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The Erdos-Ginzburg-Ziv Theorem

Theorem (Erdés-Ginzburg-Ziv - 1961)

Every sequence of length 2m — 1 in Z/mZ has a zero-sum
subsequence of length m.
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PROOF FOR PRIME CASE (BAILEY-RICHTER - 1989): Let us
consider a sequence (by, ..., b,) € Fp.
Let
n
Pl(tl, ce tn) = Z b,‘flp_1 S Fp[tl, cey tn]
i=1

and
n

Pg(tl, RN tn) = Z th_l S Fp[tl, ce tn].
i=1
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PROOF FOR PRIME CASE (BAILEY-RICHTER - 1989): Let us
consider a sequence (by, ..., b,) € Fp.
Let

n
Pl(tl, ce tn) = Z b,‘flp_1 S Fp[tl, cey tn]
i=1

and .
Pg(tl, RN tn) = Z th_l S Fp[tl, ce tn].
i=1

Recall Fermat's Little Theorem. P; encodes divisibility condition
on sum. P, encodes number of terms in subsequence. Seek
common zeros other than 0, for a shared zero

0 # (x1,...,x,) € Fp will provide | = {1 </ < n|[x; # 0}, the set
we seek.
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Theorem (Chevalley-Warning - 1935)

Letn,r,dy,...,d, €ZT withdy +...+d, <n. For1<i<r, let
Pi(t1,...,ty) € Fq[t1,. .., tn] be a polynomial of degree d;. Let

Z=2Z(P1,...,P,) = {x €F7 | Py(x) = ... = P,(x) = 0}

be the common zero set in Fg of the P;’s, and let z = #Z. Then:
a) (Chevalley’s Theorem, 1935) We havez =0 orz > 2.
b) (Warning's Theorem, 1935) We have z =0 (mod p).
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Theorem (Chevalley-Warning - 1935)

Letn,r,dy,...,d, €ZT withdy +...+d, <n. For1<i<r, let
Pi(t1,...,ty) € Fq[t1,. .., tn] be a polynomial of degree d;. Let

Z=2Z(P1,...,P,) = {x €F7 | Py(x) = ... = P,(x) = 0}

be the common zero set in Fg of the P;’s, and let z = #Z. Then:
a) (Chevalley’s Theorem, 1935) We havez =0 orz > 2.
b) (Warning's Theorem, 1935) We have z =0 (mod p).

PrOOF OF EGZ CONTINUED: Withn=2p—-1>p—-1+p—1,
we can apply Chevalley's Theorem.O
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Theorem (Combinatorial Nullstellensatz (Part 2), N. Alon 1999)

Let F be an arbitrary field, and let f = f(t1,...,t,) be a
polynomial in F[ty, ..., t,]. Suppose the degree deg(f) of f is

> iq «j, where each «; is a nonnegative integer, and suppose the
coefficient of [[7_, 7 in f is nonzero. Then, if A1, ..., A, are

subsets of F with |A;| > «;, there are a1 € A1,...,a, € A, so that
f(ai,...,an) #0.
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Theorem (Combinatorial Nullstellensatz (Part 2), N. Alon 1999)

Let F be an arbitrary field, and let f = f(t1,...,t,) be a
polynomial in F[ty, ..., t,]. Suppose the degree deg(f) of f is
> iq «j, where each «; is a nonnegative integer, and suppose the

coefficient of [[7_, 7 in f is nonzero. Then, if A1, ..., A, are
subsets of F with |A;| > «;, there are a1 € A1,...,a, € A, so that
f(ai,...,an) #0.

Combinatorial Nullstellensatz = Chevalley's Theorem = EGZ.
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Theorem (Combinatorial Nullstellensatz (Part 2), N. Alon 1999)

Let F be an arbitrary field, and let f = f(t1,...,t,) be a
polynomial in F[ty, ..., t,]. Suppose the degree deg(f) of f is
> iq «j, where each «; is a nonnegative integer, and suppose the

coefficient of [[7_, 7 in f is nonzero. Then, if A1, ..., A, are
subsets of F with |A;| > «;, there are a1 € A1,...,a, € A, so that
f(ai,...,an) #0.

Combinatorial Nullstellensatz = Chevalley's Theorem = EGZ.

These are existence theorems.
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GOAL FOR THIS TALK: Show how to refine combinatorial
existence theorems into theorems which give explicit (and
sometimes sharp) lower bounds on the number of combinatorial
objects asserted to exist.
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Theorem (Chevalley-Warning - 1935)

Let n,r,dy,...,d, €Z* withdi +...+d.- <n. Forl1<i<r, let
Pi(t1,...,tn) € Fg[t1,. .., ts] be a polynomial of degree d;. Let

Z=Z(P,...,P) = {x €F] | Py(x) = ... = P,(x) = 0}

be the common zero set in Fg of the P;’s, and let z = #Z. Then:
a) (Chevalley's Theorem, 1935) We havez =0 orz > 2.
b) (Warning's Theorem, 1935) We have z =0 (mod p).

Theorem (Warning's Second Theorem)

With same hypotheses,

z=0o0rz>q" 9.
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Balls in bins

Q
O 1O 1O
Q. O O.

: o®

Let P(y) =y1-yn fn<N<ag+...+ap let

m(ay, ..., an N) be the minimum value of P(y) as y ranges over
all distributions of N balls into bins Ay, ..., A,, where |A;| = a;
and where each bin must have at least one ball. To minimize the
product: greedily serve the largest bins first.
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Alon-Furedi Theorem

Theorem (Alon-Fiiredi Theorem - 1993)

Let F be a field, let A1, ..., A, be nonempty finite subsets of IF.
Put A=T]!_; A and aj = #A; for all 1 < i < n. Let
P € F[t] = F[t1, ..., ta] be a polynomial. Let

Up={x € A| P(x) # 0}, ua = #Ua.

Thenup =0 oruas > m(ay,...,ap;a1+ ...+ a, —deg P).

Proof.

Induction on n. O
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Theorem (Warning's Second Theorem)

Letn,r,dy,...,d, € Z* withdi +...+d. <n. For1<i<r, let
Pi(t1,...,ty) € Fqlti,. .., tn] be a polynomial of degree d;. Let

Z:Z(Pl,...,Pr):{XEIFg | P1(x)=...=P,(x) =0}
be the common zero set in Fg of the P;'s, and let z = #Z. Then,

z=0o0rz>q" 9.
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Theorem (Warning's Second Theorem)

Letn,r,dy,...,d, € Z* withdi +...+d. <n. For1<i<r, let
Pi(t1,...,ty) € Fqlti,. .., tn] be a polynomial of degree d;. Let

Z=2Z(Ps,...,P)= {XEIF | P1(x)=...=P,(x) =0}
be the common zero set in Fg of the P;'s, and let z = #Z. Then,

z=0o0rz>q"

PROOF (CLARK-FORROW-S. - 2017): Apply Alon-Fiiredi to

r

[I—Pie)*™).

i=1
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Theorem (Clark, Forrow, S. - 2017)

Let p be a prime, let n,r,v € Z", and for1 < i <r, let
1<v;<v. Let Ay,..., A, C Z be nonempty subsets each having
the property that no two distinct elements are congruent modulo
p. Let Py1,...,P, € Z[t1, ..., t,]. Put

Zn ={x € HA,- |IV1<j<r, Pi(x)=0 (mod p*)}.

i=1

Then #Zp =0 or

#Zn > m [ #A1,. . H#AG Y #A =Y (P —1)deg P;
j=1

i=1
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Use this generalization of Warning’s Second Theorem to prove a
generalization of EGZ.
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Theorem (Clark-Forrow-S. - 2017)

Let k,r, vi < ... < v, be positive integers, and let

G =@ _,Z/p"Z. Let Aq,...,An be nonempty subsets of Z,
each containing 0, such that for each i the elements of A; are
pairwise incongruent modulo p. Put

A= HA,-, ap = max #A;.
i=1

For g € G, let EGZ A k(g) be the number of (a1, ...,an) € A such
that aigy + ...+ ang, = g and p* | #{1 < i < n| a; #0}. Then
either EGZ 4 (g) = 0 or

r

EGZax(g) > m(#A1, ..., #An > #A—> (p"—1)—(am—1)(p*~1)).
i=1 i=1
(1)
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Lemma

Let {0} C A C Z be a finite subset, no two of whose elements are
congruent modulo p. There is Ca € Zp)[t] of degree #A — 1 such

that for a € A,
0 a=0
CA(a) = o
1 a#0

Proof.
We may take Ca(t) =1— HaeA\{O} a%t O
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PROOF OF THEOREM: Represent elements of G by r-tuples of
integers (by,...,b;). For1 <i<nand1<j<r,let

g = . b

and
n

Pj(tl, e t,,) = Z bj(i)t,'.

i=1
If there is an element x € [[/_; A; such that
n

ij(-i)x,- =g/ (mod p¥)V1<j<r,
i=1

then we get a zero-sum generalized subsequence from
I={1<i<n|x =1}
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The extra condition that the number of nonzero terms in the
zero-sum generalized subsequence is a multiple of p¥ is enforced
via the polynomial congruence

Ca,(t1) + ...+ Ca,(tn) =0 (mod p*),

which has degree ayy — 1. O
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Corollary
In the preceding theorem, let 0 € Ay = ... = A, k= v,. Put
a— #Al.
a) Suppose
D(G
n>expG—1+ L
a—1

Let R be such that R=—3%7_;(p“ — 1) (mod a— 1) and
0<R<a-—1. Then

EGZA,V,(O) > (R 4 1)an+1—exp G.A,_L%(IG)J ' (2)

b) (Das Adhikari, Grynkiewicz, Sun - '12) Every sequence of length
n in G has a nonempty zero-sum generalized subsequence of length
divisible by exp G when

D
n2expG—1+a(_Gl). (3)
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Relaxed outputs

Theorem (P.L. Clark - 2018)

Let p be a prime, let n,r,v € Z, and for 1 < i < r, let

1<v;<v. Let Ay,...,An Bs,...,B, CZ be nonempty subsets
each having the property that no two distinct elements are
congruent modulo p. Let Py,...,P, € Z[t1,...,t,]. Put

7B .= {xe HA,- |IV1<j<r, Pi(x)eB; (modp%)}.
i=1

Then #Z =0 or

r

#ZR Zm | #A1L. . #AG D #A— D (P — #B;) deg P,

i=1 j=1
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Thank you!



