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Abstract

A graph G is said to be K2,3-saturated if G contains no copy of K2,3 as
a subgraph, but for any edge e in the complement of G the graph G + e

does contain a copy of K2,3. The minimum number of edges of a K2,2-
saturated graph of given order n was precisely determined by Ollmann
in 1972. Here, we determine the asymptotic behavior for the minimum
number of edges in a K2,3-saturated graph.

1 Introduction

We denote the complete graph on t vertices by Kt, and the complete bipartite graph
with partite sets of size a and b by Ka,b. We let G = (V, E) be a graph on |V | = n

vertices and |E| edges. The graph G is said to be F -saturated if G contains no
copy of F as a subgraph, but for any edge e in the complement of G, the graph
G + e contains a copy of F , where G + e denotes the graph (V, E ∪ {e}). For a
graph F we will denote the minimum size of an F -saturated graph by sat(n, F ). In
1964 Erdős, Hajnal and Moon [3] determined sat(n, Kt) for all n, t. Determining the
exact value of this function for a given graph F is quite difficult in general, and the
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sat-function is known for relatively few graphs. The value of sat(n, K2,2) was shown
to be b3n−5

2
c by Ollmann [6], and a shorter proof was later given by Tuza [7]. (See

also Fisher, Fraughnaugh, and Langley [4] for a strengthening of Ollmann’s result.)
Bryant and Fu [2] studied minimum K2,2-saturated graphs in the class of bipartite
graphs. Kászonyi and Tuza in [5] give a general upper bound for sat(n, F ) which is
sharp in many cases. For a survey of related results see [1].

In this note we determine the asymptotic behavior of sat(n, K2,3).

Theorem 1 There is a constant C such that for all n ≥ 5 we have

2n − Cn3/4 ≤ sat(n, K2,3) ≤ 2n − 3. (1)

2 Proof of Theorem 1

The following construction, which can be obtained from the argument in [5], shows
the upper bound in (1). Let G′ be either the disjoint union of a 2-regular K2,2-free
graph on n− 2 vertices and a single vertex, or the disjoint union of a 2-regular K2,2-
free graph on n − 3 vertices and a single edge. Let G be the join of a single vertex
v and the graph G′, that is, we add to G′ the vertex v and all edges (v, u) with
u ∈ V (G′). As G′ is K2,2- and K1,3-free the graph G is K2,3-free. On the other hand,
any edge added to G creates a K1,3 in G′ and thus creates a K2,3 in G. This proves
the upper bound in (1).

We now show the lower bound. Some of the ideas come from [4]. Let G be a
minimum K2,3-saturated graph on [n] = {1, . . . , n}.

If δ(G) ≥ 4, then e(G) ≥ 2n and we are done. Thus, assume that δ(G) ≤ 3.

Let a ∈ [n] be a vertex of minimum degree. Note that G has diameter at most three.
Take a breadth-first search tree T starting at a. Let its levels be V1∪V2∪V3 = [n]\{a},
where the distance from every x ∈ Vi to a is i. Let R be the graph with the edge set
E(G) \ E(T ). Let vi = |Vi| and |e(Vi)| = ei. We use G[A] to denote the subgraph of
G induced by A, and G[A, B] to denote the bipartite subgraph of G containing all
edges with one end-vertex in each of A and B.

Partition V3 = Y0 ∪ Y1 ∪ Y2, where Y2 consists of all vertices sending at least two
edges to V2, Y1 consists of all vertices of V3 \ Y2 which are connected to some vertex
of Y2 by a path in G[V3], and Y0 = V3 \ (Y2 ∪Y1). Clearly, there are no edges between
Y2 ∪ Y1 and Y0. Let yi = |Yi|.

If δ(G) = 1, say Γ(a) = {b}, then for any x ∈ [n] \ {a, b}, x and b have at least two
common neighbors. (Indeed, consider adding the edge (x, a).) Thus, e(R[V2]) ≥ v2,
Y2 = V3, and e(R[V2, V3]) ≥ 2v3 − e(T [V2, V3]) ≥ v3. We obtain the required bound:

e(G) = e(T ) + e(R) ≥ n − 1 + v2 + v3 = 2n − 3.

Thus we we can assume that 2 ≤ δ(G) ≤ 3.
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Claim 1 G[Y0] has at most one component which is a tree.

Proof of Claim. Here and further on, we will refer to the vertices in the smaller
partite set of K2,3 as being red, and those in the larger set as blue.

Suppose that the claim is not true and let L and M be distinct tree components of
G[Y0]. Let l1, m1 be some leaves of L and M respectively. Furthermore, denote the
(unique) l1’s neighbor in V2 by l0, and denote the (unique) m1’s neighbor in V2 by
m0.

As we have assumed that δ(G) > 1, G[Y0] has no isolated vertices - so denote l1’s
neighbor in L by l2, and do similarly for m1. Consider adding the edge (l1, m1) to
G. Without loss of generality assume that l1 is red and m1 is blue. Then it must be
the case that m1, l0, l2 are blue. The other red vertex must be in V2 and thus it must
be m0. Thus (l0, m0) and (m0, l2) are edges of G.

Suppose we have already constructed l1, . . . , li such that they span a path in L and
each of l2, . . . , li is adjacent to m0. Consider G+(m1, li). If m1 is red then it must be
that li, m0, and m2 are blue. The other red vertex must thus be in V2 and adjacent
to li. But this would imply that li has two neighbors in V2, a contradiction to the
definition of Y0. Thus m1 is blue. The vertex m2 cannot be red as li and its red
partner must have two common neighbors in G. Thus m0 is red and li must have at
least two neighbors in L, both adjacent to m0. Let li+1 be such a neighbor different
from li−1. We have enlarged the sequence to l1, . . . , li+1.

This process must stop at some point (since all vertices l1, . . . , li are pairwise distinct),
which gives us the desired contradiction.

Hence, the number of edges of R which are incident to V3 is

e(R[V2, V3]) + e(R[V3]) ≥ y2 + y1 + y0 − 1. (2)

Partition V2 = X0 ∪X1 ∪X2, where X2 consists of those vertices which send at least
two edges to V1, X1 consists of those vertices from V2 \ X2 which are connected by
a path in G[V2] to a vertex of X2, and let X0 consist of the remaining vertices of V2,
that is X0 = V2 \ (X2 ∪ X1). Thus, G[X2 ∪ X1, X0] is empty. Let xi = |Xi|. Recall
that a is a vertex of minimum degree. Let us denote its neighbors by b1, . . . , bdeg(a).
Let T1 be the set of trees of G[X0] each of which contains a leaf vertex (in G[V2])
that shares an edge with b1. Furthermore, for 2 ≤ i ≤ deg(a) let Ti be the set of
trees of G[X0] each of which contains a leaf vertex that shares an edge with bi and
are not in ∪i−1

j=1Tj. We denote |Ti| = ti.

It follows that

e(R[V1 ∪ V2]) ≥ x2 + x1 + x0 − Σ
deg(a)
i=1 ti. (3)

Claim 2 Let j be fixed and consider any two distinct tree components, T1, T2, in Tj.
Then any two such trees are connected via a path of length at most three through
V3.
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Proof of Claim. Let l1, l2 be leaves of T1, T2, respectively, such that (l1, bj) and (l2, bj)
are edges of G. Denote li’s adjacency in Ti by mi, i = 1, 2. We use the fact that l1
and l2 are leaf vertices in T1 and T2, respectively. Consider the graph G + (l1, l2),
and without loss of generality, we may assume that in the copy of K2,3 formed l1 is
red and l2 is blue. If no vertex of V3 is used in the K2,3 formed upon the addition of
edge (l1, l2), then it must be the case that the copy of K2,3 sits on the set of vertices
{bj, l1, l2, m1, m2}, as these are the only neighbors of either l1 or l2 outside of V3.
It would then follow that m1 and m2 are both colored blue, and we would reach a
contradiction as the edge (l1, m2) is not in E(G). Thus, some vertex in V3, say z,
must be in the copy of K2,3. If bj is also in the copy of K2,3, then bj and z must both
be blue, and thus m2 is red. This would force the edges (l1, z) and (m2, z) to exist
in G and the claim would hold. Otherwise it must be the case that a vertex in V3 is
used and no vertex in V1 is used. As l1 and l2 must lie on a C4 in G + (l1l2), and no
edges other than (l1, l2) exist between T1 and T2, the claim holds.

We claim that this allows us to add an extra term of tj − o(n) to the right-hand side
of (2) for each j ∈ [deg(a)]. Let V3 = {u1, . . . , um}, where m = v3. Let j be fixed,
V (Tj) denote the set of vertices contained in the trees of Tj and let di = dV (Tj)(ui),
i ∈ [m], the number of G-neighbors of ui in V (Tj) . If e(R[V3]) ≥ 2n, then e(G) ≥ 2n
and we are done; so assume e(R[V3]) < 2n.

Observe that in (2), we counted at most one edge of R[V2, V3] per every vertex in V3.
Hence, the following is true:

e(R[V2, V3]) + e(R[V3]) ≥ y2 + y1 + y0 − 1 +
m

∑

i=1

(di − 2)+,

where f+ = f if f ≥ 0 and f+ = 0 otherwise. Assume that d1 ≥ d2 ≥ · · · ≥ dm.
Let k ∈ [m] be the largest index such that dk ≥ n1/4. Let T1, . . . , Ttj be the trees
of Tj. Let A consist of those indices i ∈ [tj] such that G has no edges between the
tree Ti and {u1, . . . , uk}. We have |A| ≥ tj − d1 − · · · − dk. The definition of A and
Claim 2 imply that any two trees Tp, Tq with p, q ∈ A must be connected in G via
{uk+1, . . . , um} by a path of length at most three. But each ui can serve at most

(

di

2

)

pairs p, q. Furthermore, each edge of R[{uk+1, . . . , um}] serves at most (n1/4)2 pairs.
Hence,

(

|A|

2

)

≤ mn1/2 + 2n · n1/2 ≤ 3n3/2,

that is, d1 + · · ·+dk ≥ tj −|A| ≥ tj −O(n3/4). As di−2 ≥ (1−2n−1/4)di if di > n1/4,
we conclude that

∑m
i=1(di − 2)+ ≥ tj − O(n3/4), that is,

e(R[V2, V3]) + e(R[V3]) ≥ y2 + y1 + y0 + tj − O(n3/4).

Moreover, we can do this for all j, 1 ≤ j ≤ deg(a). Note that the improvement
of tj − O(n3/4) comes by considering G[V (Tj), V3] and that V (Ti) ∩ V (Tj) = ∅ for
distinct i, j ∈ [deg(a)]. Hence, we obtain a further strengthening, that is,
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e(R[V2, V3]) + e(R[V3]) ≥ y2 + y1 + y0 + Σ
deg(a)
i=1 ti − O(n3/4). (4)

By (3) and (4) we have

e(G) = e(T ) + e(R) ≥ n + x1 + x2 + x0 + y2 + y1 + y0 − O(n3/4).

As x0+x1+x2+y0+y1+y2 = n−(δ(G)+1), we conclude that e(G) ≥ 2n−O(n3/4).

3 Concluding Remarks

Unfortunately, we were not able to obtain an exact result for K2,3, nor the asymptotic
of the next interesting case, sat(n, K3,3). We conjecture that sat(n, K3,3) = (3 +
o(1))n, where the upper bound comes from applying twice the join operation to a
K2,2-free 2-regular graph on n − 2 vertices.
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