \in G$, let $EGZ_{A,k}(g)$ be the number of $(a_1, \ldots, a_n) \in A$ such that $a_1g_1 + \ldots + a_ng_n = g$ and $p^k \mid \#\{1 \le i \le n \mid a_i \ne 0\}$. Then either $EGZ_{A,k}(g) = 0$ or

$$\mathsf{EGZ}_{A,k}(g) \ge \mathfrak{m}(\#A_1, \dots, \#A_n; \sum_{i=1}^n \#A_i - \sum_{i=1}^r (p^{v_i} - 1) - (a_M - 1)(p^k - 1)).$$
(1)

Lemma

Let $\{0\} \subset A \subset \mathbb{Z}$ be a finite subset, no two of whose elements are congruent modulo p. There is $C_A \in \mathbb{Z}_{(p)}[t]$ of degree #A - 1 such that for $a \in A$,

$$\mathcal{C}_{\mathcal{A}}(a) = egin{cases} 0 & a = 0 \ 1 & a
eq 0 \end{cases}.$$

Proof.

We may take
$$C_A(t) = 1 - \prod_{a \in A \setminus \{0\}} \frac{a-t}{a}$$
.

PROOF OF THEOREM: Represent elements of G by r-tuples of integers (b_1, \ldots, b_r) . For $1 \le i \le n$ and $1 \le j \le r$, let

$$g_i = (b_1^{(i)}, \ldots, b_r^{(i)})$$

and

$$P_j(t_1,\ldots,t_n)=\sum_{i=1}^n b_j^{(i)}t_i.$$

If there is an element $x \in \prod_{i=1}^n A_i$ such that

$$\sum_{i=1}^n b_j^{(i)} x_i \equiv g^j \pmod{p^{v_j}} \quad \forall 1 \leq j \leq r,$$

then we get a zero-sum generalized subsequence from $I = \{1 \le i \le n \mid x_i = 1\}.$

The extra condition that the number of nonzero terms in the zero-sum generalized subsequence is a multiple of p^k is enforced via the polynomial congruence

$$C_{A_1}(t_1)+\ldots+C_{A_n}(t_n)\equiv 0 \pmod{p^k},$$

ション ふゆ アメリア メリア しょうめん

which has degree $a_M - 1$. \Box

Corollary

In the preceding theorem, let $0 \in A_1 = \ldots = A_n$, $k = v_r$. Put $a = #A_1$. a) Suppose D(G)

$$n\geq \exp G-1+\frac{D(G)}{a-1}.$$

Let R be such that $R \equiv -\sum_{i=1}^{r} (p^{v_i} - 1) \pmod{a-1}$ and $0 \le R < a-1$. Then

$$\mathsf{EGZ}_{A,v_r}(0) \ge (R+1)a^{n+1-\exp G + \lfloor \frac{1-D(G)}{a-1} \rfloor}.$$
 (2)

b) (Das Adhikari, Grynkiewicz, Sun - '12) Every sequence of length n in G has a nonempty zero-sum generalized subsequence of length divisible by exp G when

$$n \ge \exp G - 1 + \frac{D(G)}{a-1}.$$
 (3)

Relaxed outputs

Theorem (P.L. Clark - 2018)

Let p be a prime, let $n, r, v \in \mathbb{Z}^+$, and for $1 \le i \le r$, let $1 \le v_j \le v$. Let $A_1, \ldots, A_n, B_1, \ldots, B_r \subset \mathbb{Z}$ be nonempty subsets each having the property that no two distinct elements are congruent modulo p. Let $P_1, \ldots, P_r \in \mathbb{Z}[t_1, \ldots, t_n]$. Put

$$Z^{\mathbf{B}}_{\mathbf{A}} := \{x \in \prod_{i=1}^n A_i \mid orall 1 \leq j \leq r, \ P_j(x) \in B_j \pmod{p^{v_j}}\}.$$

Then $\#Z_{\mathbf{A}}^{\mathbf{B}} = 0$ or

$$\#Z_{\mathbf{A}}^{\mathbf{B}} \geq \mathfrak{m}\left(\#A_1,\ldots,\#A_n;\sum_{i=1}^n \#A_i - \sum_{j=1}^r (p^{v_j} - \#B_j) \deg P_j\right)$$

٠

Thank you!

(ロ)、