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Abstract. A Nullstellensatz is a theorem providing information on polynomials that vanish on

a certain set: David Hilbert’s Nullstellensatz (1893) is a cornerstone of algebraic geometry, and

Noga Alon’s Combinatorial Nullstellensatz (1999) is a powerful tool in the Polynomial Method,

a technique used in combinatorics. Alon’s Theorem excludes that a polynomial vanishing on a

grid contains a monomial with certain properties. This theorem has been generalized in several

directions, two of which we will consider in detail: Terence Tao and Van H. Vu (2006), Uwe

Schauz (2008) and Micha l Lasoń (2010) exclude more monomials, and recently, Bogdan Nica

(2023) improved the result for grids with additional symmetries in their side edges. Simeon

Ball and Oriol Serra (2009) incorporated the multiplicity of zeros and gave Nullstellensätze for

punctured grids, which are sets of the form X \ Y with both X,Y grids.

We generalize some of these results; in particular, we provide a common generalization to

the results of Schauz and Nica. To this end, we establish that during multivariate polynomial

division, certain monomials are unaffected. This also allows us to generalize Pete L. Clark’s

proof of the nonzero counting theorem by Alon and Füredi to punctured grids.

1. Introduction

For a field K, n ∈ N and a subset S of Kn, we say that a polynomial f ∈ K[x1, . . . , xn] vanishes

on S if f(a) = 0 for all a ∈ S. We will be particularly interested in the case that S is a grid.

Here we say that a subset S of Kn is a grid over K if there are finite subsets S1, . . . , Sn of

K such that S =×n

i=1
Si. For a polynomial f ∈ K[x1, . . . , xn], we denote its total degree by

deg(f) (with deg(0) = −∞), and n := {1, 2, . . . , n}. The model of our results will be Alon’s

Combinatorial Nullstellensatz.

Theorem 1.1 (Alon’s Combinatorial Nullstellensatz [Alo99, Theorem 1.2]). Let S =×n

i=1
Si

be a grid over K, and let f ∈ K[x1, . . . , xn] be such that f contains a monomial xα1
1 · · ·xαn

n with

αi < |Si| for all i ∈ n. Then if

(1.1)
n∑

i=1

αi = deg(f),

there is s ∈ S such that f(s) ̸= 0.

The proof relies on the fact (see [Alo99, Theorem 1.1]) that the set I(S) of those polynomials

in K[x1, . . . , xn] that vanish on S is the ideal of K[x1, . . . , xn] generated by g1, . . . , gn, where

gi :=
∏

a∈Si
(xi − a), and on the fact that every f ∈ I(S) can be written as

∑n
i=1 higi with
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deg(higi) ≤ deg(f) for all i ∈ n. For ensuring the existence of a nonzero on a grid, Alon’s

Theorem requires that f contains a monomial of maximal total degree such that the degree

in each variable is smaller than the corresponding side length of the grid. Several subsequent

results relax the condition (1.1) on such a monomial, and a simple condition was given in

[Las10]: For α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Nn
0 , we write α ⊑ β if αi ≤ βi for all

i ∈ n, and α ⊏ β if α ⊑ β and α ̸= β. The monomial xα1
1 · · ·xαn

n is also written as xα. Clearly, a

monomial xα divides a monomial x β if and only if α ⊑ β. For a polynomial f =
∑

α∈Nn
0
cαx

α,

we let Mon(f) := {xα | α ∈ Nn
0 , cα ̸= 0} be the set of monomials that appear in f , and

Supp(f) = {α ∈ Nn
0 | cα ̸= 0} be the set of exponents of these monomials, called the support of

f . Now [Las10, Theorem 2] tells that Theorem 1.1 still holds if we replace (1.1) by the weaker

condition

(1.2) (α1, . . . , αn) is maximal in Supp(f) with respect to ⊑ .

Stated differently, (1.2) requires that Supp(f) does not contain a γ ∈ Nn
0 with α ⊑ γ and

α ̸= γ. For fields of characteristic 0, this result had been contained in [TV06, Exercise 9.1.4].

This condition (1.2) can also be stated as

(1.3) for every monomial x γ ∈ Mon(f) \ {xα}, there is i ∈ n such that γi < αi.

A stronger result is given in [Sch08, Theorem 3.2(ii)]. This results tells that Theorem 1.1 still

holds if we replace (1.1) by

(1.4) for every monomial x γ ∈ Mon(f) \ {xα},

there is i ∈ n such that γi ̸= αi and γi ≤ |Si| − 1.

Schauz’s result also applies to rings other than fields. In the present note, we restrict our

attention to grids over fields. In [BS09], Ball and Serra incorporate the multiplicity of zeros

into Alon’s theorem, and they extend the result from grids to punctured grids ; these are sets

that can be written as X \ Y with both X and Y grids. Kós and Rónyai [KR12] generalized

Alon’s theorem to grids whose edges are multisets ; such grids will be considered in Section 7.

Nica [Nic23, Theorem 3.1] gives a different lever to achieve generalizations of Theorem 1.1 by

taking into account the structure of the grid. For λ ∈ N0, we call a univariate polynomial

f ∈ K[x] of degree ν ∈ N0 λ-lacunary if in f , all coefficients of xα with ν − λ ≤ α < ν vanish.

Then [Nic23] defines a finite set A ⊆ K to be λ-null if the polynomial
∏

a∈A(x−a) is λ-lacunary.

For example, over the complex numbers C, the set {a ∈ C | an = 1} is (n− 1)-null because the

polynomial xn − 1 is (n− 1)-lacunary, every finite subset of a field K is 0-null, and a subset S

of K is 1-null if
∑

a∈S a = 0. Nica’s Theorem states:

Theorem 1.2 (Nica’s Combinatorial Nullstellensatz for Structured Grids, [Nic23, Theorem 3.1]).

Let S =×n

i=1
Si be a grid over the field K, and let λ ∈ N0 be such that each Si is λ-null. Let

f ∈ K[x1, . . . , xn] and let (α1, . . . , αn) ∈ Nn
0 with αi < |Si| for all i ∈ n be such that f contains

the monomial xα1
1 · · ·xαn

n . Then if

(1.5)
n∑

i=1

αi ≥ deg(f)− λ
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there is s ∈ S such that f(s) ̸= 0.

We can therefore see that Alon’s theorem has already been extended along four lines in the

literature: In one line are the extensions of Ball and Serra [BS09] and Kós and Rónyai [KR12]

including the multiplicities of zeros. Another line is the extension of the theorems to sets that

are not grids as in Ball and Serra’s extension to punctured grids. Nica’s extension applies to

structured grids, and Lasoń’s, Tao and Vu’s and Schauz’s extensions put different conditions

on the set of monomials appearing in the polynomial.

In the present paper, we combine these threads and obtain generalizations of some of these

theorems. Essential in our proofs is an analysis of multivariate polynomial division; here we

borrow some terms from the theory of Gröbner bases [Buc85, BW93, AL94].

2. Results

Our first result incorporates Nica’s improvement of the Combinatorial Nullstellensatz for struc-

tured grids ([Nic23, Theorem 3.1]) into Schauz’s result [Sch08, Theorem 3.2(ii)] and surprisingly

yields more than the union of the two statements. For a, b ∈ N0, the interval [a, b] is defined

by [a, b] := {x ∈ N0 | a ≤ x ≤ b}. For a > b, we then have [a, b] = ∅.

Theorem 2.1 (Structured Nullstellensatz using conditions on the monomials). Let n ∈ N
and let λ1, . . . , λn ∈ N0. For each i ∈ n, let Si be a λi-null subset of the field K, and let

S :=×n

i=1
Si. Let f ∈ K[x1, . . . , xn] and let (α1, . . . , αn) ∈ Nn

0 with αi < |Si| for all i ∈ n

be such that f contains the monomial xα1
1 · · ·xαn

n . Furthermore, we assume that for every

monomial x γ in Mon(f) \ {xα}, there is i ∈ n such that

(2.1) γi ∈ [0, αi − 1] ∪ [αi + 1, |Si| − 1] ∪ [|Si|, αi + λi].

Then there is s ∈ S such that f(s) ̸= 0.

The proof is given in Section 5. We note that if we replace (2.1) by

γi ∈ [0, αi − 1],

we obtain Lasoń’s result [Las10, Theorem 2], if we replace (2.1) by

γi ∈ [0, αi − 1] ∪ [αi + 1, |Si| − 1],

we obtain Schauz’s result [Sch08, Theorem 3.2(ii)], and if we replace (2.1) by

γi ∈ [0, αi − 1] ∪ [αi + 1, αi + λi],

we obtain a result that implies Theorem 1.2. For this purpose, we note that

(2.2) [αi + 1, αi + λi] ⊆ [αi + 1, |Si| − 1] ∪ [|Si|, αi + λi].

If |Si| − 1 > αi + λi, then the inclusion is proper. Hence Theorem 2.1 generalizes these three

results. An extension to multisets is given in Theorem 7.2.

Let us compare Theorem 2.1 to other Nullstellensätze by looking at an example: Consider the

4-null sets S1 = S2 = {z ∈ C | z5 = 1}, let S := S1 × S2, and let xα := x2
1x

3
2. Each of the
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Figure 1. x2
1x

3
2 + any linear combinations of the dotted monomials does not

vanish on S = {(x1, x2) ∈ C2 | x5
1 = x5

2 = 1}.

compared results yields a set of monomials M such that every polynomial that is a sum of

x2
1x

3
2 and a linear combination of monomials in M has a nonzero in S. In Figure 1 (made with

Mathematica [Wol24]) we draw the representations {(γ1, γ2) ∈ N2
0 | xγ1

1 xγ2
2 ∈ M} of these sets

of monomials. For an in-depth comparison of allowable monomials for various versions of the

Nullstellensatz, we point the reader to [Rot23].

Our next goal is to incorporate multiplicities. Let K be a field, let f ∈ K[x1, . . . , xn], let t ∈ N0,

and let c = (c1, . . . , cn) ∈ K. We say that c is a zero of multiplicity t or a t-fold zero of f if

the polynomial f ′ := f(c1 + x1, . . . , cn + xn) lies in the ideal ⟨x1, . . . , xn⟩t, which holds if and

only if f ′ contains no monomials of total degree less than t. We note that every c ∈ Kn is a

0-fold zero of f , and that c is a 1-fold zero of f if and only if f(c) = 0. Furthermore, in our

definition, a t-fold zero is a t′-fold zero for all t′ ≤ t.

Theorem 2.2 (Structured Nullstellensatz using conditions on the monomials with multiplici-

ties). Let n, t ∈ N and let λ ∈ Nn
0 . For each i ∈ n, let Si be a λi-null subset of the field K, and

let S :=×n

i=1
Si. Let f ∈ K[x1, . . . , xn] and let (α1, . . . , αn) ∈ Nn

0 be such that

(2.3) for all β ∈ Nn
0 :

n∑
i=1

βi = t =⇒ (∃i ∈ n : αi < βi|Si|)
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and f contains the monomial xα1
1 · · · xαn

n . Furthermore, we assume that for every monomial x γ

in Mon(f) \ {xα}, there is i ∈ n with γi ̸= αi such that

(2.4) γi ∈ [0, αi − 1] ∪ [αi + 1, αi + λi] or

∀β ∈ Nn
0 :

(
(

n∑
j=1

βj = t and βi > 0) ⇒ (∃j ∈ n : γj < βj|Sj|)
)
.

Then there is s ∈ S such that s is not a t-fold zero of f .

The proof is given in Section 6. Setting t = 1, we obtain Theorem 2.1 since s is a 1-fold zero

of f if and only if f(s) ̸= 0. As a corollary, we obtain a common generalization of [Nic23,

Theorem 3.1] and [BS09, Corollary 3.2].

Corollary 2.3 (Structured Nullstellensatz with multiplicities). Let n ∈ N and let λ ∈ N0. For

each i ∈ n, let Si be a λ-null subset of the field K, and let S :=×n

i=1
Si. Let f ∈ K[x1, . . . , xn]

and let (α1, . . . , αn) ∈ Nn
0 be such that

for all β ∈ Nn
0 :

n∑
i=1

βi = t =⇒ (∃i ∈ n : αi < βi|Si|),

f contains the monomial xα1
1 · · ·xαn

n , and

(2.5)
n∑

i=1

αi ≥ deg(f)− λ.

Then there is s ∈ S such that s is not a t-fold zero of f .

Next, we consider generalizations from grids to punctured grids.

Theorem 2.4 (Structured Nullstellensatz for punctured grids using conditions on the mono-

mials). Let X =×n

i=1
Xi, Y =×n

i=1
Yi be grids over the field K with Yi ⊆ Xi for all i ∈ n,

let P := X \ Y , and let λ1, . . . , λn ∈ N0. We assume that for each i ∈ n, both Xi and Yi are

λi-null. Let f ∈ K[x1, . . . , xn] and let (α1, . . . , αn) ∈ Supp(f) be such that

(1) for all i ∈ n, αi < |Xi|,
(2) there exists i ∈ n such that αi < |Xi| − |Yi|,
(3) for all x γ ∈ Mon(f), there exists i ∈ n such that at least one of the following three

conditions holds:

(a) γi ∈ [0, αi − 1] ∪ [αi + 1, αi + λi],

(b) γi ∈ [αi + 1, |Xi| − 1] and |Xi| = |Yi|,
(c) γi ∈ [αi + 1, |Xi| − 1] and there is j ∈ n with γj < |Xj| − |Yj|.

Then there is z ∈ P with f(z ) ̸= 0.

The proof is given in Section 8. As a consequence, we obtain:

Corollary 2.5 (Structured Nullstellensatz for punctured grids). Let X =×n

i=1
Xi, Y =×n

i=1
Yi

be grids over the field K with Yi ⊆ Xi for all i ∈ n, let P := X \ Y , and let λ ∈ N0.

We assume that for each i ∈ n, both Xi and Yi are λ-null. Let f ∈ K[x1, . . . , xn] and let

(α1, . . . , αn) ∈ Supp(f) be such that
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(1) for all i ∈ n, αi < |Xi|,
(2) there exists i ∈ n such that αi < |Xi| − |Yi|,
(3)

∑n
i=1 αi ≥ deg(f)− λ.

Then there is z ∈ P with f(z ) ̸= 0.

The investigation of punctured grids also yields the following extension of the Alon-Füredi

Nonzero Counting Theorem [AF93, Theorem 5]. The recent book manuscript by Clark [Cla24]

contains other extensions and was the basis for ours. For f ∈ K[x1, . . . , xn], we write V(f) for
the set {a ∈ Kn | f(a) = 0} of zeros of f .

Theorem 2.6 (Nonzero counting for punctured grids). Let X =×n

i=1
Xi and Y =×n

i=1
Yi be

grids over the field K, let P := X \ Y , and let f ∈ K[x1, . . . , xn] \ {0}. For i ∈ n, let ai := |Xi|
and bi := |Yi|.

(1) Let

A := {(y1, . . . , yn) ∈ Nn |

∀i ∈ n : 1 ≤ yi ≤ ai, ∃i ∈ n : yi > bi, and
n∑

i=1

yi ≥
n∑

i=1

ai − deg(f)}.

If P \ V(f) ̸= ∅, then

(2.6) |P \ V (f)| ≥ min{
n∏

i=1

yi −
n∏

i=1

min(yi, bi) | (y1, . . . , yn) ∈ A}.

(2) We assume that for all i ∈ n, we have degxi
(f) < ai. Let

B := {(y1, . . . , yn) ∈ Nn | ∀i ∈ n : ai − degxi
(f) ≤ yi ≤ ai, and

n∑
i=1

yi =
n∑

i=1

ai − deg(f)}.

If P \ V(f) ̸= ∅, then

(2.7) |P \ V (f)| ≥ min{
n∏

i=1

yi −
n∏

i=1

min(yi, bi) | (y1, . . . , yn) ∈ B}.

The proof is given in Section 9. Let us give an overview how these results are proved. Theo-

rem 2.1 claims that a polynomial containing certain monomials does not vanish on the whole

grid S. From [Alo99, Theorem 1.1] we know that the ideal I(S) of polynomials vanishing on S

is generated by {gi | i ∈ n} with gi :=
∏

a∈Si
(xi − a). The polynomial gi has leading term x

|Si|
i .

For proving f ̸∈ I(S), we show that its remainder r modulo G = {gi | i ∈ n} after multivariate

polynomial division by G is nonzero. The conditions on f and the gi’s ensure that the mono-

mial xα can never be reduced in the course of the division, and that all other monomials in

f have too small exponents to be able to produce a term cαx
α that would allow to cancel xα

before it stays – remains – in the remainder. Such an approach only works if all polynomials

in I(S) will have remainder 0 after multivariate division by G. This is guaranteed when G is

not only a generating set, but furthermore even a Gröbner basis of I(S); for the generating set

G considered in the proof of Theorem 2.1 this is ensured by the fact that leading monomials

of the polynomials in G are coprime to each other. In order to state these ideas precisely, we
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will make use of some notions from the arithmetic of multivariate polynomials, in particular of

multivariate polynomial division, which is one of the basics of the theory of Gröbner bases.

3. Lacunary multivariate polynomials

In this section, we extend the definition of lacunary polynomials to multivariate polynomials.

We sort monomials using admissible orderings: A linear order ≤a on Nn
0 is admissible if it is

total, and for all α, β, γ ∈ Nn
0 , we have (α ⊑ β ⇒ α ≤a β) and (α ≤a β ⇒ α + γ ≤a β + γ).

When α ≤a β, we will also write xα ≤a x β, and α <a β stands for (α ≤a β and α ̸= β). If

α ∈ Nn
0 is maximal in Supp(f) with respect to ≤a, then xα is called the leading monomial of f

and abbreviated by Lm(f), and α is the leading exponent or multidegree of f , abbreviated by

Lexp(f) and mdeg(f). The coefficient cα of the leading monomial xα is the leading coefficient,

abbreviated as Lc(f), and cαx
α = Lc(f) · Lm(f) = Lc(f)xLexp(f) is the leading term of f ,

denoted by Lt(f). Every admissible ordering is a well ordering, i.e., it is total and has no

infinite descending chains (cf. [BW93, Theorem 5.5(ii)]; a proof can also be found, e.g., in the

survey [Aic24] (Lemma 9.2)).

Definition 3.1. Let λ ∈ Nn
0 , and let g ∈ K[x1, . . . , xn]. The polynomial g is λ-lacunary if it

contains a monomial xµ such that for each x ν ∈ Mon(g) and for each i ∈ n, we have νi < µi−λi

or νi = µi. A set G ⊆ K[x1, . . . , xn] is called λ-lacunary if every g ∈ G is λ-lacunary.

We note that then ν ⊑ µ for all x ν ∈ Mon(g), and therefore xµ is the leading monomial of g

with respect to every admissible monomial ordering ≤a.

Lemma 3.2. Let λ ∈ Nn
0 , and let f, g, h ∈ K[x1, . . . , xn] with f = gh. Then we have:

(1) If g and h are λ-lacunary, then f is λ-lacunary.

(2) If f and g are λ-lacunary, then h is λ-lacunary.

Proof. Let xµ := Lm(f), x ν := Lm(g) and x ρ := Lm(h). Then µ = ν + ρ. For showing (1), we

fix i ∈ n and show that for each monomial xα ∈ Mon(f), we have αi = µi or αi < µi − λi. We

write f as
∑µi

j=0 fjx
j
i , where fj ∈ K[x1, . . . , xi−1, xi+1, . . . , xn] for all j with 0 ≤ j ≤ µi, and we

set fj = 0 for j > µi. Similarly,

(3.1) g =

νi∑
j=0

gjx
j
i and h =

ρi∑
j=0

hjx
j
i .

Since g and h are λ-lacunary, we have gj = 0 for all j with νi − λi ≤ j ≤ νi − 1 and hj = 0 for

all j with ρi − λi ≤ j ≤ ρi − 1. Now let k ∈ N be such that

µi − λi ≤ k ≤ µi − 1.

Then fk =
∑k

l=0 glhk−l. We will show fk = 0 by establishing that all k+1 summands are 0. To

this end, we let l ∈ {0, . . . , k}. If l < νi − λi, then k − l > k − νi + λi ≥ µi − λi − νi + λi = ρi,

and thus hk−l = 0. If νi − λi ≤ l ≤ νi − 1, we have gl = 0. If νi ≤ l ≤ k − ρi + λi, we have

k− l ≥ ρi−λi and k− l ≤ k−νi ≤ µi−1−νi = ρi−1 and thus hk−l = 0. If l ≥ k−ρi+λi+1,
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then l ≥ µi − λi − ρi + λi + 1 = νi + 1, and therefore gl = 0. Thus fk = 0. Hence f contains

no monomial xα with µi − λi ≤ αi ≤ µi − 1. This completes the proof of (1).

For proving (2), we assume that g is λ-lacunary and h is not λ-lacunary. Then there are

xα ∈ Mon(h) and i ∈ n with

ρi − λi ≤ αi ≤ ρi − 1.

Again, we write f =
∑µi

j=0 fjx
j
i , g =

∑νi
j=0 gjx

j
i and h =

∑ρi
j=0 hjx

j
i . Since xα ∈ Mon(h), we

have hαi
̸= 0. We have

fνi+αi
=

νi+αi∑
l=0

gνi+αi−lhl.

For l < αi, we have gνi+αi−l = 0. For l = αi, we obtain the summand gνihαi
. For l with

αi < l ≤ αi + λi, we obtain νi − λi ≤ νi + αi − l < νi, and therefore gνi+αi−lhl = 0. For

l > αi + λi, we have l > ρi, and therefore hl = 0. Hence fνi+αi
= gνihαi

̸= 0. Since

µi − λi = νi + ρi − λi ≤ νi + αi ≤ νi + ρi − 1 = µi − 1, f can then not be λ-lacunary. □

4. Multivariate Polynomial Division

In this section, we analyze the stability of certain monomials during multivariate polynomial di-

vision. Over the integers, a division of f by g with g ̸= 0 produces a quotient h and a remainder

r with f = hg + r and |r| < |g|. If f, g1, . . . , gs are multivariate polynomials in K[x1, . . . , xn],

then division produces an expression f =
∑s

i=1 higi + r with certain properties of both the

“quotients” h1, . . . , hs and the remainder r. Following [Eis95], the equation f =
∑s

i=1 higi + r

is then called a standard expression. We will need to write the hi’s as sums of monomials,

and we observe that the multivariate polynomial division algorithm explained, e.g., in [BW93,

Proposition 5.22], [CLO15, Chapter 2, §3], [AL94, Algorithm 1.5.1] or [Smi14, Algorithm 2.3.4]

can easily be modified to produce what we will call a natural standard expression. Every nat-

ural standard expression with remainder 0 is a standard representation in the sense of [BW93,

Definition 5.59].

Definition 4.1. Let G ⊆ K[x1, . . . , xn] \ {0}. A natural standard expression of f by G with

remainder r with respect to the admissible ordering ≤a is an equality

(4.1) f =
t∑

j=1

cj x
δjgj + r,

where t ∈ N0, c1, . . . , ct ∈ K \ {0}, δ1, . . . , δt ∈ Nn
0 , g1, . . . , gt ∈ G, r ∈ K[x1, . . . , xn], and for

each j ∈ t, we have

(4.2) Lm(cj x
δjgj) ∈ Mon(f −

j−1∑
i=1

cix
δigi)

and

(4.3) Lm(cj x
δjgj) ̸∈ Mon(f −

j∑
i=1

cix
δigi),

and r does not contain a monomial that is divisible by any monomial in {Lm(g) | g ∈ G}.
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This definition expresses that during the j-th step in the division of f byG, the term cjx
δjLm(gj)

appears in the intermediate polynomial that we seek to reduce, and this term is eliminated by

subtracting cjx
δjgj. There are two differences to standard expressions as used in the literature:

first (cf. [Eis95, p.334]), standard expressions are often written in a collected form
∑s

i=1 higi+r

with hi ∈ K[x1, . . . , xn]. The second main difference is that a standard representation as defined

in [BW93, Definition 5.59] need not come from an actual execution of the division algorithm;

for example setting f = 2x2y + x, g1 = xy, g2 = x2, we obtain f = x · g1 + y · g2 + x, which is

a standard representation, but an execution of the division algorithm would always reduce the

monomial 2x2y in one step, yielding, e.g., the natural standard expression f = 2xg1 + x. The

definitions in [Eis95, BW93] do not grasp this aspect of division, and hence for our purposes,

we prefer the refinement to natural standard expressions given in Definition 4.1.

An important observation is that during this division process, certain monomials of f can

never be reduced and will therefore end up in the remainder r. We will always assume that the

divisors are λ-lacunary polynomials. We note that for a λ-lacunary polynomial g, the leading

monomial is the same for all admissible monomial orderings ≤a. Hence the following definitions

do not depend on the choice of the admissible monomial ordering ≤a used to determine Lm(g).

The first definition tries to identify monomials x γ in a polynomial f that, in the course of a

multivariate polynomial division of f by G, have the potential to produce a term cxα that

might cancel xα. We will call these threats to xα’s ability to remain intact during the division

process (G, λ, α)-shading monomials.

Definition 4.2. Let α, γ, λ ∈ Nn
0 and let G be a λ-lacunary subset of K[x1, . . . , xn]. The

monomial x γ is (G, λ, α)-shading if

(1) α ⊑ γ and α ̸= γ,

(2) for all i ∈ n with αi < γi, there is g ∈ G with Lm(g) | x γ and degxi
(g) > 0, and

(3) for all i ∈ n with αi < γi, we have αi + λi < γi.

The next definition tries to single out monomials that will not be affected by division by G.

Theorem 4.4 then shows that these monomials indeed remain intact.

Definition 4.3. Let G ⊆ K[x1, . . . , xn], let α, λ ∈ Nn
0 , and let f ∈ K[x1, . . . , xn]. We say that

xα is a (G, λ)-stable monomial in f if the following conditions hold:

(1) α ∈ Supp(f),

(2) there is no g ∈ G with Lm(g) | xα, and

(3) f contains no (G, λ, α)-shading monomial.

Theorem 4.4. Let λ ∈ Nn
0 , and let G be a λ-lacunary subset of K[x1, . . . , xn]. Let f ∈

K[x1, . . . , xn], and let g ∈ G, δ ∈ Nn
0 be such that Lm(x δg) ∈ Mon(f). Let xα be a (G, λ)-stable

monomial in f , let c ∈ K \ {0}, and let

h = f − cx δg.

Then xα is a (G, λ)-stable monomial in h.
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Proof. Let µ := Lexp(g). We first show Condition (1) of Definition 4.3. This condition is

(4.4) α ∈ Supp(h).

Seeking a contradiction, we suppose α ̸∈ Supp(h). Then α ∈ Supp(x δg). Thus there is

x ε ∈ Mon(g) with xα = x δx ε. If x ε = Lm(g), then Lm(g) | xα, which violates Condition (2)

of Definition 4.3, and hence xα is not (G, λ)-stable in f , contradicting the assumptions. In the

case that x ε ̸= Lm(g), we show that

(4.5) x δxµ is a (G, λ, α)-shading monomial in f.

To this end, we first show that x δxµ satisfies Condition (1) of Definition 4.2. Since g is lacunary,

we have ε ⊑ µ, and therefore α = δ + ε ⊑ δ + µ. Since ε ̸= µ, we also have α ̸= δ + µ. This

completes the proof of Condition (1) of Definition 4.2. Next, we show Conditions (2) and (3)

of Definition 4.2. To this end, we fix i ∈ n and assume αi < δi + µi. Then δi + εi < δi + µi,

and therefore εi < µi. Hence µi ̸= 0, and thus g witnesses that Condition (2) is satisfied.

Since G is λ-lacunary, we obtain εi < µi − λi, which implies αi + λi = δi + εi + λi < δi + µi,

completing the proof of Condition (3) and of (4.5). Since x δxµ ∈ Mon(f), this monomial

violates Condition (3) of Definition 4.3 and therefore witnesses that xα is not (G, λ)-stable

in f , contradicting the assumptions and completing the proof of (4.4).

Continuing to show that xα is (G, λ)-stable in h, we observe that Condition (2) of Definition 4.3

is inherited from the assumption that xα is (G, λ)-stable in f . Hence we turn to Condition (3).

Seeking a contradiction, we assume that h contains a (G, λ, α)-shading monomial x γ. Since f

contains no (G, λ, α)-shading monomial, we know that x γ ∈ Mon(x δg) and x γ ̸= x δxµ. Thus

there is ρ ∈ Supp(g) \ {µ} such that

x γ = x δx ρ.

Let γ̃ := δ + µ. We show that then

(4.6) x γ̃ is a (G, λ, α)-shading monomial in f.

To this end, we first show that x γ̃ satisfies Condition (1) of Definition 4.2. Since g is lacunary,

we have ρ ⊑ µ, and therefore

(4.7) γ = δ + ρ ⊑ δ + µ = γ̃.

Since x γ is (G, λ, α)-shading, we have α ⊏ γ, and therefore α ⊏ γ̃. This completes the proof

of Condition (1) of Definition 4.2. Next, we show Conditions (2) and (3) of Definition 4.2. To

this end, we fix i ∈ n and assume that αi < γ̃i.

We first consider the case that αi < γi. Since x γ is (G, λ, α)-shading in h, we obtain a g′ ∈ G

with degxi
(g′) > 0 and Lm(g′) | x γ, and that αi + λi < γi. Since γ ⊑ γ̃, we then have

Lm(g′) | x γ̃ and αi + λi < γ̃i. Thus in this case, (4.6) holds.

Now consider the case αi = γi. Then γi < γ̃i, and thus ρi < µi. We claim that then g witnesses

Condition (2) of Definition 4.2 needed to verify for proving that x γ̃ is (G, λ, α)-shading. By

the definition of γ̃, we obtain Lm(g) = xµ | x δxµ = x γ̃. Since µi > ρi, we have degxi
(g) > 0.

We still have to show Condition (3), which claims that

(4.8) αi + λi < γ̃i.
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Since ρi < µi, the fact that g is λ-lacunary yields ρi < µi − λi, and therefore αi = γi =

δi + ρi < δi + µi − λi = γ̃i − λi, establishing (4.8) and completing the proof of (4.6). Since

x δxµ ∈ Mon(f), this monomial violates Condition (3) of Definition 4.3 and therefore witnesses

that xα is not (G, λ)-stable in f , contradicting the assumptions and completing the proof that

xα is (G, λ)-stable in h. □

Corollary 4.5. Let λ ∈ Nn
0 , let G be a λ-lacunary subset of K[x1, . . . , xn], and let ≤a be an

admissible ordering of Nn
0 . Let

(4.9) f =
t∑

j=1

cj x
δjgj + r

be a natural standard expression of f by G. Then all (G, λ)-stable elements of Mon(f) are also

elements of Mon(r).

Proof. Let xα be a (G, λ)-stable monomial in f . By induction on s, we show that xα is also

(G, λ)-stable in

f −
s∑

j=1

cj x
δjgj.

For s = 0, there is nothing to prove. Now assume that s ∈ {0, . . . , t − 1}. As inductive

hypothesis, we assume that xα is (G, λ)-stable in f −
∑s

j=1 cj x
δjgj. Then by Theorem 4.4, xα

is also (G, λ)-stable in f −
∑s

j=1 cj x
δjgj − cs+1x

δs+1gs+1, completing the induction step. □

5. A Nullstellensatz for structured grids using conditions on the monomials

In this Section, we will prove Theorem 2.1. For i ∈ n, we let fi(x) :=
∏

a∈Si
(x− a), and we let

gi := fi(xi). If each fi is a univariate λi-lacunary polynomial in K[x], then for each i ∈ n, gi
is a (λ1, . . . , λn)-lacunary polynomial in K[x1, . . . , xn]. With this observation in mind, we can

apply Corollary 4.5 to prove the main result:

Proof of Theorem 2.1. Let λ := (λ1, . . . , λn), and for each i ∈ n, let gi :=
∏

a∈Si
(xi − a). Let

I be the ideal of K[x1, . . . , xn] generated by G = {g1, . . . , gn}. By [Alo99, Theorem 1.1], a

polynomial f vanishes on S1 × · · · × Sn if and only if it lies in I. Now we seek to apply

Corollary 4.5. For each i ∈ n, Si is λi-null and therefore the polynomial gi is (λ1, . . . , λn)-

lacunary. We will now show that xα is a (G, λ)-stable monomial in f with respect to ≤a. First,

we observe that for each i ∈ n we have αi < |Si| and therefore the monomial Lm(gi) = x
|Si|
i does

not divide xα, which establishes Condition (2) of Definition 4.3. Next, we show that f contains

no (G, λ, α)-shading monomial. Let x γ ∈ Mon(f). If γ = α, then x γ violates Condition (1) of

Definition 4.2 and is therefore not (G, λ, α)-shading. If γ ̸= α, the assumption yields an i ∈ n

such that

γi ∈ [0, αi − 1] ∪ [αi + 1, |Si| − 1] ∪ [|Si|, αi + λi].

If γi ∈ [0, αi − 1], then Condition (1) of Definition 4.2 is violated, and so x γ is not (G, λ, α)-

shading. If γi ∈ [αi+1, |Si|−1] and Condition (2) of Definition 4.2 is satisfied, then Lm(gi) | x γ,

and therefore |Si| ≤ γi, contradicting γi ≤ |Si| − 1. We conclude that also in the case γi ∈
[αi+1, |Si|−1], x γ is not (G, λ, α)-shading. If γi ∈ [|Si|, αi+λi], then we have γi ≥ |Si| > αi. If
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Condition (3) of Definition 4.2 is satisfied, we have γi > αi+λi, contradicting γi ≤ αi+λi. Hence

also in this case x γ is not (G, λ, α)-shading. Thus f contains no (G, λ, α)-shading monomial

and therefore, xα is (G, λ)-stable.

Let f =
∑t

j=1 cj x
δjgij + r be a natural standard expression of f by G. Since xα is a (G, λ)-

stable monomial in f , Corollary 4.5 yields that xα ∈ Mon(r). Since the leading monomials

of the polynomials in G are coprime, [BW93, Lemma 5.66] yields that the set G is a Gröbner

basis of I (cf. [CLO15, p.89, Exercise 11]). Since then all elements of I have zero remainder

in every standard expression by G, we obtain f ̸∈ I, and therefore, f does not vanish on all

points in S1 × · · · × Sn. □

6. A Nullstellensatz for structured grids using conditions on the monomials

with multiplicity

In this section, we will prove Theorem 2.2 and Corollary 2.3. Let K be a field, and let t ∈ N.
We define It(X) as the set of all f ∈ K[x1, . . . , xn] that have a t-fold zero at each a ∈ X. Hence

I0(X) = K[x1, . . . , xn] since every place is a 0-fold zero of every polynomial, and I1(X) = I(X).

For X being a grid, [BS09] provides a basis of It(X). For arbitrary finite X, generators of It(X)

can be determined from generators of I(X) using some arguments on ideals in commutative

rings that we collect in the next two lemmata. For an ideal I of K[x1, . . . , xn] and t ∈ N, I t

denotes the t-th power of the ideal I, which is defined to be the ideal generated by all products

i1 · · · it with (not necessarily distinct) i1, . . . , it ∈ I. The product of two ideals I, J is the ideal

generated by {ij | i ∈ I, j ∈ J} and denoted by IJ .

Lemma 6.1. Let R be a commutative ring with unit, let s, t ∈ N, and let M1, . . . ,Ms be distinct

maximal ideals of R. Then (
⋂

i∈s Mi)
t =

⋂
i∈sM

t
i .

Proof. We proceed by induction on s. For s = 1, the statement is obvious. For the induction

step, let s ≥ 2, and let J :=
⋂s

i=2Mi. First, we observe that for any collection I1, . . . , Ik of

ideals with Ii ̸⊆ M1 for all i ∈ k, we have

(6.1) I1I2 · · · Ik ̸⊆ M1.

In order to show (6.1), we observe that for i ∈ s with i ≥ 2, the assumption Ii ̸⊆ M1 implies that

there is ai ∈ Ii \ M1. The ideal M1 is maximal, and therefore prime, and thus
∏k

i=1 ai ̸∈ M1

and
∏k

i=1 ai ∈ I1 · · · Ik. This proves (6.1). Setting k := s − 1 and Ij := Mj+1, we obtain

M2 · · ·Ms ̸⊆ M1, and since M2 · · ·Ms ⊆ J also

(6.2) J ̸⊆ M1.

Next, we show that for all ideals I of R with I ̸⊆ M1 and for all r ∈ N, we have

(6.3) I ∩M r
1 = IM r

1 .

The ⊇-inclusion is obvious, so we only prove ⊆. Let g ∈ I ∩ M r
1 . Since I ̸⊆ M1, we have

I +M1 = R and thus there are a ∈ I and b ∈ M1 such that 1 = a + b. Then g = (a + b)rg =

brg +
∑r

i=1

(
r
i

)
aibr−ig. Then brg ∈ M r

1 I = IM r
1 , and for i ≥ 1, we have ai ∈ I and g ∈ M r

1 ,

and therefore aibr−ig ∈ IM r
1 . Thus g ∈ IM r

1 , which establishes (6.3). Now
⋂

i∈s M
t
i = M t

1 ∩
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i=2M

t
i . By the induction hypothesis, the last expression is equal toM t

1∩(
⋂s

i=2Mi)
t = M t

1∩J t.

By (6.2) and (6.1), we have J t ̸⊆ M1, and thus by (6.3), we have M t
1 ∩ J t = M t

1J
t = (M1J)

t.

By (6.2) and (6.3), (M1J)
t = (M1 ∩ J)t = (

⋂s
i=1Mi)

t. □

Lemma 6.2. Let X be a finite subset of Kn, and let t ∈ N. Then It(X) = I(X)t.

Proof. For a ∈ X, let Ma := I({a}). Then I(X) =
⋂

a∈X Ma . We observe that by definition,

a is a t-fold zero of f if and only if f(x + a) lies in the ideal ⟨x1, . . . , xn⟩t. Applying the

isomorphism σ : K[x1, . . . , xn] → K[x1, . . . , xn], with σ(xi) := xi−ai, we obtain that f(x+a) ∈
⟨x1, . . . , xn⟩t if and only if f(x ) ∈ ⟨x1 − a1, . . . , x1 − an⟩t, which is equivalent to f(x ) ∈ M t

a .

Hence It(X) =
⋂

a∈X M t
a . Now Lemma 6.1 yields the required equality I(X)t = It(X). □

As a consequence, we obtain a set of generators of It(S) for a grid S. For a finite subset G

of K[x1, . . . , xn], we define Gt := {g1 · · · gt | g1, . . . , gt ∈ G}. The ideal of K[x1, . . . , xn] that is

generated by G is denoted by ⟨G⟩.

Lemma 6.3 ([BS09, Theorem 3.1]). Let S =×n

i=1
Si be a grid over K, for each i ∈ n, let

gi :=
∏

a∈Si
(xi − a), and let G := {g1, . . . , gn} Then Gt generates the ideal It(S).

Proof. By [Alo99, Theorem 1.1], G generates the ideal I(S). Therefore, Gt generates the ideal

I(S)t, which is equal to It(S) by Lemma 6.2. □

Lemma 6.3 yields that every f ∈ It(S) can be written as f =
∑k

i=1 hig
′
i with k ∈ N0, h1, . . . , hk ∈

K[x1, . . . , xn] and g′1, . . . , g
′
k ∈ Gt. As an additional piece of information, [BS09, Theorem 3.1]

ensures that we can pick these summands in a way that deg(hkg
′
k) ≤ deg(f). We give an

alternative argument for these degree bounds by showing that Gt is a Gröbner basis. For this

purpose, we extend Buchberger’s First Criterion [BW93, Lemma 5.66].

Theorem 6.4. Let s, t ∈ N, and let g1, . . . , gs ∈ K[x1, . . . , xn]\{0} be such that for i, j ∈ s with

i ̸= j, Lm(gi) and Lm(gj) do not have any variable in common, i.e., gcd(Lm(gi),Lm(gj)) = 1,

and let ≤a be an admissible ordering of monomials. Then Gt := {gα1
1 · · · gαs

s | α1, . . . , αs ∈
N0,

∑s
i=1 αi = t} is a Gröbner basis of the ideal ⟨G⟩t with respect to ≤a.

Proof. Clearly, the set Gt generates the ideal ⟨G⟩t. We now show that Gt is a Gröbner basis.

To this end, we use Buchberger’s Characterization Theorem for Gröbner bases [BW93, Theo-

rem 5.64] (cf. [Buc85, Theorem 6.2], [Eis95, Theorem 15.8]) which states that Gt is a Gröbner

basis if for all f, h ∈ Gt, the S-polynomial S(f, h) has a standard expression by Gt with re-

mainder 0. Without loss of generality, we assume that g1, . . . , gs are normed, i.e., Lc(gi) = 1

for all i ∈ s, and we show that every S-polynomial of Gt has a standard expression by Gt

with remainder 0. To this end, let f = gα1
1 · · · gαs

s and h = gβ1

1 · · · gβs
s be elements of Gt. The

S-polynomial S(f, h) can be computed as

S(f, h) =
lcm(Lm(f),Lm(h))

Lm(f)
f − lcm(Lm(f),Lm(h))

Lm(h)
h.
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We have

lcm(Lm(f),Lm(h)) = lcm
(
Lm(

s∏
i=1

gαi
i ),Lm(

s∏
i=1

gβi

i )
)

= lcm
( s∏

i=1

Lm(gi)
αi ,

s∏
i=1

Lm(gi)
βi
)

=
s∏

i=1

Lm(gi)
max(αi,βi),

where the last equality holds because the Lm(gi) are coprime. Now let I = {i ∈ s | αi > βi}
and J = {j ∈ s | αj < βj}. Then

S(f, h) =
(∏
j∈J

Lm(gj)
βj−αj

)
gα1
1 · · · gαs

s −
(∏

i∈I

Lm(gi)
αi−βi

)
gβ1

1 · · · gβs
s .

Since (
∏

j∈J g
βj−αj

j ) gα1
1 · · · gαs

s = (
∏

i∈I g
αi−βi

i ) gβ1

1 · · · gβs
s , we have

(6.4) S(f, h) =
(∏
i∈I

gαi−βi

i −
∏
i∈I

Lm(gi)
αi−βi

)
gβ1

1 · · · gβs
s

−
(∏
j∈J

g
βj−αj

j −
∏
j∈J

Lm(gj)
βj−αj

)
gα1
1 · · · gαs

s .

We show that this is a standard expression of S(f, h) by Gt. If at least one of the two summands

in the right hand side of (6.4) is 0, then we are done. Otherwise we establish that the two

summands have different multidegree. Seeking a contradiction, we suppose that they have

the same multidegree. Then since
∏

i∈I Lm(gi)
αi divides the leading monomial of the second

summand in the right hand side of (6.4), it also divides the leading monomial of the first

summand. Using that for i ∈ I and j ̸∈ I, Lm(gi)
αi is coprime to Lm(gj)

βj , we obtain that

(6.5)
∏
i∈I

Lm(gi)
αi divides Lm

((∏
i∈I

gαi−βi

i −
∏
i∈I

Lm(gi)
αi−βi

)∏
i∈I

Lm(gi)
βi

)
.

We have Lm
(∏

i∈I g
αi−βi

i −
∏

i∈I Lm(gi)
αi−βi

)
<a

∏
i∈I Lm(gi)

αi−βi , and therefore the degree of

the right hand side is less (w.r.t <a) than the degree of the left hand side of (6.5). Since the

right hand side is not 0, this is a contradiction. □

Lemma 6.3 and Theorem 6.4 allow us to determine a Gröbner basis for the ideal It(S) associated
with a grid S. After these preparations, we can now prove the main results established in this

section.

Proof of Theorem 2.2. For each i ∈ n, let gi :=
∏

a∈Si
(xi − a). Let G = {g1, . . . , gn}, and I

be the ideal of K[x1, . . . , xn] given by I := ⟨G⟩t. By Lemma 6.3 all elements of S are t-fold

zeros f if and only if f ∈ I. Now we seek to apply Corollary 4.5. For each i ∈ n, Si is λi-null

and thus the polynomial gi is λ-lacunary. Therefore, by Lemma 3.2 each polynomial in Gt is

λ-lacunary. We will now show that xα is a (Gt, λ)-stable monomial in f . First, suppose that

there is h ∈ Gt such that Lm(h) divides xα. Let β1, . . . , βn ∈ N0 such that
∑n

i=1 βi = t and

h = gβ1

1 · · · gβn
n . Then Lm(h) =

∏n
i=1 Lm(gi)

βi =
∏n

i=1 x
βi|Si|
i and thus, we have βi|Si| ≤ αi for

all i ∈ N, contradicting the assumption stated in (2.3). Therefore the monomial Lm(h) does



STRUCTURED AND PUNCTURED NULLSTELLENSÄTZE 15

not divide xα, which establishes Condition (2) of Definition 4.3. Next, we show that f contains

no (Gt, λ, α)-shading monomial. Let x γ ∈ Mon(f). If α = γ, then x γ violates Condition (1) of

Definition 4.2 and is therefore not (Gt, λ, α)-shading. If γ ̸= α, the assumption yields an i ∈ n

such that γi ̸= αi and (2.4) holds. If γi ∈ [0, αi − 1], then Condition (1) of Definition 4.2 is

violated, and so x γ is not (Gt, λ, α)-shading. If γi ∈ [αi + 1, αi + λi], then Condition (3) of of

Definition 4.2 is violated and thus case x γ is not (Gt, λ, α)-shading. Now we turn to the case

that the last alternative in (2.4) holds and that γi > αi+λi. Seeking a contradiction, we suppose

that Condition (2) of Definition 4.2 is satisfied. This condition tells that there is β ∈ Nn
0 such

that
∑n

j=1 βj = t and Lm(gβ1

1 . . . gβn
n ) | x γ and βi|Si| > 0. Since Lm(gβ1

1 . . . gβn
n ) | x γ, we have

βj|Sj| ≤ γj for all j ∈ n. This contradicts the case assumption that the last alternative in (2.4)

holds. Hence Condition (2) of Definition 4.2 fails, and thus x γ is not (Gt, λ, α)-shading.

Therefore, f contains no (Gt, λ, α)-shading monomial and thus, xα is (Gt, λ)-stable. Let f =∑t
j=1 cj x

δjgij + r be a natural standard expression of f by G. Since xα is a (Gt,M)-stable

monomial in f , Corollary 4.5 yields that xα ∈ Mon(r). Since the leading monomials of the

polynomials in G are coprime, Theorem 6.4 yields that the set Gt is a Gröbner basis of I. Since

then all elements of I have zero remainder in every standard expression by Gt, we obtain f ̸∈ I,

and therefore, not all points in S1 × · · · × Sn are t-fold zeros of f . □

Proof of Corollary 2.3. We assume that
∑n

i=1 αi ≥ deg(f)−λ, and we show that for λ1 = · · · =
λn = λ, the assumptions of Theorem 2.2 are satisfied. Suppose that the assumption on the

monomials x γ ∈ Mon(f) \ {xα} fails. Then there is a monomial x γ ∈ Mon(f) with γ ̸= α such

that for all i ∈ n, we have γi = αi or γi > αi + λ. Then deg(f) ≥ deg(x γ) > (
∑n

i=1 αi) + λ,

contradicting the assumption (2.5) of Corollary 2.3. Now Theorem 2.2 yields the result. □

7. A Nullstellensatz for grids of multisets

In this section, we add two improvements to Kós and Rónyai’s Nullstellensatz for multisets

given in [KR12, Theorem 6]: we consider structured grids, and we give a generalization in

terms of conditions on the monomials in the spirit of [Sch08]. Let f ∈ K[x1, . . . , xn], and let

(m1, . . . ,mn) ∈ Nn
0 . We say that c is a zero with multiplicity vector (m1, . . . ,mn) if f(x +c) ∈

⟨xm1
1 , . . . , xmn

n ⟩. Let T be a mapping from the finite set U to N0. Then we also call T a multiset

and U the domain of T . Let S1, . . . , Sn be multisets with domains U1, . . . , Un. For n ∈ N, the
multigrid S denoted by×i=1

Si is a mapping with domain U1 × · · · × Un, codomain Nn
0 and

S(u1, . . . , un) := (S1(u1), . . . , Sn(un)). Suppose that U1, . . . , Un are subsets of a field K. Then

we say that f ∈ K[x1, . . . , xn] vanishes on the multigrid S if for all u = (u1, . . . , un) ∈×n

i=1
Ui,

u is a zero with multiplicity vector S(u) = (S1(u1), . . . , Sn(un)). The following result is a

consequence of [KR12, Theorem 1].

Theorem 7.1. Let S be a multigrid with domain×n

i=1
Ui, and let f ∈ K[x1, . . . , xn]. Then f

vanishes on S if and only if f lies in the ideal ⟨g1, . . . , gn⟩, where gi :=
∏

u∈Ui
(xi − u)Si(u).

We say that a multiset Si : Ui → N0 is λi-null if
∏

u∈Ui
(xi − u)Si(u) is λi-lacunary. Now our

generalization of [KR12, Theorem 6] is:
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Theorem 7.2 (Structured Nullstellensatz for multisets using conditions on the monomials).

Let S =×n

i=1
Si be a multigrid with domain×n

i=1
Ui, let f ∈ K[x1, . . . , xn], and let α =

(α1, . . . , αn) and λ = (λ1, . . . , λn) be elements of Nn
0 . We assume that each Si is λi-null. Let

||Si|| :=
∑

u∈Ui
Si(u). We assume that αi < ||Si|| for all i ∈ n and that f contains the monomial

xα1
1 · · ·xαn

n . Furthermore, we assume that for every monomial x γ in Mon(f) \ {xα}, there is

i ∈ n such that

(7.1) γi ∈ [0, αi − 1] ∪ [αi + 1, ||Si|| − 1] ∪ [||Si||, αi + λi].

Then f does not vanish on the multigrid S.

Proof. For each i ∈ n, let gi :=
∏

u∈Ui
(xi−u)Si(u). Then the leading monomial of gi is x

||Si||
i . Let

I be the ideal of K[x1, . . . , xn] generated by G = {g1, . . . , gn}. By Theorem 7.1, a polynomial

f vanishes on the multigrid S1 × · · · × Sn if and only if it lies in I. The remainder of the proof

is an almost verbatim copy of the proof of Theorem 2.1; again, we seek to apply Corollary 4.5.

For each i ∈ n, Si is λi-null and therefore the polynomial gi is (λ1, . . . , λn)-lacunary. We will

now show that xα is a (G, λ)-stable monomial in f with respect to ≤a. First, we observe that

for each i ∈ n we have αi < ||Si|| and therefore the monomial Lm(gi) does not divide x
α, which

establishes Condition (2) of Definition 4.3. Next, we show that f contains no (G, λ, α)-shading

monomial. Let x γ ∈ Mon(f). If α = γ, then x γ violates Condition (1) of Definition 4.2 and is

therefore not (G, λ, α)-shading. If γ ̸= α, the assumption yields an i ∈ n such that

γi ∈ [0, αi − 1] ∪ [αi + 1, ||Si|| − 1] ∪ [||Si||, αi + λi].

If γi ∈ [0, αi − 1], then Condition (1) of Definition 4.2 is violated, and so x γ is not (G, λ, α)-

shading. If γi ∈ [αi+1, ||Si||−1] and Condition (2) of Definition 4.2 is satisfied, then Lm(gi) | x γ,

and therefore |Si| ≤ γi, contradicting γi ≤ ||Si|| − 1. We conclude that also in the case

γi ∈ [αi + 1, ||Si|| − 1], x γ is not (G, λ, α)-shading. If γi ∈ [||Si||, αi + λi], then we have

γi ≥ ||Si|| > αi. If Condition (3) of Definition 4.2 is satisfied, we have γi > αi+λi, contradicting

γi ≤ αi + λi. Hence also in this case x γ is not (G, λ, α)-shading. Therefore, f contains no

(G, λ, α)-shading monomial. Therefore, xα is (G, λ)-stable.

Let f =
∑t

j=1 cj x
δjgij + r be a natural standard expression of f by G. Since xα is a (G, λ)-

stable monomial in f , Corollary 4.5 yields that xα ∈ Mon(r). Since the leading monomials

of the polynomials in G are coprime, [BW93, Lemma 5.66] yields that the set G is a Gröbner

basis of I (cf. [CLO15, p.89, Exercise 11]). Since then all elements of I have zero remainder

in every standard expression by G, we obtain f ̸∈ I, and therefore, f does not vanish on the

multigrid S. □

8. Nullstellensätze for punctured and structured grids

In this Section, we prove Theorem 2.4 and Corollary 2.5. We start with the description of the

vanishing ideal of a punctured grid. We note that a similar result that includes multiplicities

has been given in [BS09, Theorem 4.1], but our proof is different. For a subset J of K[x1, . . . , xn]

and f ∈ K[x1, . . . , xn], we write V(J) for the set {a ∈ Kn | f(a) = 0 for all f ∈ J} of common

zeros of J .
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Theorem 8.1 (cf. [BS09, Theorem 4.1]). Let X \ Y = (×n

i=1
Xi) \ (×n

i=1
Yi) be a punctured

grid with Yi ⊆ Xi for all i ∈ N, let gi :=
∏

a∈Xi
(xi − a), let li :=

∏
a∈Yi

(xi − a), and let f ∈
K[x1, . . . , xn]. Then f vanishes on X \ Y if and only if f ∈ ⟨g1, . . . , gn,

∏n
i=1

gi
li
⟩. Furthermore,

for every admissible monomial ordering ≤a, {g1, . . . , gn,
∏n

i=1
gi
li
} is a Gröbner basis with respect

to ≤a.

Proof. We first compute generators of the vanishing ideal I(X \ Y ). We have X \ Y = X \⋂
i∈nX1×· · ·×Xi−1×Yi×Xi+1×· · ·×Xn = X∩

⋃
i∈nX1×· · ·×Xi−1×(Xi\Yi)×Xi+1×· · ·×Xn =

X ∩
⋃

i∈nK × · · · × K × (Xi \ Yi) × K × · · · × K = X ∩
⋃

i∈nV(
gi
li
) = X ∩ V(

∏
i∈n

gi
li
). Now

for finite X, Clark’s Finitesatz [Cla14, Theorem 7] tells that for any ideal J of K[x1, . . . , xn],

we have I(X ∩ V(J)) = I(X) + J , and therefore

I(X \ Y ) = I(X ∩ V(
∏
i∈n

gi
li
)) = I(X) + ⟨

∏
i∈n

gi
li
⟩ = ⟨g1, . . . , gn,

∏
i∈n

gi
li
⟩.

In order to show that G := {g1, . . . , gn,
∏

i∈n
gi
li
} is a Gröbner basis, we again use Buchberger’s

Characterization Theorem for Gröbner bases [BW93, Theorem 5.64], and we therefore look at

the S-polynomials of G. First, we note that for i, j ∈ n with i ̸= j, the leading monomials of

gi and gj are coprime, and therefore the S-polynomial of gi and gj has a standard expression

by {gi, gj} with remainder 0 ([BW93, Lemma 5.66]); such an expression can also be obtained

by setting t := 1 in the proof of Theorem 6.4. For checking the other S-polynomials, let j ∈ n,

and let p :=
∏

i∈n
gi
li
. We compute S(gj, p). Let ai := |Xi| and bi := |Yi|. Then

Lm(gj) = x
aj
j and Lm(p) =

∏
i∈n

xai−bi
i .

Now let q :=
∏

i∈n\{j}
gi
li
; then q

gj
lj
= p. Then we have

S(gj, p) = (
∏

i∈n\{j}

xai−bi
i )gj − x

bj
j p = Lm(q) gj − Lm(lj) p.

Since ljp = qgj, we have

Lm(q) gj − Lm(lj) p = (lj − Lm(lj)) p− (q − Lm(q)) gj.

We show that S(gj, p) = (lj − Lm(lj)) p − (q − Lm(q)) gj is a standard expression of S(gj, p)

by {gj, p}. If at least one of the summands is 0, we are done. Otherwise, we show that

the two summands have different multidegree. Suppose that both summands are nonzero

and that they have the same multidegree. Then Lm(gj) divides Lm((lj − Lm(lj)) p). We

have degxj
(Lm(gj)) = aj and degxj

(Lm((lj − Lm(lj)) p)) = degxj
(Lm(lj − Lm(lj))Lm(p)) =

degxj
(Lm(lj−Lm(lj)))+degxj

(Lm(p)) ≤ degxj
(Lm(lj−Lm(lj)))+degxj

(p) ≤ (bj−1)+(aj−bj) =

aj − 1. But then Lm(gj) ∤ Lm((lj − Lm(lj)) p).

Since all S-polynomials have a standard expression by G with remainder 0, Buchberger’s Char-

acterization Theorem yields that G is a Gröbner basis. □

Proof of Theorem 2.4. Let p :=
∏n

i=1
gi
li
, and let G′ := {g1, . . . , gn, p}. We first show that xα is

a (G′, λ)-stable monomial in f . Let us first show that there is no g ∈ G′ with Lm(g) | xα. If

there is i ∈ n with Lm(gi) | xα, then |Xi| ≤ αi, contradicting Assumption (1). If Lm(p) | xα,

then we have |Xi| − |Yi| ≤ αi for all i ∈ n, contradicting Assumption (2). It remains to show
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that f contains no (G, λ, α)-shading monomial. Let x γ ∈ Mon(f). By the assumptions, there

is i ∈ n such that one of the Conditions (3a), (3b), (3c) holds. We fist consider the case that

γi ∈ [0, αi−1]. Then Condition (1) of Definition 4.2 fails, and thus x γ is not (G′, λ, α)-shading.

In the case γi ∈ [αi+1, αi+λi], Condition (3) of Definition 4.2 fails, and thus x γ is not (G′, λ, α)-

shading. In the case that γi ∈ [αi + 1, |Xi| − 1] and |Xi| = |Yi|, we show that Condition (2) of

Definition 4.2 fails. Seeking a contradiction, we suppose that Condition (2) holds. Then there

is g ∈ G′ with degxi
(g) > 0 and Lm(g) | x γ. Since |Xi| = |Yi|, degxi

(p) = 0 and thus g = gi.

Hence |Xi| ≤ γi, contradicting the assumptions. Thus Condition (2) of Definition 4.2 fails, and

γ is not (G′, λ, α)-shading. Now we consider the case that γi ∈ [αi +1, |Xi| − 1] and that there

is j ∈ n with γj < |Xj| − |Yj|. Supposing again that γ is (G′, λ, α)-shading, we obtain that

Lm(gi) | x γ or Lm(p) | x γ. If Lm(gi) | x γ, then |Xi| ≤ γi, contradicting the assumptions. If

Lm(p) | x γ, then for all j ∈ n, we have |Xj| − |Yj| ≤ γj. This is also excluded by the case

assumption.

Therefore xα is a (G′, λ)-stable monomial in f . Let gn+1 := p and let f =
∑t

j=1 cj x
δjgij+r be a

natural standard expression of f by G′. We note that g1, . . . , gn are λ-lacunary by assumption.

Furthermore, for each i ∈ n, gi and li are λ-lacunary and hence by Lemma 3.2, p =
∏n

i=1
gi
li

is λ-lacunary. Since xα is a (G′, λ)-stable monomial in f and all g′ ∈ G′ are λ-lacunary,

Corollary 4.5 yields that xα ∈ Mon(r). By Theorem 8.1, the set G′ is a Gröbner basis of

I(X \Y ). Since then all elements of I(X \Y ) have zero remainder in every standard expression

by G′, we obtain f ̸∈ I(X \ Y ), and therefore, there is s ∈ X \ Y with f(s) ̸= 0. □

Proof of Corollary 2.5. We show that for λ1 = · · · = λn = λ, the assumptions of Theorem 2.4

are satisfied. Assume that Assumption (3) of Theorem 2.4 fails. Then there is a monomial

x γ ∈ Mon(f) \ {α} such that for all i ∈ n, γi ̸∈ [0, αi − 1] ∪ [αi +1, αi + λi], which means that

for all i ∈ n, γi = αi or γi > αi + λi. Then deg(f) ≥ deg(x γ) > (
∑n

i=1 αi) + λ, contradicting

Assumption (3) of Corollary 2.5. Now Theorem 2.4 yields the result. □

9. A punctured version of the Alon-Füredi Theorem

In [Cla24], Clark gives a proof of the Alon-Füredi Theorem for counting nonzeros of polynomials

on grids that is based on the fact that for a finite set X ⊆ Kn, the vector space dimension

of K[x1, . . . , xn]/I(X) is equal to |X|, and this dimension can be determined as the number

of monomials xα that are not leading monomials of any polynomial in I(X). We proceed by

adapting some methods from [Cla24] to punctured grids. For a subset G of K[x1, . . . , xn] and

an admissible monomial ordering ≤a, we define two subsets of {xα | α ∈ Nn
0}.

G↑ := {xα | α ∈ Nn
0 and ∃g ∈ G : Lm(g) divides xα},

∆(G) := {xα | α ∈ Nn
0} \ (G↑) =

{xα | α ∈ Nn
0 and there is no g ∈ G such that Lm(g) divides xα}.

Theorem 9.1 (Clark’s formula, [Cla24]). Let K be a field, and let X be a finite subset of Kn,

and let f ∈ K[x1, . . . , xn]. Then

|X \ V(f)| = |∆(I(X)) \ ∆(I(X) + ⟨f⟩)|.
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Proof. For every finite subset Y of Kn, we have

(9.1) |Y | = |∆(I(Y ))|.

To prove this, let ε : K[x1, . . . , xn] → KY , ε(p) := p̂|Y , where p̂ is the function from Kn to K
induced by p, and p̂|Y denotes its restriction to Y . Then ker ε = I(Y ), and ε is surjective because

every mapping from Y to K can be interpolated by a polynomial. Since ε is a homomorphism

of K-vector spaces, we get dimK(K[x1, . . . , xn]/I(Y )) = dimK(KY ) = |Y |. The vector space

dimension of the residue class ring dimK K[x1, . . . , xn]/I(Y ) is equal to |∆(I(Y ))| because {xα+

I(Y ) | xα ∈ ∆(I(Y ))} is a basis of this vector space. This proves (9.1). Hence |X ∩ V(f)| =
|∆(I(X ∩ V(f)))|. By Clark’s Finitesatz [Cla14, Theorem 7], the last expression is equal to

|∆(I(X) + ⟨f⟩)|. Thus |X \ V(f)| = |X| − |X ∩ V(f)| = |∆(I(X))| − |∆(I(X) + ⟨f⟩)|. Since

I(X) ⊆ I(X) + ⟨f⟩, we have ∆(I(X) + ⟨f⟩) ⊆ ∆(I(X)), and therefore |∆(I(X))| − |∆(I(X) +

⟨f⟩)| = |∆(I(X)) \ ∆(I(X) + ⟨f⟩)|. □

For a, b ∈ N0, we will denote the interval {x ∈ N0 | a ≤ x < b} by [a, b).

Lemma 9.2. Let X =×n

i=1
Xi, Y =×n

i=1
Yi be grids over the field K with Yi ⊆ Xi for all

i ∈ n, and for each i ∈ n, let ai := |Xi| and bi := |Yi|. Then ∆(I(X \ Y )) = {xα | α ∈
×i∈n[0, ai) \×i∈n[ai − bi, ai)}.

Proof. Let gi :=
∏

a∈Xi
(xi − a), and li :=

∏
a∈Yi

(xi − a). Then by Theorem 8.1, G′ :=

{g1, . . . , gn,
∏n

i=1
gi
li
} is a Gröbner basis for I(X \ Y ). Hence ∆(I(X \ Y )) = ∆(G′) =

∆({g1, . . . , gn}) ∩ ∆({
∏n

i=1
gi
li
}) = ∆({g1, . . . , gn}) \ {

∏n
i=1

gi
li
}↑ = {xα | α ∈×i∈n[0, ai) \

×i∈n[ai − bi, ai)}. □

Theorem 9.3 (Clark’s Monomial Alon-Füredi Theorem [Cla24]). Let X be a finite subset of

Kn, let f ∈ K[x1, . . . , xn], and let g ∈ I(X) + ⟨f⟩ with g ̸= 0. Then

|X \ V(f)| ≥ |∆(I(X)) ∩ {Lm(g)}↑| .

Proof. Since g ∈ I(X)+⟨f⟩, g vanishes on V(f)∩X, and thusX∩V(f) ⊆ X∩V(g), and therefore

X \V(f) ⊇ X \V(g). Now by Theorem 9.1, we have |X \V(g)| = |∆(I(X))\∆(I(X)+ ⟨g⟩)|. In
addition, ∆(I(X)) \∆(I(X) + ⟨g⟩) = ∆(I(X))∩ (I(X) + ⟨g⟩)↑ ⊇ ∆(I(X))∩ {g}↑ = ∆(I(X))∩
{Lm(g)}↑. Altogether, |X \ V(f)| ≥ |∆(I(X)) ∩ {Lm(g)}↑|. □

Theorem 9.4 (Alon-Füredi-Clark for punctured grids). Let X =×n

i=1
Xi, Y =×n

i=1
Yi be

grids over the field K with Yi ⊆ Xi for all i ∈ n, let P := X \ Y , let let f ∈ K[x1, . . . , xn], and

for i ∈ n, let ai := |Xi| and bi := |Yi|, and let ≤a be an admissible monomial ordering. Let

g ∈ I(P ) + ⟨f⟩ with Lm(g) = xe1
1 · · ·xen

n and ei < ai for all i ∈ n. Then

|P \ V(f)| ≥
n∏

i=1

(ai − ei)−
n∏

i=1

min(bi, ai − ei).

Proof. By Theorem 9.3, we have

|P \ V(f)| ≥ |∆(I(P )) ∩ {Lm(g)}↑|.
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By Lemma 9.2, we have ∆(I(P )) ∩ {Lm(g)}↑ = {xα | α ∈ E}, where E is given by

E = (×
i∈n

[0, ai) \×
i∈n

[ai − bi, ai)) ∩×
i∈n

[ei, ai).

Then we have

E =×
i∈n

[ei, ai) \×
i∈n

[ai − bi, ai)) =×
i∈n

[ei, ai) \ (×
i∈n

[ei, ai) ∩×
i∈n

[ai − bi, ai))

=×
i∈n

[ei, ai) \×
i∈n

[max(ei, ai − bi), ai).

Since ai − max(ei, ai − bi) = min(a − ei, bi), we can now compute |E| =
∏n

i=1(ai − ei) −∏n
i=1 min(bi, ai − ei). □

We note that similar to Clark’s version for unpunctured grids in [Cla24], this lower bound can

be attained for every choice of (e1, . . . , en) with ei < ai for all i ∈ n.

Proposition 9.5. Let X =×n

i=1
Xi, Y =×n

i=1
Yi be grids over the field K with Yi ⊆ Xi for

all i ∈ n, and let P := X \ Y . For each i ∈ n, let ai := |Xi|, bi := |Yi|, let ei ∈ [0, ai − 1) and

let Ei ⊆ Xi be such that |Ei| = ei and (Ei ⊆ Xi \ Yi or Xi \ Yi ⊆ Ei). Let fi :=
∏

a∈Ei
(xi − a)

and f :=
∏n

i=1 fi. Then for every admissible monomial ordering, Lm(f) = xe1
1 · · ·xen

n , and

|P \ V(f)| =
∏n

i=1(ai − ei)−
∏n

i=1min(bi, ai − ei).

Proof. It is easy to see that Lm(f) = xe1
1 · · ·xen

n and that the nonzeros of f on X are given by

X \ V(f) =×n

i=1
(Xi \ Ei), and hence |X \ V(f)| =

∏n
i=1(ai − ei). We will now compute how

many of these nonzeros lie in Y . To this end, we observe that
n×

i=1

(Xi \ Ei) ∩
n×

i=1

Yi =
n×

i=1

(Yi \ Ei).

In the case that Ei ⊆ Xi \Yi, we have Yi \Ei = Yi, and therefore |Yi \Ei| = bi. In the case that

Xi\Yi ⊆ Ei, we have Xi\Ei = (Yi ∪ (Xi\Yi))\Ei = (Yi\Ei) ∪ ((Xi\Yi)\Ei) = (Yi\Ei) ∪ ∅ =

Yi \ Ei, and therefore |Yi \ Ei| = ai − ei. In each of these cases, |Yi \ Ei| = min(ai − ei, bi).

Therefore, |P \ V(f)| = |X \ V(f)| − |Y \ V(f)| =
∏n

i=1(ai − ei)−
∏n

i=1 min(bi, ai − ei). □

Based on Theorem 9.4, we can now prove Theorem 2.6.

Proof of Theorem 2.6. We fix an admissible ordering ≤a such that
∑n

i=1 γi <
∑n

i=1 δi implies

x γ ≤a x
δ.

For proving (1), we divide f by G′, where G′ is the Gröbner basis of I(P ) given in Theorem 8.1

and obtain a standard expression f =
∑n+1

i=1 hig
′
i + r such that the remainder r contains no

monomial divisible by a Lm(g′) with g′ ∈ G′. If r = 0, then f ∈ I(P ), and thus I(P )\V(f) = ∅.

If r ̸= 0, then deg(r) ≤ deg(f). Let (e1, . . . , en) := Lexp(r). Now Theorem 9.4 for g := r

yields |P \ V(f)| ≥
∏n

i=1(ai − ei) −
∏n

i=1 min(bi, ai − ei). Set yi := ai − ei. Then 1 ≤ yi ≤ ai.

If yi ≤ bi for all i ∈ n, then ai − bi ≤ ei for all i ∈ n, and thus Lm(r) is divisible by the leading

monomial
∏

i∈n x
ai−bi
i of one of the elements of G′. Hence there is i ∈ n with yi > bi. Now∑n

i=1 yi =
∑n

i=1(ai − ei) =
∑n

i=1 ai −
∑n

i=1 ei =
∑n

i=1 ai − deg(r) ≥
∑n

i=1 ai − deg(f). Hence

(y1, . . . , yn) ∈ A, which proves (2.6).
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For proving (2), let (e1, . . . , en) := Lexp(f). Now Theorem 9.4 for g := f yields |P \ V(f)| ≥∏n
i=1(ai − ei) −

∏n
i=1min(bi, ai − ei). Set yi := ai − ei. Then since ei ≤ degxi

(f), we have

ai − degxi
(f) ≤ yi ≤ ai. Now

∑n
i=1 yi =

∑n
i=1(ai − ei) =

∑n
i=1 ai −

∑n
i=1 ei =

∑n
i=1 ai − deg(f).

Hence (y1, . . . , yn) ∈ B, which proves (2.7). □

Setting Yi := ∅ for all i ∈ n, one recovers the classical Alon-Füredi Theorem for grids.

Acknowledgements

The authors thank Pete L. Clark for sharing [Cla24]. The second author wishes to thank the

Institute for Algebra at the Johannes Kepler University Linz for their hospitality in the spring

of 2025 when this work commenced.

References
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