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Abstract

Determining the minimum number of clues that must be present in a Sudoku

puzzle in order to uniquely complete the puzzle is known as the minimum number

of clues problem. For a 9×9 Sudoku board, it has been conjectured that one needs

17 clues. We apply the polynomial method to the analogous problem for the 4× 4

Shidoku board to illustrate how one might approach the more general problem.
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1 Introduction

Shortly after the introduction of the popular number-puzzle Sudoku, enthusiasts and

mathematicians alike began asking the following question: how difficult can a Sudoku

puzzle be? One measure of difficulty is the number of clues (or hints) initially given in

the puzzle – the fewer clues given, the harder the puzzle. But just how few clues could

be given and still yield a puzzle with a unique completion? The conjectured value is

17. (It is unknown to the authors who initially made the conjecture.) That is, it is
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conjectured that any puzzle with 16 or fewer clues that has a completion has at least two

distinct completions. Determining the minimum number of clues necessary is known as

the minimum number of clues problem.

As evidence that many do believe that 17 is the correct answer to the minimum number

of clues problem for the 9×9 Sudoku board, one should consult the webpage1 of G. Royle

of the University of Western Australia. The webpage contains his collection of 49,151

distinct Sudoku puzzles each with 17 clues (one of which is reproduced in Figure 1). Royle

notes that the members of his set of 49,151 puzzles are mathematically inequivalent. That

is, any permissible permuting of the symbols, rows, columns, boxes or any transposing

of a given puzzle will not yield any of the other 49,150.

Recently, the team of G. McGuire, B. Tugemann, and G. Civario [7] announced a solution

to the problem, confirming that 17 is the answer. Their approach involves an exhaustive

(!) computer search (that included 7.1 million core hours on a 320-node cluster). To our

knowledge [7] has not yet been refereed.

While the puzzle in Figure 1 provides an upper bound of 17 to the minimum number of

clues Sudoku problem, the best known lower bound that can be arrived at via a purely

mathematical argument is 8. The argument is rather trivial. Suppose that only seven

clues are given. Then there are at least two labels not used, say x and y, and from a

completion of the puzzle we may replace all instances of x with y and vice versa. The

result of this is a distinct completion.

The purpose of this paper is to suggest a mathematical approach that might prove suc-

cessful in yielding a human-readable solution to the minimum number of clues problem

or at least provide a computational alternative to that of McGuire et al.[7]. A second

purpose is to explore algebraic methods for solving combinatorial problems. We use the

polynomial method – this is a method that encodes a combinatorial problem with a

polynomial, the nonzero values of which correspond to some interesting property of the

discrete system, and then uses algebraic results about polynomials to yield information

about the combinatorial problem by showing that some nonzero value exists or that none

do. The results we use are due to U. Schauz [8]. We illustrate an application of these

results by solving the minimum number of clues problem for the 4 × 4 Shidoku board,

showing that one needs at least four clues.

1See http://school.maths.uwa.edu.au/ gordon/sudokumin.php.
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Figure 1: A 17-clue Sudoku puzzle

Theorem 1 The minimum number of clues in a Shidoku puzzle with a unique completion

is 4.

The above statement is by no means new (nor surprising). The statement has been given

by A. Herzberg and M. Ram Murty [5], but their proof still requires us to “(check) the

cases that arise one by one.” L. Taalman [9] gives a short proof which uses ideas found

in the McGuire et al. approach to the larger problem. However, the reader should not

assume that the objective of this paper is to prove this theorem; it is not. Rather, our

objective is to illustrate the aspects of the polynomial method that are given below.

This paper is organized as follows. In Section 2 we discuss the aspects of the polynomial

method that we require, including results of U. Schauz [8], though we adopt the notation

of M. Lasoń [6], who gave simpler proofs of some of Schauz’s results. In Section 3 we give

definitions and notation relevant to the minimum number of clues problem. In Section

4 we prove Theorem 1. In Section 5 we comment on the proof of Theorem 1 given in

Section 4 and discuss how this approach might be extended to the minimum number of

clues Sudoku problem.
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2 The polynomial method and Schauz’s Coefficient

Formula

Let F be an arbitrary field. The Fundamental Theorem of Algebra tells us that a degree-t

polynomial f(x) contained in the polynomial ring F[x] has at most t zeros. Said another

way, for any set A of cardinality greater than t and contained in F, there is an element

a ∈ A such that f(a) is nonzero. One may think of this as saying, either a polynomial is

zero everywhere or it is zero in very few places. The second of two theorems collectively

known as the Combinatorial Nullstellensatz generalizes this fact to polynomials of several

variables – it is due to N. Alon [1, Theorem 1.2]. We may think of it as saying that a

multivariable polynomial that isn’t zero everywhere has a non-root in a box of large

enough volume. To reach this conclusion, Alon’s theorem requires the coefficient of an

appropriate monomial of maximum degree to be nonzero. Alon’s assumption can be

relaxed somewhat; it suffices to find a monomial with nonzero coefficient that does not

divide any other monomial in the polynomial.

To state the generalization, we require the following definition. Given a polynomial

f ∈ F[x1, . . . , xn], define the support of f , Supp(f), as the set of all (α1, . . . , αn) such

that the coefficient of xα1
1 . . . xαn

n in f is nonzero. We say (α1, . . . , αn) ≥ (β1, . . . , βn) if

αi ≥ βi for all i; this gives us a partial ordering of the elements of Supp(f).

Theorem 2 [Generalized Combinatorial Nullstellensatz, U. Schauz [8] Theorem 7.3,

M. Lasoń [6] Theorem 2] Let F be an arbitrary field, and let f be a polynomial in

F[x1, . . . , xn]. Suppose that (α1, . . . , αn) is maximal in Supp(f). Then for any sub-

sets A1, . . . , An of F satisfying |Ai| ≥ αi + 1, there are a1 ∈ A1, . . . , an ∈ An so that

f(a1, . . . , an) 6= 0.

Schauz also discovered a general method for finding coefficients of maximal monomials

in terms of the values of a polynomial. The following function will be useful in writing

the formula:

N(a1, . . . , an) =
n∏
i=1

∏
b∈Ai\{ai}

(ai − b).

The function N(a1, . . . an) may be described as a normalizing factor for

χ(a1,...,an)(x1, . . . , xn) = N(a1, . . . , an)−1 ·
n∏
i=1

∏
b∈Ai\{ai}

(xi − b).
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The function χ(a1,...,an) selects out the point (a1, . . . , an); it equals 1 at this point and zero

at every other (x1, . . . , xn) ∈ A1 × · · · × An.

With this we can now write an expression for the coefficient of any monomial in f whose

exponent vector is maximal in Supp(f) or greater than a maximal element of Supp(f).

Note that when we first encountered polynomials (say, in elementary school), we knew

the coefficients, plugged in values for the variables, and got out a value of the polynomial;

here we do that backwards, using values of the polynomial to get to coefficients. This will

prove useful, allowing us to learn more about the polynomial values from one coefficient,

even if that coefficient is zero.

Theorem 3 [Coefficient Formula, U. Schauz [8] Theorem 3.2, M. Lasoń [6] Theorem 3]

Let f be a polynomial in F[x1, . . . , xn] and let fα1,...,αn denote the coefficient of xα1
1 · · ·xαn

n

in f . Suppose that there is no greater element than (α1, . . . , αn) in Supp(f). Then for

any sets A1, . . . , An in F such that |Ai| = αi + 1 we have

fα1,...,αn =
∑

(a1,...,an)∈A1×···×An

f(a1, . . . , an)

N(a1, . . . , an)
. (1)

Note that in Theorem 3 we do not say (α1, . . . , αn) is maximal in the support of f because

we do not require it to be in Supp(f). Theorem 2 follows immediately from Theorem 3,

as does the next corollary.

Corollary 4 [U. Schauz [8] Corollary 3.4] If fα1,...,αn = 0, then either f vanishes over

A1 × · · · × An or f has at least two nonzero values over A1 × · · · × An.

Proof: If f is nonzero for exactly one element (a1, . . . , an) ∈ A× · · · ×An, Equation (1)

becomes fα1,...,αn = f(a1,...,an)
N(a1,...,an)

6= 0, as all other terms in the sum are zero.2

The following corollary is a direct consequence of Corollary 4 and these two corollaries

will be our main tools going forward.

Corollary 5 [U. Schauz [8] Corollary 3.4] Let f be a polynomial of degree d in F[x1, . . . , xn].

Then for any subsets A1, . . . , An of F satisfying
∑n

i=1(|Ai| − 1) > d, f either vanishes

over A1 × · · · × An or f has at least two nonzero values over A1 × · · · × An.
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Proof: Consider the monomial x
|A1|−1
1 · · ·x|An|−1

n in f . This is a monomial of degree

greater than d, so its coefficient is zero. Applying Corollary 4, the conclusion follows

immediately.2

As pointed out in T. Tao and V. Vu’s text on additive combinatorics [10], the polynomial

method is useful in providing lower bounds concerning cardinalities of sets. This is

precisely how we use the method below. To do so, we will most frequently make use of

Corollary 5 since the use of Corollary 4 requires us to explicitly compute a coefficient,

at times a challenging task. (For other applications of these corollaries, see Section 4 of

[8].) When we do need to compute a coefficient, we will make use of a result of N. Alon

and M. Tarsi [2].

The following definitions are given in [2]. The graph polynomial fG = fG(x1, . . . , xn)

of an undirected graph G = (V,E) on a set V = {v1, . . . , vn} of n vertices is defined

by fG(x1, . . . , xn) =
∏
{(xi − xj) : i < j, {vi, vj} ∈ E}. An oriented edge (vi, vj) of

G is decreasing if i > j. An orientation D of G is even (odd) if it has an even (odd)

number of decreasing edges. For non-negative integers d1, . . . , dn, let DE(d1, . . . , dn) and

DO(d1, . . . , dn) denote, respectively, the sets of all even and odd orientations of G in

which the out degree of the vertex vi is di for 1 ≤ i ≤ n.

Lemma 6 [N. Alon, M. Tarsi [2]] In the above notation

fG(x1, . . . , xn) =
∑

d1,...,dn≥0

(|DE(d1, . . . , dn)| − |DO(d1, . . . , dn)|)
n∏
i=1

xdii .

This result follows simply from the observation that each term in the expansion of the

product fG corresponds to an orientation of the edges of G.

3 Notation and terminology

Sudoku is a single-player game (or puzzle) played on a 9×9 matrix with a given subset of

cells filled with labels called clues – these labels are usually drawn from the set {1, . . . , 9}
– and one must fill in the remaining unfilled cells subject to the following rule, no two

cells from the same row, column or one of the nine 3× 3 sub-matrices – see the darkened

lines in Figure 1 – share the same label. If there is a labeling that adheres to these

rules, such a labeling is called a completion. We are interested in puzzles that have a

unique completion. We also define a more general version. We define Sudoku(n) to be
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the single-player game played on an n2×n2 matrix with a given subset of cells filled with

labels called clues – say these are drawn from the set {1, . . . , n2} – and one must fill in

the remaining unfilled cells subject to the following rule, no two cells from the same row,

column or one of the n2 n×n sub-matrices called boxes share the same label. (The term

chute will be used to refer to a set of n vertical or horizontal collinear boxes.) Thus,

Sudoku(3) is simply Sudoku. Sudoku(2) is also referred to as Shidoku, an example of

which is given below. The example below is a Shidoku puzzle with a unique completion;

we will prove that this 4-clue puzzle is of minimum size.

The minimum number of clues Sudoku conjecture may now be stated as follows.

Conjecture 7 [Folklore] The minimum number of clues in a Sudoku puzzle with a unique

completion is 17.

Notice that the rule set for Sudoku(n) leads naturally to a graph. To each cell of the

matrix we identify a vertex and a pair of vertices is joined by an edge if the corresponding

cells lie in the same row, column or one of the n2 boxes. Each edge of this graph may

be thought of as one of the many rules defining play on the puzzle. That is, an edge

corresponds to the fact that we insist that the two labels associated to the vertices at

opposite ends of the edge to be different. One can easily check that each of the n4 vertices

is incident with same number of edges, namely (n2− 1) + (n2− 1) + (n2− (n− 1)− (n−
1)− 1) = 3n2 − 2n− 1. Thus, the graph has n4(3n2−2n−1)

2
edges. We call the graph that

arises from the rule set of Sudoku(n) the Sudoku(n) graph and denote it by SUDn.

1 2

1 3

To each vertex in SUDn we assign a name (i, j) which corresponds to the ith row and jth

column of the associated cell. We label rows from top to bottom and columns from left

to right. Thus, the (2, 3)-cell in the above Shidoku puzzle, which contains the label 2,

shares its name and label with a vertex in SUD2.
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It is important to note that, in the above puzzle one has more information than is needed,

that is, some of the rules are redundant. For example, consider the edge joining vertices

(4, 1) and (4, 2) and the edge joining the vertices (2, 2) and (4, 2). As vertices (4, 1) and

(2, 2) are both adjacent to the same vertex and each has the label 1, we only need one of

these two edges to know that the label for vertex (4, 2) cannot be a 1. We may consider

one of the edges to be a redundant edge and it can be safely removed from the graph as the

information it contains is entailed by others. Finding redundant edges will be key to our

work. A recent paper by B. Demoen and M.G. de la Banda [3], aptly titled Redundant

Sudoku Rules, discusses how one might do this starting with a Sudoku board with no

clues present. A subsequent technical report [4] by the same authors does the same for

the Shidoku board.

Figure 2, given in [4], shows some redundant sets of edges that can be removed from

the Shidoku graph SUD2 while still supplying enough rules to know whether or not a

completion satisfies all of the initial rules. Note that in each of the graphs there are

precisely 16 edges present, meaning that we have kept 40 of the original 56 edges. We

will refer to the graphs from left to right and top to bottom as G1, . . . , G8. Each of

these graphs has multiple symmetries, obtained by swapping two rows or two columns

of vertices from the same chute, swapping two chutes or reflecting across either of the

long diagonals of the matrix. In regards to the computational challenges of the minimum

number of clues problem, it is important to note that these graphs are the result of a

short combinatorial argument, see [4].

Figure 2: G1, . . . G8, from left to right, top to bottom
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4 Solving the minimum number of clues Shidoku

problem

If one were to take a brute-force approach to proving the lower bound of 4 for the

minimum number of clues Shidoku problem, then one would have to consider at most(
16
3

)
· 43 = 35, 840 sets of initial clues as there are

(
16
3

)
ways to choose the cells and for

each cell chosen there are 4 possible labels. Of course one can find symmetries to reduce

this number, but it gives us a sense of the size of the problem. Though searching this

space via a computer is much more manageable than the computation that McGuire et

al. [7] took on, our intention is to highlight what we believe to be a beautiful algebraic

approach, one that might lead to a more conceptual proof for the minimum number of

clues Sudoku problem.

Proof of Theorem 1

Note that the Shidoku puzzle given above is of size 4 and has a unique completion. This

establishes the upper bound.

We now show the lower bound. We begin by noting that any Sudoku(n) puzzle that omits

two distinct labels from the clue-set, say x and y are omitted, will allow any completion of

the puzzle to yield a distinct completion upon a permutation of labels that interchanges

x and y. Thus, we need only consider 3-clue puzzles with three distinct labels.

The approach is as follows. Let a 3−clue set with three distinct labels be given and

consider SUD2. If necessary, we extend to a partial completion, where the additional

clues determined are forced by the given three. For each unlabeled vertex u in SUD2

assign a variable xu. Let n count the number of such variables assigned. (Note that

n will be at most 16 − 3 = 13, and will be less only when we extend to a partial

completion.) For each labeled vertex v, let cv denote the label the corresponding cell

has been assigned. Depending upon the relative placement of the clues and the relative

labeling, we will choose one of G1, . . . , G8 or the empty graph and delete the edges

contained in this graph and possibly some additional edges from SUD2. For each edge

{u, v} in the resulting graph G associate a linear factor of the form (xu − xv), (xu − cv)
or (cu− cv), where the factor corresponds to the variable-variable, variable-label or label-

label assignment, respectively, of the endpoints of the edge. Now consider the polynomial

that is the product of all such linear factors; call it fG, the graph polynomial. We will

consider fG as a polynomial in the xu’s. That is, fG = fG(x1, . . . , xn) ∈ R[x1, . . . , xn].
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This polynomial is zero when any one of these factors is zero and is nonzero otherwise.

When we evaluate this polynomial at a point, the point will correspond to a labeling of

the graph and the polynomial evaluates as zero if and only if any pair of labels violates

the rules of the puzzle. A nonzero corresponds to a completion of the puzzle. We seek

points that belong to A1 × · · · × An, where Ai = {1, 2, 3, 4} for 1 ≤ i ≤ n. If we can

show that there is no greater element than the n-length exponent vector of the form

(3, 3, . . . , 3) in Supp(fG) and the coefficient of the corresponding monomial is 0 or the

degree of fG is ‘small enough’ (i.e., strictly less than 3n), then either by Corollary 4 or

Corollary 5, respectively, either fG vanishes over A1 × · · · × An or fG has at least two

nonzero values over A1 × · · · × An. If the former occurs, then this is saying that there

is no completion and if the latter occurs, then this is saying that there is more than one

completion. In either case, the puzzle does not have a unique completion.

Below, when we say we “apply Gi”, we mean we delete the edges from SUD2 that are

also in Gi or the described symmetry of Gi.

Swapping two rows or two columns in the same chute does not change the adjacency

graph, nor does swapping two chutes or reflecting across the diagonal, so puzzles that can

be transformed into each other by such operations have the same number of completions.

Also, the identity of the labels does not matter: the puzzle is the same whether the three

given clues are (1, 2, 3), (3, 1, 2), or (p, q, r).

The proof now breaks into various cases, depending upon the relative placement of the

clues and the relative labeling.

We first consider the case where one of the following holds: three clues in the same box;

three in the same row/column (which we illustrate below in Figure 3); two in the same

box or in the same row/column and the third in the same row/column as one of the first

two. (This case corresponds to the existence of at least two edges “between” clues that

may be dropped.) In each instance, we apply an appropriate symmetry of G7. For each

instance, there are at least two edges “between” clues that are not in the model and may

be deleted from SUD2. We obtain a polynomial with 13 variables and of degree at most

40− 2 = 38. We apply Corollary 5 and we are done.

There are five cases with three distinct clues with at most one edge between them; up to

isomorphism (and with an accompanying board) these are:

(1) two clues in the same row/column and box, with the third clue in the same chute as

the first two;
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1

2
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1
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Figure 3: From left to right: G7 with 3 vertices labeled in the fourth column; and with

the three additional edges that may also be deleted from SUD2, for a total of 19 edges

deleted

1
2

3

(2) two clues in the same row/column and box, with the third clue in a different chute

to the first two;

1
2

3

(3) two clues in the same row/column, different box;

1

2
3
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(4) two clues in the same box, different row/column;

1
2

3

and, (5) no two clues in the same row, column, or box.

1
2

3

For Case (1) we uniquely complete the first column (as shown below, with new clues

given in italicized font) and need not apply any model. With the double appearance of

the 3-label in the lower left box, the polynomial fG has a factor of 0 and so is identically

0. We apply Corollary 5 and reach the desired conclusion.

1
2

4 3
3

For Case (2) we uniquely complete the first column (as shown below, with new clues

given in italicized font) and apply a 90-degree clockwise-rotation of model G7. We delete

six edges in the first column and one edge in the third row, none of which are present in

the model. With the double appearance of the 3-label, we delete one more edge, an edge
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that is incident with the cell (3, 2). We now have 11 variables and 40− 8 = 32 edges. We

apply Corollary 5 and reach the desired conclusion.

1
2

4 3
3

For Case (3) we uniquely complete the first column and the (3, 2)-entry (as shown below,

with new clues given in italicized font) and apply a 90-degree clockwise-rotation of model

G7. We delete nine edges between the known clues, none of which are present in the

model. With the triple appearance of the 3-label, we delete two more edges (neither

of which is present in the considered symmetry of G7) – one of the pair incident with

cell (4, 2) and one of the pair incident with cell (2, 3). We now have 10 variables and

40− 9− 2 = 29 edges. We apply Corollary 5 and reach the desired conclusion.

1
3

2 3
4 3

For Case (4) we show two distinct completions.

1 3 4 2
4 2 1 3

2 4 3 1
3 1 2 4

1 3 4 2
4 2 1 3

2 1 3 4
3 4 2 1

For Case (5) we uniquely complete the second row, third column, and upper-right box

uniquely (as shown below, with new clues given in italicized font) and apply a 180-degree
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clockwise rotation of model G2. We delete 16 edges between the known clues, none of

which are present in the model. We now have 8 variables and 40− 16 = 24 edges. As the

degree of f is 24, we know that there is no greater element than the 8-length exponent

vector of the form (3, 3, . . . , 3) in Supp(fG). To show that the coefficient of the monomial

that corresponds to this exponent vector is 0, we give a visual proof via Figure 4 to help

illustrate the application of Lemma 6.

2 1
1 2 4 3

3
1

As we seek the monomial corresponding to the 8-length exponent vector of the form

(3, 3, . . . , 3), we are interested in finding all orientations that admit 3 outgoing arcs from

each of the vertices that correspond to an x-variable. Due to the degree of the polynomial,

each of the c-labeled vertices must have all arcs as incoming. Those x-variable vertices

with degree 3 obviously must have all arcs directed outwards. These two facts force the

direction of most of the edges. The remaining edges that are not forced are highlighted

in the right-most graph of Figure 4. As seen, these edges form a 5-cycle through the

vertices associated to xa-variables. Each of these vertices has an out-degree of two as

given by the ‘forcing’. Thus, each requires one more outgoing arc, and so the other must

be incoming. This allows for two possible orientations. As the parity of the length of the

cycle is odd, one of these orientations is even and the other odd. Lemma 6 implies that

the coefficient of the monomial we seek is 0. We now apply Corollary 4 and reach the

desired conclusion.

This completes the proof.2
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1
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Figure 4: From left to right: G2 rotated 180 degrees; and with the labeling; the built

graph G; and desired orientations of built graph

5 Concluding remarks

5.1 Remarks on the proof of Theorem 1

The reader should have noted that, although the conclusion of each of the corollaries that

we used in the proof allows for two possibilities, we needn’t distinguish between the two.

With either possibility, the puzzle is not valid!

The reader should note that in the proof of Theorem 1 we sought to use Corollary 5

whenever we could. The reason for this was that we then didn’t need to compute the

coefficient of a leading monomial, which an application of Corollary 4 would have required.

Our work with the polynomial method has confirmed for us what others have found –

extracting coefficients of a (leading) monomial is challenging. So, this is one reason we

were so happy to ‘find’ Corollary 5 – we simply needed to check that the degree of the

polynomial was ‘small enough’, we didn’t need to find any coefficients!

It seems to us that Case (4), which was handled by providing two distinct completions,

could not have been approached via Corollary 5, but could have been handled using

Corollary 4. However, doing so would have been a little bit more tedious than simply

presenting the two completions. Further, our goal has been to demonstrate how the

polynomial method can be used and we believe we have accomplished doing so.

5.2 Remarks on the Sudoku problem

We believe that the approach we used for the minimum number of clues Shidoku problem

can also be used for the minimum number of clues Sudoku problem, though this is not

without challenge.
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One of the first obstacles has already been overcome – Demoen and de la Banda [3] have

shown how to eliminate some of the 810 edges in SUD3. They have given various models

that show which sets of redundant edges can be removed from the Sudoku graph while

still supplying enough rules to know whether or not a completion satisfies all of the initial

rules. The best known model allows one to consider an 81-vertex graph with 648 edges

– others leave the number of edges in the high 600s.

If one were to try to prove Conjecture 7 via the method above, one would begin by

filling in 16 cells and writing down a polynomial in at most 65 variables. The arithmetic

condition called for by this application of the polynomial method is a polynomial of

degree at most 8 · 65 = 520. The results of Demoen and de la Banda leave us short of

this goal and so we must find many redundant edges by examining the clues given. This

is particularly challenging, especially when one discovers that a redundant edge need not

share an endpoint with a vertex whose corresponding cell has been labeled.

Of course one might try for a weaker lower bound than the conjectured one. Doing so

has the advantage of not having to find as many redundant edges based upon the clues,

but there is a trade-off as with fewer clues there will be less redundancy to find.

Finally, we point the reader to a question of Herzberg and Murty [5] who asked, is it true

that the answer for the minimum number of clues Sudoku(n) problem is o(n4)?
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