
Chevalley-Warning Meets Hypergraphs: Counting Sub-hypergraphs with Union Cardinality 0 Modulo q

Chevalley-Warning Meets Hypergraphs: Counting
Sub-hypergraphs with Union Cardinality 0

Modulo q

John Schmitt

Middlebury College
Vermont, USA

Joint work with Pete L. Clark (U. Georgia) and Aden Forrow
(M.I.T.)



Chevalley-Warning Meets Hypergraphs: Counting Sub-hypergraphs with Union Cardinality 0 Modulo q

A warm-up exercise

Exercise: Given a positive integer m, how many integers must we
be given so as to guarantee a non-empty subset of these with sum
divisible by m?

Extremal configuration(s):

m−1︷ ︸︸ ︷
1, . . . , 1 or

m−1︷ ︸︸ ︷
m − 1, . . . ,m − 1

So, we must be given at least m integers. In fact, the pigeonhole
principle shows that m is enough.
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A different view of the warm-up

Let’s say m = 5 and view given integers as sizes of sets.

We have here that 5 6 |#(
⋃

i∈J Fi ) for any ∅ 6= J ⊆ {1, 2, 3, 4}.

And, if we had 5 sets, then regardless of what is given we have a
∅ 6= J ⊆ {1, 2, 3, 4, 5} such that 5|#(

⋃
i∈J Fi )
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Generalizing the basic question

Question: What if we allow sets to overlap? That is, if we
consider a set-system (i.e. a hypergraph) with maximum degree d ,
how many sets must we be given to guarantee the existence of a
sub-collection (i.e. a subhypergraph) so that the cardinality of the
union of these sets (edges) is divisible by m?
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Extremal configuration

sets of size m

1

m−1

1 2 d
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Extremal configuration

sets of size m+1

1

m−1

1 2 d

Sets have size m + 1 and maximum degree is d .

We have d(m − 1) sets and there is no non-trivial sub-collection
the cardinality of whose union is divisible by m.
Question: Does d(m − 1) + 1 sets suffice?
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Encode combinatorial problems via a polynomial so that zeros of
polynomial correspond to solutions of the combinatorial problem.

For F = {F1, . . . ,Fn} a set system of length n and maximal
degree at most d , put

h(t1, . . . , tn) =
∑

∅6=J⊂{1,...,n}

(−1)#J+1#(
⋂
j∈J
Fi )
∏
j∈J

tj .

deg(h) ≤ d

h(0, . . . , 0) = 0

Seek 0, 1-vectors of length n that evaluate to 0 – say
x ∈ {0, 1}n and Jx = {1 ≤ j ≤ n | xj = 1} – since the
Inclusion-Exclusion Principle implies

h(x) = #
⋃
j∈Jx

Fj .

We now need algebraic statements about the zeros of a polynomial.
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Zeros of polynomial systems

Theorem

(Chevalley-

Warning

Theorem) Let n, r , d1, . . . , dr ∈ Z+ with

d := d1 + . . . + dr < n.

For 1 ≤ i ≤ r , let Pi (t1, . . . , tn) ∈ Fq[t1, . . . , tn] be a polynomial of
degree di . Let

Z = Z (P1, . . . ,Pr ) = {x ∈ Fn
q | P1(x) = . . . = Pr (x) = 0}

be the common zero set in Fn
q of the Pi ’s, and let z = #Z. Then:

a) (Chevalley’s Theorem, 1935) We have z = 0 or z ≥ 2.

b) (Warning’s Theorem, 1935) We have z ≡ 0 (mod p).
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Zeros of polynomial systems

Warning’s Second Theorem

Theorem

Let n, r , d1, . . . , dr ∈ Z+ with

d := d1 + . . . + dr < n.

For 1 ≤ i ≤ r , let Pi (t1, . . . , tn) ∈ Fq[t1, . . . , tn] be a polynomial of
degree di . Let

Z = Z (P1, . . . ,Pr ) = {x ∈ Fn
q | P1(x) = . . . = Pr (x) = 0}

be the common zero set in Fn
q of the Pi ’s, and let z = #Z. Then:

z = 0 or z ≥ qn−d .
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Zeros of polynomial systems

Theorem

(Restricted Variable Warning’s Second Theorem, P. Clark, A.
Forrow, S. - 2014+) Let K be a number field with ring of integers
R, let p be a nonzero prime ideal of R, and let q = p` be the prime
power such that R/p ∼= Fq. Let A1, . . . ,An be nonempty subsets
of R such that for each i , the elements of Ai are pairwise
incongruent modulo p, and put A =

∏n
i=1 Ai . Let

r , v1, . . . , vr ∈ Z+. Let P1, . . . ,Pr ∈ R[t1, . . . , tn]. Let

ZA = {x ∈ A | Pj(x) ≡ 0 (mod pvj ) ∀1 ≤ j ≤ r}, zA = #ZA.

a) zA = 0 or zA ≥
m
(

#A1, . . . ,#An; #A1 + . . . + #An −
∑r

j=1(qvj − 1) deg(Pj)
)

.

b) (Boolean Case) We have z{0,1}n = 0 or

z{0,1}n ≥ 2n−
∑r

j=1(q
vj−1) deg(Pj ).
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Zeros of polynomial systems

Recall: For F = {F1, . . . ,Fn} a set system of length n and
maximal degree at most d , put

h(t1, . . . , tn) =
∑

∅6=J⊂{1,...,n}

(−1)#J+1#(
⋂
j∈J
Fi )
∏
j∈J

tj .

with deg(h) ≤ d , h(0, . . . , 0) = 0 and for x ∈ {0, 1}n and
Jx = {1 ≤ j ≤ n | xj = 1} we have

h(x) = #
⋃
j∈Jx

Fj .

When m = pv apply the boolean case of Warning’s Second
Theorem to h to obtain that there are 2n−d(p

v−1) sub-(set
systems) with cardinality of the union divisible by m.
Thus, when n > d(pv − 1) we have a non-trivial such sub-(set
system). This refines a result of Alon, Kleitman, Lipton,
Meshulam, Rabin and Spencer (1991).
Our theorem helps one make good conjectures.
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Zeros of polynomial systems

Thank you!



Chevalley-Warning Meets Hypergraphs: Counting Sub-hypergraphs with Union Cardinality 0 Modulo q

Zeros of polynomial systems

Balls in bins

A
1

A
2

A
n

Bin Ai holds at most ai balls.
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Zeros of polynomial systems

Balls in bins lemma

A
1

A
2

A
n

Bin Ai holds at most ai balls. Distribution of N balls is an n-tuple
y = (y1, . . . , yn) with y1 + . . . + yn = N and 1 ≤ yi ≤ ai for all i .
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Zeros of polynomial systems

Balls in bins lemma

A
1

A
2

A
n

Let P(y) = y1 · · · yn. If n ≤ N ≤ a1 + . . . + an, let
m(a1, . . . , an;N) be the minimum value of P(y) as y ranges over
all distributions of N balls into bins A1, . . . ,An.
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Zeros of polynomial systems

Balls in bins lemma

A
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A
2

A
n

Let P(y) = y1 · · · yn. If n ≤ N ≤ a1 + . . . + an, let
m(a1, . . . , an;N) be the minimum value of P(y) as y ranges over
all distributions of N balls into bins A1, . . . ,An. To minimize the
product, serve the largest bins first.
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Zeros of polynomial systems

Alon-Füredi Theorem

Theorem

(Alon-Füredi Theorem) Let F be a field, let A1, . . . ,An be
nonempty finite subsets of F . Put A =

∏n
i=1 Ai and ai = #Ai for

all 1 ≤ i ≤ n. Let P ∈ F [t] = F [t1, . . . , tn] be a polynomial. Let

UA = {x ∈ A | P(x) 6= 0}, uA = #UA.

Then uA = 0 or uA ≥ m(a1, . . . , an; a1 + . . . + an − degP).

Proof.

Induction on n.
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Warning’s Second Theorem

Warning’s Second Theorem

Theorem

Let n, r , d1, . . . , dr ∈ Z+ with

d := d1 + . . . + dr < n.

For 1 ≤ i ≤ r , let Pi (t1, . . . , tn) ∈ Fq[t1, . . . , tn] be a polynomial of
degree di . Let

Z = Z (P1, . . . ,Pr ) = {x ∈ Fn
q | P1(x) = . . . = Pr (x) = 0}

be the common zero set in Fn
q of the Pi ’s, and let z = #Z. Then:

z = 0 or z ≥ qn−d .
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Warning’s Second Theorem

Proof of Warning’s Second Theorem via Alon-Füredi
Theorem

Put

P(t) =
r∏

i=1

(1− Pi (t)
q−1).

Then degP = (q − 1)(deg(P1) + . . . + deg(Pr )), and

UA = {x ∈ A | P(x) 6= 0} = ZA,

so
zA = #ZA = #UA = uA.

Applying the Alon-Füredi Theorem we get zA = 0 or

zA ≥ m(#A1 + . . . + #An; #A1 + . . . + #An − (q − 1)d).
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