Counting zero-sum subsequences with the polynomial method

John Schmitt
Middlebury College
Vermont, USA

Joint work with Pete L. Clark (U. Georgia) and Aden Forrow (now at Oxford)

The Erdős-Ginzburg-Ziv Theorem

Theorem (Erdős-Ginzburg-Ziv - 1961)
Every sequence of length $2 m-1$ in $\mathbb{Z} / m \mathbb{Z}$ has a zero-sum subsequence of length m.

Proof for prime case (Bailey-Richter - 1989): Let us consider a sequence $\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{p}^{n}$.
Let

$$
P_{1}\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} b_{i} t_{i}^{p-1} \in \mathbb{F}_{p}\left[t_{1}, \ldots, t_{n}\right]
$$

and

$$
P_{2}\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} t_{i}^{p-1} \in \mathbb{F}_{p}\left[t_{1}, \ldots, t_{n}\right]
$$

Proof for prime case (Bailey-Richter - 1989): Let us consider a sequence $\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{p}^{n}$.
Let

$$
P_{1}\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} b_{i} t_{i}^{p-1} \in \mathbb{F}_{p}\left[t_{1}, \ldots, t_{n}\right]
$$

and

$$
P_{2}\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} t_{i}^{p-1} \in \mathbb{F}_{p}\left[t_{1}, \ldots, t_{n}\right]
$$

Recall Fermat's Little Theorem. P_{1} encodes divisibility condition on sum. P_{2} encodes number of terms in subsequence. Seek common zeros other than $\mathbf{0}$, for a shared zero $\mathbf{0} \neq\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}^{n}$ will provide $I=\left\{1 \leq i \leq n \mid x_{i} \neq 0\right\}$, the set we seek.

Theorem (Chevalley-Warning - 1935)

Let $n, r, d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$with $d_{1}+\ldots+d_{r}<n$. For $1 \leq i \leq r$, let $P_{i}\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be a polynomial of degree d_{i}. Let

$$
Z=Z\left(P_{1}, \ldots, P_{r}\right)=\left\{x \in \mathbb{F}_{q}^{n} \mid P_{1}(x)=\ldots=P_{r}(x)=0\right\}
$$

be the common zero set in \mathbb{F}_{q}^{n} of the P_{i} 's, and let $\mathbf{z}=\# Z$. Then:
a) (Chevalley's Theorem, 1935) We have $\mathbf{z}=0$ or $\mathbf{z} \geq 2$.
b) (Warning's Theorem, 1935) We have $\mathbf{z} \equiv 0(\bmod p)$.

Theorem (Chevalley-Warning - 1935)

Let $n, r, d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$with $d_{1}+\ldots+d_{r}<n$. For $1 \leq i \leq r$, let $P_{i}\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be a polynomial of degree d_{i}. Let

$$
Z=Z\left(P_{1}, \ldots, P_{r}\right)=\left\{x \in \mathbb{F}_{q}^{n} \mid P_{1}(x)=\ldots=P_{r}(x)=0\right\}
$$

be the common zero set in \mathbb{F}_{q}^{n} of the P_{i} 's, and let $\mathbf{z}=\# Z$. Then:
a) (Chevalley's Theorem, 1935) We have $\mathbf{z}=0$ or $\mathbf{z} \geq 2$.
b) (Warning's Theorem, 1935) We have $\mathbf{z} \equiv 0(\bmod p)$.

Proof of EGZ continued: With $n=2 p-1>p-1+p-1$, we can apply Chevalley's Theorem. \square

Theorem (Combinatorial Nullstellensatz (Part 2), N. Alon 1999)

Let \mathbb{F} be an arbitrary field, and let $f=f\left(t_{1}, \ldots, t_{n}\right)$ be a polynomial in $\mathbb{F}\left[t_{1}, \ldots, t_{n}\right]$. Suppose the degree $\operatorname{deg}(f)$ of f is $\sum_{i=1}^{n} \alpha_{i}$, where each α_{i} is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^{n} t_{i}^{\alpha_{i}}$ in f is nonzero. Then, if A_{1}, \ldots, A_{n} are subsets of \mathbb{F} with $\left|A_{i}\right|>\alpha_{i}$, there are $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$ so that $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

Theorem (Combinatorial Nullstellensatz (Part 2), N. Alon 1999)

Let \mathbb{F} be an arbitrary field, and let $f=f\left(t_{1}, \ldots, t_{n}\right)$ be a polynomial in $\mathbb{F}\left[t_{1}, \ldots, t_{n}\right]$. Suppose the degree $\operatorname{deg}(f)$ of f is $\sum_{i=1}^{n} \alpha_{i}$, where each α_{i} is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^{n} t_{i}^{\alpha_{i}}$ in f is nonzero. Then, if A_{1}, \ldots, A_{n} are subsets of \mathbb{F} with $\left|A_{i}\right|>\alpha_{i}$, there are $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$ so that $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

Combinatorial Nullstellensatz \Rightarrow Chevalley's Theorem \Rightarrow EGZ.

Theorem (Combinatorial Nullstellensatz (Part 2), N. Alon 1999)

Let \mathbb{F} be an arbitrary field, and let $f=f\left(t_{1}, \ldots, t_{n}\right)$ be a polynomial in $\mathbb{F}\left[t_{1}, \ldots, t_{n}\right]$. Suppose the degree $\operatorname{deg}(f)$ of f is $\sum_{i=1}^{n} \alpha_{i}$, where each α_{i} is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^{n} t_{i}^{\alpha_{i}}$ in f is nonzero. Then, if A_{1}, \ldots, A_{n} are subsets of \mathbb{F} with $\left|A_{i}\right|>\alpha_{i}$, there are $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$ so that $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

Combinatorial Nullstellensatz \Rightarrow Chevalley's Theorem $\Rightarrow \mathrm{EGZ}$.
These are existence theorems.

GOAL FOR THIS TALK: Show how to refine combinatorial existence theorems into theorems which give explicit (and sometimes sharp) lower bounds on the number of combinatorial objects asserted to exist.

Theorem (Chevalley-Warning - 1935)

Let $n, r, d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$with $d_{1}+\ldots+d_{r}<n$. For $1 \leq i \leq r$, let $P_{i}\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be a polynomial of degree d_{i}. Let

$$
Z=Z\left(P_{1}, \ldots, P_{r}\right)=\left\{x \in \mathbb{F}_{q}^{n} \mid P_{1}(x)=\ldots=P_{r}(x)=0\right\}
$$

be the common zero set in \mathbb{F}_{q}^{n} of the P_{i} 's, and let $\mathbf{z}=\# Z$. Then:
a) (Chevalley's Theorem, 1935) We have $\mathbf{z}=0$ or $\mathbf{z} \geq 2$.
b) (Warning's Theorem, 1935) We have $\mathbf{z} \equiv 0(\bmod p)$.

Theorem (Warning's Second Theorem)

With same hypotheses,

$$
\mathbf{z}=0 \text { or } \mathbf{z} \geq q^{n-d} .
$$

Balls in bins

Let $P(y)=y_{1} \cdots y_{n}$. If $n \leq N \leq a_{1}+\ldots+a_{n}$, let $\mathfrak{m}\left(a_{1}, \ldots, a_{n} ; N\right)$ be the minimum value of $P(y)$ as y ranges over all distributions of N balls into bins A_{1}, \ldots, A_{n}, where $\left|A_{i}\right|=a_{i}$ and where each bin must have at least one ball. To minimize the product: greedily serve the largest bins first.

Alon-Füredi Theorem

Theorem (Alon-Füredi Theorem - 1993)

Let \mathbb{F} be a field, let A_{1}, \ldots, A_{n} be nonempty finite subsets of \mathbb{F}.
Put $A=\prod_{i=1}^{n} A_{i}$ and $a_{i}=\# A_{i}$ for all $1 \leq i \leq n$. Let
$P \in \mathbb{F}[t]=\mathbb{F}\left[t_{1}, \ldots, t_{n}\right]$ be a polynomial. Let

$$
\mathcal{U}_{A}=\{x \in A \mid P(x) \neq 0\}, \mathfrak{u}_{A}=\# \mathcal{U}_{A} .
$$

Then $\mathfrak{u}_{A}=0$ or $\mathfrak{u}_{A} \geq \mathfrak{m}\left(a_{1}, \ldots, a_{n} ; a_{1}+\ldots+a_{n}-\operatorname{deg} P\right)$.

Proof.

Induction on n.

Theorem (Warning's Second Theorem)

Let $n, r, d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$with $d_{1}+\ldots+d_{r}<n$. For $1 \leq i \leq r$, let $P_{i}\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be a polynomial of degree d_{i}. Let

$$
Z=Z\left(P_{1}, \ldots, P_{r}\right)=\left\{x \in \mathbb{F}_{q}^{n} \mid P_{1}(x)=\ldots=P_{r}(x)=0\right\}
$$

be the common zero set in \mathbb{F}_{q}^{n} of the P_{i} 's, and let $\mathbf{z}=\# Z$. Then,

$$
\mathbf{z}=0 \text { or } \mathbf{z} \geq q^{n-d} .
$$

Theorem (Warning's Second Theorem)

Let $n, r, d_{1}, \ldots, d_{r} \in \mathbb{Z}^{+}$with $d_{1}+\ldots+d_{r}<n$. For $1 \leq i \leq r$, let $P_{i}\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{F}_{q}\left[t_{1}, \ldots, t_{n}\right]$ be a polynomial of degree d_{i}. Let

$$
Z=Z\left(P_{1}, \ldots, P_{r}\right)=\left\{x \in \mathbb{F}_{q}^{n} \mid P_{1}(x)=\ldots=P_{r}(x)=0\right\}
$$

be the common zero set in \mathbb{F}_{q}^{n} of the P_{i} 's, and let $\mathbf{z}=\# Z$. Then,

$$
\mathbf{z}=0 \text { or } \mathbf{z} \geq q^{n-d}
$$

Proof (Clark-Forrow-S. - 2017): Apply Alon-Füredi to

$$
\prod_{i=1}^{r}\left(1-P_{i}(t)^{q-1}\right)
$$

Theorem (Clark, Forrow, S. - 2017)

Let p be a prime, let $n, r, v \in \mathbb{Z}^{+}$, and for $1 \leq i \leq r$, let $1 \leq v_{j} \leq v$. Let $A_{1}, \ldots, A_{n} \subset \mathbb{Z}$ be nonempty subsets each having the property that no two distinct elements are congruent modulo p. Let $P_{1}, \ldots, P_{r} \in \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$. Put

$$
Z_{\mathbf{A}}:=\left\{x \in \prod_{i=1}^{n} A_{i} \mid \forall 1 \leq j \leq r, P_{j}(x) \equiv 0 \quad\left(\bmod p^{v_{j}}\right)\right\}
$$

Then $\# Z_{\mathbf{A}}=0$ or

$$
\# Z_{\mathbf{A}} \geq \mathfrak{m}\left(\# A_{1}, \ldots, \# A_{n} ; \sum_{i=1}^{n} \# A_{i}-\sum_{j=1}^{r}\left(p^{v_{j}}-1\right) \operatorname{deg} P_{j}\right)
$$

Use this generalization of Warning's Second Theorem to prove a generalization of EGZ.

Theorem (Clark-Forrow-S. - 2017)

Let $k, r, v_{1} \leq \ldots \leq v_{r}$ be positive integers, and let $G=\bigoplus_{i=1}^{r} \mathbb{Z} / p^{v_{i}} \mathbb{Z}$. Let A_{1}, \ldots, A_{n} be nonempty subsets of \mathbb{Z}, each containing 0 , such that for each i the elements of A_{i} are pairwise incongruent modulo p. Put

$$
A=\prod_{i=1}^{n} A_{i}, \quad a_{M}=\max \# A_{i}
$$

For $g \in G$, let $E G Z_{A, k}(g)$ be the number of $\left(a_{1}, \ldots, a_{n}\right) \in A$ such that $a_{1} g_{1}+\ldots+a_{n} g_{n}=g$ and $p^{k} \mid \#\left\{1 \leq i \leq n \mid a_{i} \neq 0\right\}$. Then either $\mathrm{EGZ}_{A, k}(g)=0$ or
$\mathrm{EGZ}_{A, k}(g) \geq \mathfrak{m}\left(\# A_{1}, \ldots, \# A_{n} ; \sum_{i=1}^{n} \# A_{i}-\sum_{i=1}^{r}\left(p^{v_{i}}-1\right)-\left(a_{M}-1\right)\left(p^{k}-1\right)\right)$

Lemma

Let $\{0\} \subset A \subset \mathbb{Z}$ be a finite subset, no two of whose elements are congruent modulo p. There is $C_{A} \in \mathbb{Z}_{(p)}[t]$ of degree $\# A-1$ such that for $a \in A$,

$$
C_{A}(a)=\left\{\begin{array}{ll}
0 & a=0 \\
1 & a \neq 0
\end{array} .\right.
$$

Proof.

We may take $C_{A}(t)=1-\prod_{a \in A \backslash\{0\}} \frac{a-t}{a}$.

Proof of Theorem: Represent elements of G by r-tuples of integers $\left(b_{1}, \ldots, b_{r}\right)$. For $1 \leq i \leq n$ and $1 \leq j \leq r$, let

$$
g_{i}=\left(b_{1}^{(i)}, \ldots, b_{r}^{(i)}\right)
$$

and

$$
P_{j}\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} b_{j}^{(i)} t_{i}
$$

If there is an element $x \in \prod_{i=1}^{n} A_{i}$ such that

$$
\sum_{i=1}^{n} b_{j}^{(i)} x_{i} \equiv g^{j} \quad\left(\bmod p^{v_{j}}\right) \forall 1 \leq j \leq r
$$

then we get a zero-sum generalized subsequence from $I=\left\{1 \leq i \leq n \mid x_{i}=1\right\}$.

The extra condition that the number of nonzero terms in the zero-sum generalized subsequence is a multiple of p^{k} is enforced via the polynomial congruence

$$
C_{A_{1}}\left(t_{1}\right)+\ldots+C_{A_{n}}\left(t_{n}\right) \equiv 0 \quad\left(\bmod p^{k}\right)
$$

which has degree $a_{M}-1$. \square

Corollary

In the preceding theorem, let $0 \in A_{1}=\ldots=A_{n}, k=v_{r}$. Put $a=\# A_{1}$.
a) Suppose

$$
n \geq \exp G-1+\frac{D(G)}{a-1}
$$

Let R be such that $R \equiv-\sum_{i=1}^{r}\left(p^{v_{i}}-1\right)(\bmod a-1)$ and $0 \leq R<a-1$. Then

$$
\begin{equation*}
\mathrm{EGZ}_{A, v_{r}}(0) \geq(R+1) a^{n+1-\exp G+\left\lfloor\frac{1-D(G)}{\alpha-1}\right\rfloor} \tag{2}
\end{equation*}
$$

b) (Das Adhikari, Grynkiewicz, Sun-12) Every sequence of length n in G has a nonempty zero-sum generalized subsequence of length divisible by $\exp G$ when

$$
\begin{equation*}
n \geq \exp G-1+\frac{D(G)}{a-1} \tag{3}
\end{equation*}
$$

Relaxed outputs

Theorem (P.L. Clark - 2018)

Let p be a prime, let $n, r, v \in \mathbb{Z}^{+}$, and for $1 \leq i \leq r$, let $1 \leq v_{j} \leq v$. Let $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{r} \subset \mathbb{Z}$ be nonempty subsets each having the property that no two distinct elements are congruent modulo p. Let $P_{1}, \ldots, P_{r} \in \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$. Put

$$
Z_{\mathbf{A}}^{\mathbf{B}}:=\left\{x \in \prod_{i=1}^{n} A_{i} \mid \forall 1 \leq j \leq r, P_{j}(x) \in B_{j} \quad\left(\bmod p^{v_{j}}\right)\right\} .
$$

Then $\# Z_{\mathbf{A}}^{\mathbf{B}}=0$ or

$$
\# Z_{\mathbf{A}}^{\mathbf{B}} \geq \mathfrak{m}\left(\# A_{1}, \ldots, \# A_{n} ; \sum_{i=1}^{n} \# A_{i}-\sum_{j=1}^{r}\left(p^{v_{j}}-\# B_{j}\right) \operatorname{deg} P_{j}\right)
$$

Thank you!

